Белые карлики горячие звезды сильной светимости. Белые карлики: происхождение, строение и интересные факты

2 Происхождение белых карликов

    2.1 Тройная гелиевая реакция и изотермические ядра красных гигантов 2.2 Потеря массы красными гигантами и сброс ими оболочки
3 Физика и свойства белых карликов
    3.1 Зависимость масса-радиус и предел Чандрасекара 3.2 Особенности спектров
4 Классификация белых карликов 5 Астрономические феномены с участием белых карликов
    5.1 Рентгеновское излучение белых карликов 5.2 Аккреция на белые карлики в двойных системах

Примечания
Литература

Введение

Белые карлики - звезды низкой светимости с массами, сопоставимыми с массой Солнца, и высокими эффективными температурами. Название белые карлики связана с цветом первых открытых представителей этого класса - Сириуса B и 40 Эридана B. На диаграмме Герцшпрунга-Рассела они расположены на 10-12 m ниже зрение главной последовательности такого же спектрального класса .

Радиусы белых карликов примерно в 100 раз меньше солнечного, соответственно, их светимость в ~раз меньше солнечной. Плотность вещества белых карликов составляетг / см 3, в миллионы раз больше плотности вещества в звездах главной последовательности. По численности белые карлики составляют 3-10% зрение Галактики. Однако известна лишь небольшая их часть, потому что из-за низкой светимостью обнаружены лишь те, расстояние до которых не превышает 200-300 пк.

По современным представлениям белые карлики - конечный продукт эволюции нормальных звезд с массами от солнечной массы до 8-10 солнечных масс. Они образуются после исчерпания источников термоядерной энергии в недрах звезды и сброса оболочки.

1. История открытия

1.1. Открытия белых карликов

темный" спутник, причем период вращения обоих зрение вокруг общего центра масс должно быть около 50 лет. Сообщение было встречено скептически, поскольку темный спутник оставался невидимым, а его масса должна быть достаточно большой - сравнимой с массой Сириуса.

Я был у своего друга... профессора Э. Пикеринга с деловым визитом. Со свойственной для него добротой он предложил взять спектры всех звезд, Хинксом и я наблюдали с целью... определения их параллаксов. Эта часть работы, