Аналитическое сглаживание временного. Параметры уравнения тренда

Приняв в качестве гипотетической функции теоретических уровней прямую , определим параметры последней:

Решение этой системы можно осуществить по формулам:

Отсюда искомое уравнение тренда: . Подставляя в полученное уравнении значения 1, 2, 3, 4, 5, определяем теоретические уровни ряда (см. предпоследнюю графу табл. 4.3). Сравнивая значения эмпирических и теоретических уровней, видим, что они близки, т.е. можно сказать, что найденное уравнение весьма удачно характеризует основную тенденцию изменения уровней именно как линейную функцию.

Система нормальных уравнений упрощается, если отсчет времени ведется от середины ряда. Например, при нечетном числе уровней серединная точка (год, месяц) принимается за нуль. Тогда предшествующие периоды обозначаются соответственно -1, -2, -3 и т.д., а следующие за средним – соответственно +1, +2, +3 и т.д. При четном числе уровней два срединных момента (периода) времени обозначают −1 и +1, а все последующие и предыдущие, соответственно, через два интервала: и т.д.

При таком порядке отсчета времени (от середины ряда) , система нормальных уравнений упрощается до следующих двух уравнений, каждое из которых решается самостоятельно:

Важное значение при построении модели временного ряда имеет учет сезонных и циклических колебаний. Простейшим подходом, позволяющим учесть в модели сезонные и циклические колебания, является расчет значений сезонной/циклической компоненты и построение аддитивной и мультипликативной модели временного ряда.

Общий вид аддитивной модели следующий: Y=T+S+E . Эта модель предполагает, что каждый уровень временного уровня ряда может быть представлен как сумма трендовой T , сезонной S и случайной компонент. Общий вид мультипликативной модели выглядит как: Y=T∙S∙E .

Выбор одной из двух моделей проводится на основе анализа структуры сезонных колебаний. Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель временного ряда, которая ставит уровни ряда в зависимость от значений сезонной компоненты.

Построение аддитивной и мультипликативной моделей сводится к расчету T, S, E для каждого уровня ряда. Этапы построения модели включают в себя следующие шаги:



1. Выравнивание исходного ряда методом скользящей средней

2. Расчет значений сезонной компоненты S .

3. Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных в аддитивной (T+E) или мультипликативной (T∙E) модели.

4. Аналитическое выравнивание уровней (T+E) или (T∙E) и расчет значений T с использованием полученного уравнения тренда.

5. Расчет полученных по модели значений (T+E) или (T∙E) .

6. Расчет абсолютных и/или относительных ошибок. Если полученные значения не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок E для анализа взаимосвязи исходного ряда и других временных рядов.

Рассмотрим другие методы анализа взаимосвязи, предположив что изучаемые временные ряды не содержат периодических колебаний. Допустим, что изучается зависимость между рядами х и у . Для количественной характеристики этой зависимости используется линейный коэффициент корреляции. Если рассматриваемые временные ряды имеют тенденцию, коэффициент корреляции по абсолютной величине будет высоким. Однако это не говорит о том, что х причина у . Высокий коэффициент корреляции в данном случае – это результат того, что х и у зависят от времени, или содержат тенденцию. При этом одинаковую или противоположную тенденцию могут иметь ряды, совершенно не связанные друг с другом причинно-следственной зависимостью. Например, коэффициент корреляции между численностью выпускников вузов и числом домов отдыха в РФ в период с 1970-1990 г. составил 0,8. Однако, это не говорит о том, что количество домов отдыха способствует росту числа выпускников или наоборот.

Для того чтобы получить коэффициенты корреляции, характеризующие причинно-следственную связь между изучаемыми рядами, следует избавиться от так называемой ложной корреляции, вызванной наличием тенденции в каждом ряду, которую устраняют одним из методов.

Предположим, что по двум временным рядам х t и у t строится уравнение парной регрессии линейной регрессии вида: . наличие тенденции в каждом из этих временных рядов означает, что на зависимую у t и независимую х t переменные модели оказывает воздействие фактор времени, который непосредственно в модели не учтен. Влияние фактора времени будет выражено в корреляционной зависимости между значениями остатков за текущий и предыдущие моменты времени, которая получила название автокорреляции в остатках.

Автокорреляция в остатках – это нарушение одной из основных предпосылок МНК – предпосылки о случайности остатков, полученных по уравнению регрессии. Один из возможных путей решения этой проблемы состоит в применении обобщенного МНК.

Для устранения тенденции используются две группы методов:

Методы, основанные на преобразовании уровней исходного ряда в новые переменные, не содержащие тенденции (метод последовательных разностей и метод отклонения от трендов);

Методы, основанные на изучении взаимосвязи исходных уровней временных рядов при элиминировании воздействия фактора времени на зависимую и независимую переменные модели (включение в модель регрессии по временным рядам фактора времени).

Пусть имеются два временных ряда и , каждый из которых содержит трендовую компоненту Т и случайную составляющую . Аналитическое выравнивание каждого из этих рядов позволяет найти параметры соответствующих уравнений трендов и определить расчетные по тренду уровни и соответственное. Эти расчетные значения можно принять за оценку трендовой компоненты Т каждого ряда. Поэтому влияние тенденции можно устранить путем вычитания расчетных значений уровней ряда из фактических. Эту процедуру проделывают для каждого временного ряда в модели. Дальнейший анализ взаимосвязи рядов проводят с использованием не исходных уровней, а отклонений от тренда и . Именно в этом и заключается метод отклонений от тренда.

В ряде случаев вместо аналитического выравнивания временного ряда с целью устранения тенденции можно применить более простой метод – метод последовательных разностей. Если временной ряд содержит ярко выраженную линейную тенденцию, ее можно устранить путем замены исходных уровней ряда цепными абсолютными приростами (первыми разностями).

Коэффициент b – константа, которая не зависит от времени. При наличии сильной линейной тенденции отставки достаточно малы и в соответствии с предпосылками МНК носят случайный характер. Поэтому первые разности уровней ряда не зависят от переменной времени, их можно использовать для дальнейшего анализа.

Если временной ряд содержит тенденцию в форме параболы второго порядка, то для ее устранения можно заменить исходные уровни ряда на вторые разности: .

Если тенденции временного ряда соответствует экспоненциальной, или степенной, тренд, метод последовательных разностей следует применять не к исходным уровням ряда, а к их логарифмам.

Модель вида: также относится к группе моделей, включающих фактор времени. Преимущество данной модели перед методами отклонений от трендов и последовательных разностей состоит в том, что она позволяет учесть всю информацию, содержащуюся в исходных данных, поскольку значения и – это уровни исходных временных рядов. Кроме того, модель строится по всей совокупности данных за рассматриваемый период в отличие от метода последовательных разностей, который приводит к потере числа наблюдений. Параметры этой модели определяются обычным МНК.

Пример. Построим уравнение тренда по исходным данным таблицы 4.4.

Таблица 4.4

Расходы на конечное потребление и совокупный доход (усл. ед.)

Система нормальных уравнений имеет вид:

По исходным данным рассчитаем необходимые величины и подставим в систему:

Уравнение регрессии имеет вид: .

Интерпретация параметров уравнения следующая: характеризует, что при увеличении совокупного дохода на 1 д.е. расходы на конечное потребление возрастут в среднем на 0,49 д.е в условиях существования неизменной тенденции. Параметр означает, что воздействие всех факторов, кроме совокупного дохода, на расходы на конечное потребление приведет к его среднегодовому абсолютному приросту на 0,63 д.е.

Рассмотрим уравнение регрессии вида: . Для каждого момента времени значение компоненты определяются как или . Рассматривая последовательность остатков как временной ряд, можно построить график их зависимости от времени. В соответствии с предпосылками МНК остатки должны быть случайными (рис. 4.4).


Рис. 4.4 Случайные остатки

Однако при моделировании временных рядов нередко встречаются ситуации, когда остатки содержат тенденцию или циклические колебания (рис. 4.5). Это говорит о том, что каждое следующее значение остатков зависит от предшествующих. В этом случае говорят о наличии автокорреляции в остатках.



а) б)

Рис. 4.5 Убывающая тенденция (а ) и циклические колебания (б )

в остатках

Автокорреляция случайной составляющей - корреляционная зависимость текущих и предыдущих значений случайной составляющей. Последствия автокорреляции случайной составляющей:

Коэффициенты регрессии становятся неэффективными;

Стандартные ошибки коэффициентов регрессии становятся заниженными, а значения t –критерия завышенными.

Для определения автокорреляции остатков известны два наиболее распространенных метода определения автокорреляции остатков. Первый метод – это построение графика зависимости остатков от времени и визуальное определение наличия или отсутствия автокорреляции. Второй метод – это использование критерия Дарбина-Уотсона, который сводится к проверке гипотезы:

Н0 (основная гипотеза): автокорреляция отсутствует;

Н1 и Н2 (альтернативные гипотезы): присутствует положительная или отрицательная автокорреляция в остатках соответственно.

Для проверки основной гипотезы используется статистика критерия Дарбина-Уотсона:

где .

На больших выборках d≈2(1- ), где - коэффициент автокорреляции 1-го порядка.

.

Если в остатках существует полная положительная автокорреляция и =1, то d=0; если в остатках есть полная отрицательная автокорреляция, то = -1 и d=4; если автокорреляция остатков отсутствует, то = 0, то d=2. Следовательно, 0.

Существуют специальные статистические таблицы для определения нижней и верхней критических границ d -статистики – d L и d U . Они определяются в зависимости от n, числа независимых переменных k и уровня значимости .

Если d набл ‹d L , то принимается гипотеза Н1: положительная автокорреляция.

Если d и ‹d набл ‹2,

Если 2‹d набл ‹4-d и, то принимается гипотеза Н0: автокорреляции нет.

Если d набл ›4-d L , то принимается гипотеза Н2: отрицательная автокорреляция.

Если 4-d и ‹d набл ‹4-d L , и d L ‹d набл ‹d и, то имеет место случай неопределенности.


0 d L d U 2 4- d U 4- d L 4

Рис. 4.6 Алгоритм проверки гипотезы о наличии автокорреляции остатков

Для применения критерия Дарбина-Уотсона есть ограничения. Он неприменим для моделей, включающих в качестве независимых переменных лаговые значения результативного признака, т.е. к моделям авторегрессии. Методика направлена только на выявление автокорреляции остатков первого порядка. Результаты являются более достоверными при работе с большими выборками.

В тех случаях, когда имеет место автокорреляция остатков, для определения оценок параметров a, b используют обобщенный метод МНК, который заключается в последовательности следующих шагов:

1. Преобразовать исходные переменные y t и x t к виду

2. Применив обычный МНК к уравнению , где определить оценки параметров и b.

4. Выписать исходное уравнение .

Среди эконометрических моделей, построенных по временным данным, выделяют динамические модели.

Эконометрическая модель является динамической , если в данный момент времени t она учитывает значения входящих в нее переменных, относящихся как к текущему, так и к предыдущим моментам времени, т.е. эта модель отражает динамику исследуемых переменных в каждый момент времени.

Существует два основных типа динамических эконометрических моделей. К моделям первого типа относятся модели авторегрессии и модели с распределенным лагом, в которых значение переменной за прошлые периоды времени (лаговые переменные) непосредственно включены в модель. Модели второго типа учитывают динамическую информацию в неявном виде. В эти модели включены переменные, характеризующие ожидаемый и желаемый уровень результата, или один из факторов в момент времени t.

Модель с распределенным лагом имеет вид:

Построение моделей с распределенным лагом и моделей авторегрессии имеет свою специфику. Во-первых, оценка параметров моделей авторегрессии, а в большинстве случаев и моделей распределенным лагом не может быть проведена с помощью обычного МНК ввиду нарушения его предпосылок и требует специальных статистических методов. Во-вторых, исследователям приходится решать проблемы выбора оптимальной величины лага и определения его структуры. Наконец, в третьих, между моделями с распределенным лагом и моделями авторегрессии имеется определенная взаимосвязь, и в некоторых случаях необходимо осуществить переход от одноного типа моделей к другому.

Рассмотрим модель с распределенным лагом в предположении, что максимальная величина лага конечна:

Даная модель говорит о том, что если в некоторый момент времени t происходит изменение независимой переменной x , то это изменение будет влиять на значения переменной y в течение l следующих моментов времени.

Коэффициент регрессии b 0 при переменной x t характеризует среднее абсолютное изменение y t при изменении x t на 1 ед. своего измерения в некоторый фиксированный момент времени t , без учета воздействия лаговых значений фактора x. Этот коэффициент называется краткосрочным мультипликатором.

В момент t+1 воздействие факторной переменной x t на результат y t составит (b 0 +b 1) условных единиц; в момент времени t+2 это воздействие можно охарактеризовать суммой (b 0 +b 1 +b 2) и т.д. Полученные таким образом суммы называются промежуточными мультипликаторами .

С учетом конечной величины лага можно сказать, что изменение переменной x t в момент времени t на 1 условную единицу приведет к общему изменению результата через l моментов времени (b 0 +b 1 +b 2 +…+b l ).

Введем следующее обозначение: b=(b 0 +b 1 +b 2 +…+b l ). Величину b называется долгосрочным мультипликатором , который показывает абсолютное изменение в долгосрочном периоде t+l результата y под влиянием изменения на 1 ед. фактора x .

Величины называются относительными коэффициентами модели с распределенным лагом. Если все коэффициенты b j имеют одинаковые знаки, то . Относительные коэффициенты являются весами для соответствующих коэффициентов b j . Каждый из них измеряет долю общего изменения результативного признака в момент времени t+j .

Зная величины , с помощью стандартных формул можно определить еще две важные характеристики модели множественной регрессии: величину среднего и медианного лагов.

Средний лаг рассчитывается по формуле средней арифметической взвешенной:

и представляет собой средний период, в течение которого будет происходить изменение результата под воздействием изменения фактора x в момент t. Если значение среднего лага небольшое, то это говорит о довольно быстром реагировании y на изменение x. Высокое значение среднего лага говорит о том, что воздействие фактора на результат будет сказываться в течение длительного периода времени.

Медианный лаг (L Me) – это величина лага, для которого период, в течение которого . Это тот период времени, в течение которого с момента времени t будет реализована половина общего воздействия фактора на результат.

Изложенные выше приемы анализа параметров модели с распределенным лагом действительны только в предположении, что все коэффициенты при текущем и лаговых значениях исследуемого фактора имеют одинаковые знаки. Это предположение вполне оправдано с экономической точки зрения: воздействие одного и того же фактора на результат должно быть однонаправленным независимо от того, с каким временным лагом измеряется сила или теснота связи между этими признаками. Однако на практике получить статистически значимую модель, параметры которой имели бы одинаковые знаки, особенно при большой величине лага l , чрезвычайно сложно.

Применение обычного МНК к таким моделям в большинстве случаев затруднительно по следующим причинам:

Текущие и лаговые значения независимой переменной, как правило, тесно связаны друг с другом, тем самым оценка параметров модели проводится в условиях высокой мультиколлинеарности;

При большой величине лага снижается число наблюдений, по которому строится модель, и увеличивается число ее факторных признаков, что ведет к потере числа степеней свободы в модели;

В моделях с распределенным лагом часто возникает проблема автокорреляции остатков.

Как и в модели с распределенным лагом, b 0 в этой модели характеризует краткосрочное изменение y t под воздействием изменения x t на 1 ед. Однако промежуточные и долгосрочный мультипликаторы в модели авторегрессии несколько иные. К моменту времени t+1 результат y t изменился под воздействием изменения изучаемого фактора в момент времени t на b 0 единиц, а y t +1 – под воздействием своего изменения в непосредственно предшествующим момент времени на с 1 единиц. Таким образом, общее абсолютное изменение результата в момент t+1 составит b 0 с 1 . Аналогично в момент времени t+2 абсолютное изменение результата составит b 0 с 1 2 единиц и т.д. Следовательно, долгосрочный мультипликатор в модели авторегрессии можно рассчитать как сумму краткосрочного и промежуточного мультипликаторов:

Такая интерпретация коэффициентов модели авторегрессии и расчет долгосрочного мультипликатора основаны на предпосылке о наличии бесконечного лага в воздействии текущего значения зависимой переменной на ее будущие значения.

Пример. Предположим, по данным о динамике показателей потребления и дохода в регионе была получена модель авторегрессии, описывающая зависимость среднедушевого объема потребления за год (С, млн. руб.) от среднедушевого совокупного годового дохода (Y, млн. руб.) и объема потребления предшествующего года:

.

Краткосрочный мультипликатор равен 0,85. В этой модели он представляет собой предельную склонность к потреблению в краткосрочном периоде. Следовательно, увеличение среднедушевого совокупного дохода на 1 млн. руб. приводит к росту объема потребления в тот же год в среднем на 850 тыс. руб. Долгосрочную предельную склонность к потреблению в данной модели можно определить как

.

В долгосрочной перспективе рост среднедушевого совокупного дохода на 1 млн. руб. приведет к росту объема потребления в среднем на 944 тыс. руб. Промежуточные показатели предельной склонности к потреблению можно определить, рассчитав необходимые частные суммы за соответствующие периоды времени. Например, для момента времени t+1 получим:

Это означает, что увеличение среднедушевого совокупного дохода в текущем периоде на 1 млн. руб. ведет к увеличению объема потребления в среднем на 935 тыс. руб. в ближайшем следующем периоде.

При использовании полиномов разных степеней оценка параметров уравнения тренда производится методом наименьших квадратов (МНК) точно так же, как оценки параметров уравнения регрессии на основе пространственных данных. В качестве зависимой переменной рассматриваются уровни динамического ряда, а в качестве независимой переменной – фактор времени t, который обычно выражается рядом натуральных чисел 1, 2, ..., п.

Оценка параметров нелинейных функций проводится МНК после линеаризации, т.е. приведения их к линейному виду. Рассмотрим применение МНК для некоторых нелинейных функций, которые не излагались подробно в главе, посвященной регрессии.

Для оценки параметров показательной кривой у = ab 1 или экспоненты у = е а+ы (либо у = ае ы) путем логарифмирования функции приводятся к линейному виду lny = ln a + t ln b или экспоненты: lny = a + bt. Далее строится система нормальных уравнений

Пример 5.1

Число зарегистрированных ДТП (на 100 000 человек населения) по Новгородской области за 2000–2008 гг. характеризуется данными:

Исходя из графика была выбрана показательная кривая / Для построения системы нормальных уравнений были рассчитаны вспомогательные величины

Система нормальных уравнений составила

Решая ее, получим значения

Соответственно имеем экспоненту или показательную кривую

За период с 2000 по 2008 г. число дорожно-транспортных происшествий возрастало в среднем ежегодно на 13,5%. Экспонента достаточно хорошо описывает тенденцию исходного временного ряда: коэффициент детерминации составил 0,9202. Следовательно, данный тренд объясняет 92% колеблемости уровней ряда и лишь 8% ее связаны со случайными факторами.

Некоторую специфику имеет оценка параметров кривых с насыщением: модификационной экспоненты, логистической кривой, кривой Гомперца, гиперболы вида По этим функциям должна быть сначала определена асимптота. Если она может быть задана исследователем на основе анализа временного ряда, то другие параметры могут быть оценены по МНК. В этих случаях данные функции приводятся к линейному виду. Рассмотрим оценку параметров этих кривых на отдельных примерах, начиная с модифицированной экспоненты.

Пример 5.2

Уровень механизации труда (в %) характеризуется динамическим рядом (табл. 5.2)

Таблица 5.2. Расчет параметров модифицированной экспоненты у = с ab" t

У = с-у

Так как уровень механизации труда не может превышать 100%, то имеется объективно заданная верхняя асимптота с = 100. Для оценки параметров а и b приведем рассматриваемую функцию к линейному виду ; обозначим (с-у) через Y и прологарифмируем:

Для нашего примера, исходя из данных итоговой строки табл. 3, имеем систему уравнений

Решив ее, получим ln а = 3,06311; ln b = -0,19744. Соответственно потенцируя, получим: т.е. уравнение .

Если перейти от Y к исходным уровням ряда, уравнение модифицированной экспоненты составит , где параметр показывает средний коэффициент снижения уровня использования ручного труда за 1998–2005 гг. Расчетные значения у, т.е. могут быть найдены путем подстановки в уравнение 0,8208" соответствующих значений t. Либо на основе уравнения In 7= 3,06311 – 0,19744 г при компьютерной обработке определяется In У и далее 100 – е 1пу. Так, при t = 8 In Y = = 1,48363 и 100 – e1"48363 = 100 – 4,40892 = 95,59108 = 95,6 (см. последнюю графу таблицы). Ввиду некоторой смещенности оценок (так как МНК применяется к логарифмам) Ху, Ф Ху, хотя в примере эти величины достаточно близки друг другу.

Если асимптота с не задана, то оценка параметров модифицированной экспоненты усложняется. В этих случаях могут использоваться разные методы оценивания: метод трех сумм, метод трех точек , с помощью регрессии , метод Брианта . Рассмотрим применение метода регрессии для оценки параметров модифицированной экспоненты вида у = с – ab c.

Пример 5.3

В таблице представлены данные о расходах предприятия на рекламу за 10 мес. года.

Таблица 5.3. Данные о расходах предприятия на рекламу за 10 мес. года (в тыс. руб.)

Найдем по нашему ряду цепные абсолютные приростыг и представим их через параметры нашей функции, T.e.z = c-ab" – с + ab"~ l = ab" 1 (1 – b). Известно, что для модифицированной экспоненты логарифм абсолютных приростов линейно зависит от фактора времени t. Следовательно, можно записать, что lnz = Ιηα + (f – 1) lnb + ln(l – b). Обозначим Ιηα + ln(l – b) через d. Тогда lnz = d + (t- 1) lnb, т.е. линейное в логарифмах уравнение. Применяя МНК, получим оценки параметров d, lnb, а соответственно и параметра Ь. В рассматриваемом примере на основании граф табл. 5.3 lnz и (t – 1) было найдено уравнение регрессии: lnz = 4,519641 – 0,20882 (t – 1). Исходя из него получаем lnb = -0,20882; b = 0,811538. 4,519641 = In a + In (1 – b) = In [α (1 – b)]. Тогда α (1 – b) = e4,519641, откуда параметра =91,80264/(1-0,811538) = 487,1145.

Далее можно найти оценку параметра с как среднее значение из величин с = у + ab", найденных для каждого месяца (см. последнюю графу табл. 5.3). Предельная величина расходов на рекламу составит 516,4 тыс. руб. Искомое уравнение тренда примет вид

Рассмотренный метод применим, если абсолютные приросты – величины положительные. Если же некоторые приросты окажутся меньше нуля, то нужно проводить сглаживание уровней временного ряда методом скользящей средней.

Для логистической кривой Перла – Рида аналогично параметры а и b могут быть найдены МНК, если асимптота с задана. Тогда данная функция преобразовывается в линейную из логарифмов обозначим через Y и прологарифмируем, т.е. ). Далее параметры а и b определяются МНК, как и в примере по табл. 5.3.

Для логистической кривой вида параметры а и b могут быть оценены МНК, если асимптота с задана, так как в этом случае функция линеаризуема: ; обозначим через Y величину и прологарифмируем: Далее, применяя МНК, оцениваем параметры а и b.

При практических расчетах значение верхней асимптоты логистической кривой может быть определено исходя из существа развития явления, различного рода ограничений для его роста (нормативы потребления, законодательные акты), а также графически.

Если верхняя асимптота не задана, то для оценки параметров могут использоваться разные методы: Фишера, Юла, Родса, Нейра и др. Сравнительная оценка и обзор этих методов изложены в работе E. М. Четыркина .

Покажем на примере расчет параметров логистической кривой по методу Фишера.

Пример 5.4

Производство продукции характеризуется данными, представленными в табл. 5.4.

Таблица 5.4. Расчет параметров логистической кривой

Метод Фишера основан на определении производной для логистической кривой. Дифференцируя данную функцию по t, получим уравнение

Обозначим темп прироста логистической кривой через . Тогда , т.е. для z, имеем линейную функцию с параметрами а и . Чтобы найти решение, необходимо оценить z,. Предполагая, что интервалы между уровнями в ряду динамики равны, Фишер предложил приближенно оценивать в виде уравнения , где п - 1. Для нашего примера значения z, представлены в графе 3 табл. 5.4. Далее применяем МНК к уравнению: , т.е. строим регрессию z(оту(, беря данные от t = 2 до f = 8. Уравнение регрессии запишется в виде Исходя из него находим параметры а и с для логистической кривой. Параметр а = 0,806. Данное уравнение статистически значимо: F-критерий равен 689,6; R 2 = 0,996. Соответственно для него значимы и параметры: f-критерий для параметра а равен 47,2 и для параметра – равен -26,2. Так как , то и т.е. верхняя асимптота производства продукции составляет 403 ед.

После того, как найдены параметры а и с, находим параметр b . Для этого функциюпредставим как Обозначим через Y выражение в левой части равенства, т.е..-Тогда имеем уравнение Прологарифмируем его:. В этом уравнении свободным членом является In Ь. Его можно определить из первого уравнения системы нормальных уравнений, а именно Для нашего примера имеем уравнение . Соответственно Таким образом, логистическая кривая запишется в виде

Теоретические значения данной функции представлены в графе 6 табл. 5.4 (найдены путем подстановки соответствующих значений t). Они достаточно близко подходят к исходным данным: коэффициент корреляции между ними равен 0,999; ввиду того, что в расчетах использовались логарифмы. Если предположить, что предельное значение объема производства продукции равно 400 ед., т.е. применить МНК к уравнению , то получим и b = =67,5; параметр а при компьютерной обработке определяется как -а = -0,8. Соответственно уравнение тренда запишется в виде . Результаты двух уравнений достаточно близки.

Параметры кривой Гомперца также могут быть оценены МНК, если асимптота с задана, так как в этом случае данная функция сводима к линейному виду Прологарифмировав ее, получим уравнение .

Вторично прологарифмировав, получим уравнение , Обозначив через у*, lgb через В и Ig(lga) через А, запишем кривую Гомперца в линейном виде , для оценки параметров которой применим МНК.

При практическом применении кривой Гомперца могут возникнуть некоторые сложности по динамическому ряду с повышающейся тенденцией. В этом случае задается верхняя асимптота с и логарифмы При повторном логарифмировании в расчетах используются лишь положительные значения Продемонстрируем возможность оценки параметров кривой Гомперца с верхней асимптотой на примере динамики по предприятию товарных запасов на начало каждого месяца (тыс. долл.).

Таблица 5.5. Расчет параметров кривой Гомперца

Назначение сервиса . Сервис используется для расчета параметров тренда временного ряда y t онлайн с помощью метода наименьших квадратов (МНК) (см. пример нахождения уравнения тренда), а также способом от условного нуля. Для этого строится система уравнений:
a 0 n + a 1 ∑t = ∑y
a 0 ∑t + a 1 ∑t 2 = ∑y t

и таблица следующего вида:

t y t 2 y 2 t y y(t)
1
... ... ... ... ... ...
N
ИТОГО

Инструкция . Укажите количество данных (количество строк). Полученное решение сохраняется в файле Word и Excel .

Количество строк (исходных данных)
Использовать способ отсчета времени от условного начала (перенос начала координат в середину ряда динамики)
",1);">

Тенденция временного ряда характеризует совокупность факторов, оказывающих долговременное влияние и формирующих общую динамику изучаемого показателя.

Способ отсчета времени от условного начала

Для определения параметров математической функции при анализе тренда в рядах динамики используется способ отсчета времени от условного начала. Он основан на обозначении в ряду динамики показаний времени таким образом, чтобы ∑t i . При этом в ряду динамики с нечетным числом уровней порядковый номер уровня, находящегося в середине ряда, обозначают через нулевое значение и принимают его за условное начало отсчета времени с интервалом +1 всех последующих уровней и –1 всех предыдущих уровней. Например, при обозначения времени будут: –2, –1, 0, +1, +2 . При четном числе уровней порядковые номера верхней половины ряда (от середины) обозначаются числами: –1, –3, –5 , а нижней половины ряда обозначаются +1, +3, +5 .

Пример . Статистическое изучение динамики численности населения.

  1. С помощью цепных, базисных, средних показателей динамики оцените изменение численности, запишите выводы.
  2. С помощью метода аналитического выравнивания (по прямой и параболе, определив коэффициенты с помощью МНК) выявите основную тенденцию в развитии явления (численность населения Республики Коми). Оцените качество полученных моделей с помощью ошибок и коэффициентов аппроксимации.
  3. Определите коэффициенты линейного и параболического трендов с помощью средств «Мастера диаграмм». Дайте точечный и интервальный прогнозы численности на 2010 г. Запишите выводы.
1990 1996 2001 2002 2003 2004 2005 2006 2007 2008
1249 1133 1043 1030 1016 1005 996 985 975 968
Метод аналитического выравнивания

а) Линейное уравнение тренда имеет вид y = bt + a
1. Находим параметры уравнения методом наименьших квадратов . Используем способ отсчета времени от условного начала.
Система уравнений МНК для линейного тренда имеет вид:
a 0 n + a 1 ∑t = ∑y
a 0 ∑t + a 1 ∑t 2 = ∑y t

t y t 2 y 2 t y
-9 1249 81 1560001 -11241
-7 1133 49 1283689 -7931
-5 1043 25 1087849 -5215
-3 1030 9 1060900 -3090
-1 1016 1 1032256 -1016
1 1005 1 1010025 1005
3 996 9 992016 2988
5 985 25 970225 4925
7 975 49 950625 6825
9 968 81 937024 8712
0 10400 330 10884610 -4038

Для наших данных система уравнений примет вид:
10a 0 + 0a 1 = 10400
0a 0 + 330a 1 = -4038
Из первого уравнения выражаем а 0 и подставим во второе уравнение
Получаем a 0 = -12.236, a 1 = 1040
Уравнение тренда:
y = -12.236 t + 1040

Оценим качество уравнения тренда с помощью ошибки абсолютной аппроксимации.

Ошибка аппроксимации в пределах 5%-7% свидетельствует о хорошем подборе уравнения тренда к исходным данным.

б) выравнивание по параболе
Уравнение тренда имеет вид y = at 2 + bt + c
1. Находим параметры уравнения методом наименьших квадратов.
Система уравнений МНК:
a 0 n + a 1 ∑t + a 2 ∑t 2 = ∑y
a 0 ∑t + a 1 ∑t 2 + a 2 ∑t 3 = ∑yt
a 0 ∑t 2 + a 1 ∑t 3 + a 2 ∑t 4 = ∑yt 2

t y t 2 y 2 t y t 3 t 4 t 2 y
-9 1249 81 1560001 -11241 -729 6561 101169
-7 1133 49 1283689 -7931 -343 2401 55517
-5 1043 25 1087849 -5215 -125 625 26075
-3 1030 9 1060900 -3090 -27 81 9270
-1 1016 1 1032256 -1016 -1 1 1016
1 1005 1 1010025 1005 1 1 1005
3 996 9 992016 2988 27 81 8964
5 985 25 970225 4925 125 625 24625
7 975 49 950625 6825 343 2401 47775
9 968 81 937024 8712 729 6561 78408
0 10400 330 10884610 -4038 0 19338 353824

Для наших данных система уравнений имеет вид
10a 0 + 0a 1 + 330a 2 = 10400
0a 0 + 330a 1 + 0a 2 = -4038
330a 0 + 0a 1 + 19338a 2 = 353824
Получаем a 0 = 1.258, a 1 = -12.236, a 2 = 998.5
Уравнение тренда:
y = 1.258t 2 -12.236t+998.5

Ошибка аппроксимации для параболического уравнения тренда.

Поскольку ошибка меньше 7%, то данное уравнение можно использовать в качестве тренда.

Минимальная ошибка аппроксимации при выравнивании по параболе. К тому же коэффициент детерминации R 2 выше чем при линейной. Следовательно, для прогнозирования необходимо использовать уравнение по параболе.

Интервальный прогноз.
Определим среднеквадратическую ошибку прогнозируемого показателя.

m = 1 - количество влияющих факторов в уравнении тренда.
Uy = y n+L ± K
где

L - период упреждения; у n+L - точечный прогноз по модели на (n + L)-й момент времени; n - количество наблюдений во временном ряду; Sy - стандартная ошибка прогнозируемого показателя; T табл - табличное значение критерия Стьюдента для уровня значимости α и для числа степеней свободы, равного n-2 .
По таблице Стьюдента находим Tтабл
T табл (n-m-1;α/2) = (8;0.025) = 2.306
Точечный прогноз, t = 10: y(10) = 1.26*10 2 -12.24*10 + 998.5 = 1001.89 тыс. чел.

1001.89 - 71.13 = 930.76 ; 1001.89 + 71.13 = 1073.02
Интервальный прогноз:
t = 9+1 = 10: (930.76;1073.02)

Ряда. Уравнение тренда.

Кривые роста, описывающие закономерности развития явлений во времени, - это результат аналитического выравнивания динамических рядов. Выравнивание ряда с помощью тех или иных функций (т. е. их подгонка к данным) в большинстве случаев оказывается удобным средством описания эмпирических данных. Это средство при соблюдении ряда условий можно применить и для прогнозирования. Процесс выравнивания состоит из следующих основных этапов:

Выбора типа кривой, форма которой соответствует характеру изменения динамического ряда;

Определения численных значений (оценивание) параметров кривой;

Апостериорного контроля качества выбранного тренда.

В современных ППП все перечисленные этапы реализуются одновременно, как правило, в рамках одной процедуры.

Аналитическое сглаживание с использованием той или иной функции позволяет получить выравненные, или, как их иногда не вполне правомерно называют, теоретические значения уровней динамического ряда, т. е. те уровни, которые наблюдались бы, если бы динамика явления полностью совпадала с кривой. Эта же функция с некоторой корректировкой или без нее, применяется в качестве модели для экстраполяции (прогноза).

Вопрос о выборе типа кривой является основным при выравнивании ряда. При всех прочих равных условиях ошибка в решении этого вопроса оказывается более значимой по своим последствиям (особенно для прогнозирования), чем ошибка, связанная со статистическим оцениванием параметров.

Поскольку форма тренда объективно существует, то при выявлении ее следует исходить из материальной природы изучаемого явления, исследуя внутренние причины его развития, а также внешние условия и факторы на него влияющие. Только после глубокого содержательного анализа можно переходить к использованию специальных приемов, разработанных статистикой.

Весьма распространенным приемом выявления формы тренда является графическое изображение временного ряда. Но при этом велико влияние субъективного фактора, даже при отображении выровненных уровней.

Наиболее надежные методы выбора уравнения тренда основаны на свойствах различных кривых, применяемых при аналитическом выравнивании. Такой подход позволяет увязать тип тренда с теми или иными качественными свойствами развития явления. Нам представляется, что в большинстве случаев практически приемлемым является метод, который основывается на сравнении характеристик изменения приростов исследуемого динамического ряда с соответствующими характеристиками кривых роста. Для выравнивания выбирается та кривая, закон изменения прироста которой наиболее близок к закономерности изменения фактических данных.

В табл. 4 приводится перечень наиболее употребительных при анализе экономических рядов видов кривых и указываются соответствующие «симптомы», по которым можно определить, какой вид кривых подходит для выравнивания.

При выборе формы кривой надо иметь в виду еще одно обстоятельство. Рост сложности кривой в целом ряде случаев может действительно увеличить точность описания тренда в прошлом, однако в связи с тем, что более сложные кривые содержат большее число параметров и более высокие степени независимой переменной, их доверительные интервалы будут в общем существенно шире, чем у более простых кривых при одном и том же периоде упреждения.

Таблица 4

Характер изменения показателей, основанных
на средних приростах для различных видов кривых

Показатель Характер изменения показателей во времени Вид кривой
Примерно одинаковые Прямая
Линейно изменяются Парабола второй степени
Линейно изменяются Парабола третьей степени
Примерно одинаковые Экспонента
Линейно изменяются Логарифмическая парабола
Линейно изменяются Модифицированная экспонента
Линейно изменяются Кривая Гомперца

В настоящее время, когда использование специальных программ без особых усилий позволяет одновременно строить несколько видов уравнений, широко эксплуатируются формальные статистические критерии для определения лучшего уравнения тренда.

Из сказанного выше, по-видимому, можно сделать вывод о том, что выбор формы кривой для выравнивания представляет собой задачу, которая не решается однозначно, а сводится к получению ряда альтернатив. Окончательный выбор не может лежать в области формального анализа, тем более, если предполагается с помощью выравнивания не только статистически описать закономерность поведения уровня в прошлом, но и экстраполировать найденную закономерность в будущее. Вместе с тем различные статистические приемы обработки данных наблюдения могут принести существенную пользу, по крайней мере, с их помощью можно отвергнуть заведомо непригодные варианты и тем самым существенно ограничить поле выбора.

Рассмотрим наиболее используемые типы уравнений тренда:

1.Линейная форма тренда:

где - уровень ряда, полученный в результате выравнивания по прямой;

Начальный уровень тренда;

Средний абсолютный прирост; константа тренда.

Для линейной формы тренда характерно равенство так называемых первых разностей (абсолютных приростов) и нулевые вторые разности, т. е. ускорения.

2.Параболическая (полином 2-ой степени) форма тренда:

Для данного типа кривой постоянными являются вторые разности (ускорение), а нулевыми – третьи разности.

Параболическая форма тренда соответствует ускоренному или замедленному изменению уровней ряда с постоянным ускорением. Если < 0 и > 0, то квадратическая парабола имеет максимум, если > 0 и < 0 – минимум. Для отыскания экстремума первую производную параболы по t приравнивают 0 и решают уравнение относительно t.

3.Экспоненциальная форма тренда:

где - константа тренда; средний темп изменения уровня ряда.

При > 1 данный тренд может отражать тенденцию ускоренного и все более ускоряющегося возрастания уровней ряда. При < 1 – тенденцию постоянно, все более замедляющегося снижения уровней временного ряда.

4.Гиперболическая форма тренда (1 типа):

Данная форма тренда может отображать тенденцию процессов, ограниченных предельным значением уровня.

5.Логарифмическая форма тренда:

где - константа тренда.

Логарифмическим трендом может быть описана тенденция, проявляющаяся в замедлении роста уровней ряда динамики при отсутствии предельно возможного значения. При достаточно большом t логарифмическая кривая становится мало отличимой от прямой линии.

6.Обратнологарифмическая форма тренда:

7.Мультипликативная (степенная) форма тренда:

8.Обратная (гиперболическая 2 типа) форма тренда:

9.Гиперболическая форма тренда 3 типа:

10.Полином 3-ей степени:

Для всех нелинейных, относительно исходных переменных моделей (уравнений регрессии), а их здесь большинство, требуется провести вспомогательные преобразования, представленные в таблице ниже.

Таблица 5

Модели, сводящиеся к линейному тренду

Модель Уравнение Преобразование
Мультипликативная (Степенная)
Гиперболическая I типа
Гиперболическая II типа
Гиперболическая III типа
Логарифмическая
Обратнологариф­мическая

В формулах, перечисленных в таблице, как и во всех формулах, описывающих модель тренда, есть коэффициенты уравнений.

Однако, при практическом использовании линеаризации с помощью преобразования исследуемых переменных следует иметь ввиду, что оценки параметров, полученных линеаризацией с помощью М.Н.К. (метод наименьших квадратов), минимизируют сумму квадратов отклонений для преобразованных, а не исходных переменных. Поэтому полученные с помощью линеаризации зависимостей оценки нуждаются в уточнении.

Для решения поставленной задачи по аналитическому сглаживанию динамических рядов в системе STATISTICA нам потребуется создать несколько новых дополнительных переменных, необходимых для выполнения дальнейшей работы, а также осуществить некоторые вспомогательные операции по преобразованию нелинейных моделей тренда в линейные.

Итак, нам предстоит построить уравнение тренда, которое по существу является уравнением регрессии, в котором в качестве фактора выступает «время». Прежде всего, мы создадим переменную «Т», содержащую моменты времени четвертого периода. Так как четвертый период включает 12 лет, то переменная «Т» будет состоять из натуральных чисел от 1 до 12, соответствующих месяцам года.

Кроме того, для работы с некоторыми моделями тренда нам потребуется еще несколько переменных, содержание которых можно понять из их обозначения. Это переменные, получаемые из временного ряда: «Т^2», «Т^3», «1/Т» и «ln T». А также переменные, получаемые из исходных данных за четвертый период: «1/Import4» и «ln Import4». Также необходимо создать такую же таблицу для экспорта. Все это предлагается сделать на новом рабочем листе, скопировав туда данные за 4-й период.

Для этого воспользуемся уже известным нам меню Workbook/Insert.

В итоге получаем следующие электронные таблицы.

Рис. 38. Таблица со вспомогательными переменными для импорта

Рис. 39. Таблица со вспомогательными переменными для экспорта

Для аналитического выравнивания рядов динамики мы будем использовать модуль Multiple Regression в меню Statistics. Рассмотрим пример построения графического изображения и определение численных параметров тренда, выраженного линейной зависимостью.

Рис. 40. Модуль Multiple Regression в меню Statistics

Для выбора зависимых и независимых переменных воспользуемся кнопкой Variables.

В открывшемся окне в левом информационном поле мы выбираем зависимую переменную Y t , (в нашем случае это Import 4 – данные по четвертому периоду). Номера выбранных зависимых переменных отображаются внизу в поле Dependent var. (or list for batch). Соответственно в правом поле мы выбираем независимые переменные (в нашем случае одну – время «Т»). Номера выбранных независимых переменных высвечиваются внизу в поле Independent variable list.

После того, как завершен выбор переменных, нажимаем ОК. Система выдает окно с обобщенными результатами расчета параметров тренда (далее они будут рассмотрены более подробно) и возможностью выбора направления для последующего детального анализа. Заметим, что значение оценки, высвеченное красным цветом, указывает на статистическую значимость результатов.

Рис. 41. Закладка Advanced

На закладке располагается несколько кнопок, позволяющих получить максимально детализированные сведения по интересующему нас направлению анализа. При нажатии на нее получаем две таблицы с результатами регрессионного анализа. В первой представлены результаты расчета параметров уравнения регрессии, во второй – основные показатели уравнения.

Рис. 42. Основные показатели уравнения для данных импорта за четвертый период (линейный тренд)

Здесь N = – объем результативной переменной. В верхнем поле расположены показатели R, , Adjusted R, F, p, Std.Error of Estimate , означающие соответственно теоретическое корреляционное отношение, коэффициент детерминации, уточненный коэффициент детерминации, расчетное значение критерия Фишера (в скобках дано число степеней свободы), уровень значимости, стандартная ошибка уравнения (эти же показатели можно увидеть во второй таблице). В самой таблице нас интересуют столбец В , в котором расположены коэффициенты уравнения, столбец t и столбец p-level , обозначающие расчетное значение t-критерия и расчетный уровень значимости, необходимые для оценки значимости параметров уравнения. При этом система помогает пользователю: когда процедура предполагает проверку на значимость, STATISTICA выделяет значимые элементы красным цветом (т.е. отвергается нулевая гипотеза о равенстве параметров нулю). В нашем случае |t факт | > t табл для обоих параметров, следовательно они значимы.

Рис. 43. Параметры уравнения регрессии для данных импорта за четвертый период (линейный тренд)

Для оценки статистической значимости уравнения в целом на закладке Advanced воспользуемся кнопкой ANOVA (Goodness Of Fit), позволяющей получить таблицу дисперсионного анализа и значение F-критерия Фишера.

Рис. 44. Таблица дисперсионного анализа

Sums of Squares – сумма квадратов отклонений: на пересечении со строкой Regression – сумма квадратов отклонений теоретических (полученных по уравнению регрессии) значений признака от средней величины. Эта сумма квадратов используется для расчета факторной, объясненной дисперсии зависимой переменной. На пересечении со строкой Residual – сумма квадратов отклонений теоретических и фактических значений переменной (для расчета остаточной, необъясненной дисперсии), Total – отклонений фактических значений переменной от средней величины (для расчета общей дисперсии). Столбец df – число степеней свободы, Means Squares обозначает дисперсию: на пересечении со строкой Regression – факторную, со строкой Residual - остаточную, F – критерий Фишера, используемый для оценки общей значимости уравнения и коэффициента детерминации, p-level – уровень значимости.

Параметры уравнения тренда в STATISTICA, как и в большинстве других программ, рассчитываются по метод наименьших квадратов (МНК).

Метод позволяет получить значения параметров, при которых обеспечивается минимизация суммы квадратов отклонений фактических уровней от сглаженных, т. е. полученных в результате аналитического выравнивания.

Математический аппарат метода наименьших квадратов описан в большинстве работ по математической статистике, поэтому нет необходимости подробно на нем останавливаться. Напомним только некоторые моменты. Так, для нахождения параметров линейного тренда (2.10) необходимо решить систему уравнений:

Данная система уравнений упрощается, если значения t подобрать таким образом, чтобы их сумма равнялась нулю, т. е. начало отсчета времени перенести в середину рассматриваемого периода. Очевидно, что перенос начала координат имеет смысл только при ручной обработке динамического ряда.

Если , то , .

В общем виде систему уравнений для нахождения параметров полинома можно записать как

При сглаживании временного ряда по экспоненте (которая часто используется в экономических исследованиях) для определения параметров следует применить метод наименьших квадратов к логарифмам исходных данных.

После переноса начала отсчета времени в середину ряда получают:

следовательно:

Если наблюдаются более сложные изменения уровней временного ряда и выравнивание осуществляется по показательной функции вида , то параметры определяются в результате решения следующей системы уравнений:

В практике исследования социально-экономических явлений исключительно редко встречаются динамические ряды, характеристики которых полностью соответствуют признакам эталонных математических функций. Это обусловлено значительным числом факторов разного характера, влияющих на уровни ряда и тенденцию их изменения.

На практике чаще всего строят целый ряд функций, описывающих тренд, а затем выбирают лучшую на основе того или иного формального критерия.

Рис. 45. Закладка Residuals/Assumptions/Prediction

Здесь воспользуемся кнопкой Perform Residual Analysis, открывающую модуль анализа остатков. Под остатками (Residuals) в данном случае понимается отклонение исходных значений динамического ряда от прогнозируемых, в соответствии с выбранным уравнением тренда. Сразу же переходим к закладке Advanced.

Рис. 46. Закладка Advanced в Perform Residual Analysis

Воспользуемся кнопкой Summary: Residuals & Predicted, позволяющую получить одноименную таблицу, которая содержит исходные значения динамического ряда Observed Value, прогнозируемые значения по выбранной модели тренда Predicted Value, отклонения прогнозных значений от исходных Residual Value, а также различные специальные показатели и стандартизированные значения. Также в таблице представлены максимальное, минимальное значения, средняя и медиана по каждому столбцу.

Рис. 47. Таблица, содержащая показатели и специальные значения для линейного тренда

В данной таблицы наибольший интерес для нас представляет столбец Residual Value, значения которого в дальнейшем используются для характеристики качества подбора тренда, а также столбец Predicted Value, который содержит прогнозные значения динамического ряда в соответствии с выбранной моделью тренда (в нашем случае – линейной).

Далее построим график исходного временного ряда совместно с вычисленными в соответствии с линейным уравнением тренда прогнозными значениями для четвертого периода. Для этого лучше всего скопировать значения из столбца Predicted Value в таблицу, в которой были созданы переменные для построения трендов.

Рис. 48. Третий период динамического ряда импорта (млрд. $) и линейный тренд

Итак, мы получили все необходимые результаты расчета параметров тренда, выраженного линейной моделью, для четвертого периода исходного динамического ряда, а также построили график данного ряда, совмещенный с линией тренда. Далее будут представлены остальные модели трендов.

Следует заметить, что в результате линеаризации степенной и экспоненциальной функций STATISTICA возвращает значение линеаризованной функции равное , поэтому для дальнейшего использования их надо преобразовать с помощью следующей элементарной транзакции , в том числе и для построения графических изображений. Для гиперболических функций, а также для обратнологарифмической функции необходимо выполнить преобразование вида .

Для этого также целесообразно создать дополнительные переменные и получить их с помощью формул на основе уже имеющихся переменных.

Итак, при решении задачи с помощью процедуры Multiple Regression, необходимо в качестве переменных выбрать натуральные логарифмы исходного ряда и оси времени.

Рис. 49. Основные показатели уравнения для данных импорта за третий период (степенная модель)

Рис. 50. Параметры уравнения регрессии для данных импорта за третий период (степенная модель)

Рис. 51. Таблица дисперсионного анализа

Рис. 52. Таблица, содержащая показатели и специальные значения для степенной модели

Затем, как и в случае с линейным трендом, копируем значения из столбца Predicted Value в таблицу, но там для этого строим еще одну переменную, в которой получаем прогнозные значения по степенной функции с помощью преобразования .

Рис. 53. Создание дополнительной переменной

Рис. 54. Таблица со всеми переменными

Рис. 55. Третий период динамического ряда импорта (млрд. $) и степенная модель

Рис.56. Основные показатели уравнения для данных импорта за третий период (экспоненциальная модель)

Рис. 57. Третий период динамического ряда импорта (млрд. $) и экспоненциальная модель

Рис.58. Основные показатели уравнения для данных импорта за третий период (обратная модель)

Рис. 59. Третий период динамического ряда импорта (млрд. $) и обратная модель

Рис. 60. Основные показатели уравнения для данных импорта за третий период (полином второй степени)

Рис. 61. Третий период динамического ряда импорта (млрд. $) и полином второй степени

Рис. 62. Основные показатели уравнения для данных импорта за третий период (полином 3-й степени)

Рис. 63. Третий период динамического ряда импорт (млрд. $) и полином 3-й степени


Рис. 64. Основные показатели уравнения для данных импорта за третий период (гипербола 1-ого вида)

Рис. 65. Третий период динамического ряда импорт (млрд. $) и гипербола 1-ого вида


Рис. 66. Основные показатели уравнения для данных импорта за третий период (гипербола 3 типа)

Рис. 67. Третий период динамического ряда импорт и гипербола 3 типа


Рис. 68. Основные показатели уравнения для данных импорта за третий период (логарифмическая модель)

Рис. 69. Третий период динамического ряда импорт (млрд. $) и логарифмическая модель


Рис. 70. Основные показатели уравнения для данных импорта за третий период (обратнологарифмическая модель)

Рис. 71. Третий период динамического ряда импорт (млрд. $) и обратнологарифмическая модель


Затем построим таблицу со вспомогательными переменными для построения трендов для экспорта.

Рис. 72. Таблица со вспомогательными переменными

Проделаем те же операции что и для четвертого период импорта.

Рис. 73. Основные показатели уравнения для данных экспорта за третий период (линейная модель)

Рис. 74. Третий период динамического ряда экспорта (млрд. $) и линейная модель

Рис. 75. Основные показатели уравнения для данных экспорта за третий период (степенная модель тренда)

Рис. 76. Третий период динамического ряда экспорта и степенная модель


Рис. 77. Основные показатели уравнения для данных экспорта за третий период (экспоненциальная модель тренда)

Рис. 78. Третий период динамического ряда экспорта (млрд. $) и экспоненциальная модель


Рис. 79. Основные показатели уравнения для данных экспорта за третий период (обратная модель тренда)

Рис. 80. Третий период динамического ряда экспорта (млрд. $) и обратная модель


Рис. 81. Основные показатели уравнения для данных экспорта за третий период (полином второй степени)

Рис. 82. Третий период динамического ряда экспорта (млрд. $) и полином второй степени


Рис. 83. Основные показатели уравнения для данных экспорта за третий период (полином третей степени)

Рис. 84. Третий период динамического ряда экспорта (млрд. $) и полином третей степени


Рис. 85. Основные показатели уравнения для данных экспорта за третий период (гипербола 1-ого вида)

Рис. 86. Третий период динамического ряда экспорта и гипербола 1-ого типа


Рис. 87. Основные показатели уравнения для данных экспорта за третий период (гипербола 3-ого вида)

Рис. 88. Третий период динамического ряда экспорта (млрд. $) и гипербола 3-ого типа


Рис. 89. Основные показатели уравнения для данных экспорта за третий период (логарифмическая модель)

Рис. 90. Третий период динамического ряда экспорта (млрд. $) и логарифмическая модель


Рис. 91. Основные показатели уравнения для данных экспорта за третий период (обратнологарифмическая модель)

Рис. 91. Третий период динамического ряда экспорта (млрд. $) и обратнологарифмическая модель


Выбор наилучшего тренда

Как уже отмечалось, проблема выбора формы кривой - одна из основных проблем, с которой сталкиваются при выравнивании ряда динамики. Решение этой проблемы во многом определяет результаты экстраполяции тренда. В большинстве специализированных программ для выбора лучшего уравнения тренда предоставляется возможность воспользоваться следующими критериями:

Минимальное значение среднеквадратической ошибки тренда:

,

где - фактические уровни ряда динамики;

Уровни ряда, определенные по уравнению тренда;

n - число уровней ряда;

p - число факторовв уравнении тренда.

- минимальное значение остаточной дисперсии:

Минимальное значение средней ошибки аппроксимации;

Минимальное значение средней абсолютной ошибки;

Максимальное значение коэффициента детерминации;

Максимальное значение F- критерия Фишера:

: ,

где k – число степеней свободы факторной дисперсии,равное числу независимых переменных (признаков-факторов) в уравнении;

n-k-1 - число степеней свободы остаточной дисперсии.

Применение формального критерия для выбора формы кривой, по-видимому, даст практически пригодные результаты в том случае, если отбор будет проходить в два этапа. На первом этапе отбираются зависимости, пригодные с позиции содержательного подхода к задаче, в результате чего происходит ограничение круга потенциально приемлемых функций. На втором этапе для этих функций подсчитываются значения критерия и выбирается та из кривых, которой соответствует минимальное его значение.

В данном пособии для идентификации тренда используется формальный метод, который основывается на использовании численного критерия. В качестве такого критерия рассматривается максимальный коэффициент детерминации:

.

Расшифровка обозначений и формулы данных показателей даны в предыдущих разделах. Коэффициент детерминации показывает, какая доля общей дисперсии результативного признака обусловлена вариацией признака – фактора. В таблицах STATISTICA он обозначается как R?.

В следующей ниже таблице будут представлены уравнения моделей трендов и коэффициенты детерминации данных импорта.

Таблица 6

Уравнения моделей трендов и коэффициенты детерминации Import.

Сопоставив значения коэффициентов детерминации для различных типов кривых можно сделать вывод о том, что для исследуемого третьего периода лучшей формой тренда будет полином третей степени для импорта и для экспорта.

Далее необходимо проанализировать выбранную модель тренда с точки зрения ее адекватности реальным тенденциям исследуемого временного ряда через оценку надежности полученных уравнений трендов по F-критерию Фишера. В данном случае расчетное значение критерия Фишера для импорта равно 16,573; для экспорта – 13,098, а табличное значение при уровне значимости равно 3,07. Следовательно, эта модель тренда признается адекватно отражающей реальную тенденцию изучаемого явления.

Кривые роста, описывающие закономерности развития явлений во времени – это результат аналитического выравнивания динамических рядов. Выравнивание ряда с помощью тех или иных функций в большинстве случаев оказывается удобным средством описания эмпирических данных. Это средство при соблюдении ряда условий можно применить и для прогнозирования. Процесс выравнивания состоит из следующих основных этапов:

Выбора типа кривой, форма которой соответствует характеру изменения динамического ряда;

Определения численных значений (оценка) параметров кривой;

Апостериорного контроля качества выбранного тренда.

В современных ППП все перечисленные этапы реализуются одновременно, как правило, в рамках одной процедуры.

Аналитическое сглаживание с использованием той или иной функции позволяет получить выровненные, или, как их иногда не вполне правомерно называют, теоретические значения уровней динамического ряда, т. е. уровни, которые наблюдались бы, если бы динамика явления полностью совпадала с кривой. Эта же функция с некоторой корректировкой или без нее, применяется в качестве модели для экстраполяции (прогноза).

Вопрос о выборе типа кривой является основным при выравнивании ряда. При всех прочих равных условиях ошибка в решении этого вопроса оказывается более значимой по своим последствиям (особенно для прогнозирования), чем ошибка, связанная со статистическим оцениванием параметров.

Поскольку форма тренда объективно существует, то при выявлении ее следует исходить из материальной природы изучаемого явления, исследуя внутренние причины его развития, а также внешние условия и факторы на него влияющие. Только после глубокого содержательного анализа можно переходить к использованию специальных приемов, разработанных статистикой.

Весьма распространенным приемом выявления формы тренда является графическое изображение временного ряда. Но при этом велико влияние субъективного фактора, даже при отображении выровненных уровней.

Наиболее надежные методы выбора уравнения тренда основаны на свойствах различных кривых, применяемых при аналитическом выравнивании. Такой подход позволяет увязать тип тренда с теми или иными качественными свойствами развития явления. Нам представляется, что в большинстве случаев практически приемлемым является метод, который основывается на сравнении характеристик изменения приростов исследуемого динамического ряда с соответствующими характеристиками кривых роста. Для выравнивания выбирается та кривая, закон изменения прироста которой наиболее близок к закономерности изменения фактических данных.

При выборе формы кривой надо иметь в виду еще одно обстоятельство. Рост сложности кривой в целом ряде случаев может действительно увеличить точность описания тренда в прошлом, однако в связи с тем, что более сложные кривые содержат большее число параметров и более высокие степени независимой переменной, их доверительные интервалы будут, в общем, существенно шире, чем у более простых кривых при одном и том же периоде упреждения.

В настоящее время, когда использование специальных программ без особых усилий позволяет одновременно строить несколько видов уравнений, широко эксплуатируются формальные статистические критерии для определения лучшего уравнения тренда.

Из сказанного выше, по-видимому, можно сделать вывод о том, что выбор формы кривой для выравнивания представляет собой задачу, которая не решается однозначно, а сводится к получению ряда альтернатив. Окончательный выбор не может лежать в области формального анализа, тем более, если предполагается с помощью выравнивания не только статистически описать закономерность поведения уровня в прошлом, но и экстраполировать найденную закономерность в будущее. Вместе с тем различные статистические приемы обработки данных наблюдения могут принести существенную пользу, по крайней мере, с их помощью можно отвергнуть заведомо непригодные варианты и тем самым существенно ограничить поле выбора.

Рассмотрим наиболее используемые типы уравнений тренда:

1. Линейная форма тренда:

где – уровень ряда, полученный в результате выравнивания по прямой; – начальный уровень тренда; – средний абсолютный прирост, константа тренда.

Для линейной формы тренда характерно равенство так называемых первых разностей (абсолютных приростов) и нулевые вторые разности, т. е. ускорения.

2. Параболическая (полином 2-ой степени) форма тренда:

(3.6)

Для данного типа кривой постоянными являются вторые разности (ускорение), а нулевыми – третьи разности.

Параболическая форма тренда соответствует ускоренному или замедленному изменению уровней ряда с постоянным ускорением. Если < 0 и > 0, то квадратическая парабола имеет максимум, если > 0 и < 0 – минимум. Для отыскания экстремума первую производную параболы по t приравнивают 0 и решают уравнение относительно t .

3. Логарифмическая форма тренда:

, (3.7)

где – константа тренда.

Логарифмическим трендом может быть описана тенденция, проявляющаяся в замедлении роста уровней ряда динамики при отсутствии предельно возможного значения. При достаточно большом t логарифмическая кривая становится мало отличимой от прямой линии.

4. Мультипликативная (степенная) форма тренда:

(3.8)

5. Полином 3-ей степени:

Естественно, кривых, описывающих основные тенденции, гораздо больше. Однако формат учебного пособия не позволяет описать все их многообразие. Показанные далее приемы построения моделей позволят пользователю самостоятельно использовать другие функции, в частности обратные.

Для решения поставленной задачи по аналитическому сглаживанию динамических рядов в системе STATISTICA нам потребуется создать дополнительную переменную на листе с исходными данными переменной «ВГ2001-2010», который следует сделать активным.

Нам предстоит построить уравнение тренда, которое по существу является уравнением регрессии, в котором в качестве фактора выступает «время». Создаем переменную «Т», содержащую интервалы времени, 10 годам (с 2001 по 2010). Переменная «Т» будет состоять из натуральных чисел от 1 до 10, соответствующих указанным годам.

В итоге получается следующий рабочий лист (рис. 3.6)

Рис. 3.6. Рабочий лист с созданной переменной времени

Далее рассмотрим процедуру, позволяющую строить регрессионные модели как линейного, так и нелинейного типа. Для этого выбираем: Statistics/Advanced Linear/Nonlinear Models/Nonlinear Estimation (рис. 3.7). В появившемся окне (рис. 3.8) выбираем функцию User-specified Regression, Least Squares (построение моделей регрессии пользователем вручную, параметры уравнения находятся по методу наименьших квадратов (МНК)).

В следующем диалоговом окне (рис. 3.9) нажимаем на кнопку Function to be estimated , чтобы попасть на экран для задания модели вручную (рис. 3.10).

Рис. 3.7. Запуск процедуры Statistics/Advanced Linear/

Nonlinear Models/Nonlinear Estimation

Рис. 3.8. Окно процедуры Nonlinear Estimation

Рис. 3.9ю Окно процедуры User-Specified Regression, Least Squares

Рис. 3.10. Окно для реализации процедуры

задания уравнения тренда вручную

В верхней части экрана находится поле для ввода функции, в нижней части располагаются примеры ввода функций для различных ситуаций.

Прежде чем сформировать интересующие нас модели, необходимо пояснить некоторые условные обозначения. Переменные уравнений задаются в формате «v №», где «v » обозначает переменную (от англ. «variable »), а «№» – номер столбца, в котором она расположена в таблице на рабочем листе с исходными данными. Если переменных очень много, то справа находится кнопка Review vars , позволяющая выбирать их из списка по названиям и просматривать их параметры с помощью кнопки Zoom (рис. 3.11).

Рис. 3.11. Окно выбора переменной с помощью кнопки Review vars

Параметры уравнений обозначаются любыми латинскими буквами, не обозначающими какое-либо математическое действие. Для упрощения работы предлагается обозначать параметры уравнения так, как в описании уравнений тренда – латинской буквой «а », последовательно присваивая им порядковые номера. Знаки математических действий (вычитания, сложения, умножения и пр.) задаются в обычном для Windows -приложений формате. Пробелы между элементами уравнения не требуются.

Итак, рассмотрим первую модель тренда – линейную, .

Следовательно, после набора она будет выглядеть следующим образом:

,

где v 1 – это столбец на листе с исходными данными, в котором находятся значения исходного динамического ряда; а 0 и а 1 – параметры уравнения; v 2 – столбец на листе с исходными данными, в котором находятся значения интервалов времени (переменная Т) (рис. 3.12).

После этого дважды нажимаем кнопку ОК .

Рис. 3.12. Окно процедуры задания уравнения линейного тренда

Рис. 3.13. Закладка Quick процедуры оценки уравнения тренда.

В появившемся окне (рис. 3.13) можно выбрать метод оценки параметров уравнения регрессии (Estimation method ), если это необходимо. В нашем случае нужно перейти к закладке Advanced и нажать на кнопку Start values (рис. 3.14). В этом диалоге задаются стартовые значения параметров уравнения для их нахождения по МНК, т.е. их минимальные значения. Изначально они заданы как 0,1 для всех параметров. В нашем случае можно оставить эти значения в том же виде, но если значения в наших исходных данных меньше единицы, то необходимо задать их в виде 0,001 для всех параметров уравнения тренда (рис. 3.15). Далее нажимаем кнопку ОК .

Рис. 3.14. Закладка Advanced процедуры оценки уравнения тренда

Рис. 3.15. Окно задания стартовыхзначений параметров уравнения тренда

Рис. 3.16. Закладка Quick окна результатов регрессионного анализа

На закладке Quick (рис.3.16) очень важным является значение строчки Proportion of variance accounted for , которое соответствует коэффициенту детерминации; это значение лучше записать отдельно, так как в дальнейшем оно выводиться не будет, и пользователю придется рассчитывать коэффициент вручную, при этом достаточно трех знаков после запятой. Далее нажимаем кнопку Summary: Parameter estimates для получения данных о параметрах линейного уравнения тренда (рис. 3.17).

Рис. 3.17. Результаты расчета параметров линейной модели тренда

Столбец Estimate – числовые значения параметров уравнения; Standard еrror – стандартная ошибка параметра; t-value – расчетное значение t -критерия; df – число степеней свободы (n -2); p-level – расчетный уровень значимости; Lo. Conf. Limit и Up. Conf. Limit – соответственно нижняя и верхняя граница доверительных интервалов для параметров уравнения с установленной вероятностью (указана как Level of Confidence в верхнем поле таблицы).

Соответственно уравнение линейно модели тренда имеет вид .

После этого возвращаемся к анализу и нажимаем на кнопку Analysis of Variance (дисперсионный анализ) на той же закладке Quick (см. рис. 3.16).

Рис. 3.18. Результаты дисперсионного анализа линейной модели тренда

В верхней заголовочной строке таблицы выдаются пять оценок:

Sum of Squares – сумма квадратов отклонений; df – число степеней свободы; Mean Squares – средний квадрат; F-value – критерий Фишера; p-value – расчетный уровень значимости F -критерия.

В левом столбце указывается источник вариации:

Regression – вариация, объясненная уравнением тренда; Residual – вариация остатков – отклонений фактических значений от выровненных (полученных по уравнению тренда); Total – общая вариация переменной.

На пересечении столбцов и строк получаем однозначно определенные показатели, расчетные формулы для которых представлены в табл. 3.2,

Таблица 3.2

Расчет показателей вариации трендовых моделей

Source df Sum of Squares Mean squares F-value
Regression m
Residual n-m
Total n
Corrected Total n-1
Regresion vs. Corrected Total m SSR MSR

где – выровненные значения уровней динамического ряда; – фактические значения уровней динамического ряда; – среднее значение уровней динамического ряда.

SSR (Regression Sum of Squares) – сумма квадратов прогнозных значений; SSE (Residual Sum of Squares) – сумма квадратов отклонений теоретических и фактических значений (для расчета остаточной, необъясненной дисперсии); SST (TotalSum of Squares) – сумма первой и второй строчки (сумма квадратов фактических значений); SSCT (Corrected TotalSum of Squares) – сумма квадратов отклонений фактических значений от средней величины (для расчета общей дисперсии); Regression vs. Corrected Total Sum of Squares – повторение первой строчки; MSR (Regression Mean Squares) – объясненная дисперсия; MSE (Residual Mean Squares) – остаточная, необъясненная дисперсия; MSCT (Mean Squares Corrected Total) – скорректированная общая дисперсия; Regression vs. Corrected Total Mean Squares – повторение первой строчки; Regression F-value – расчетное значение F -критерия; Regression vs. Corrected Total F-value – скорректированное расчетное значение F -критерия; n – число уровней ряда; m – число параметров уравнения тренда.

Далее опять же на закладке Quick (см. рис. 3.16) нажимаем кнопку Predicted values, Residuals, etc . После ее нажатия система строит таблицу, состоящую из трех столбцов (рис. 3.19).

Observed – наблюдаемые значения (то есть уровни исходного динамического ряда);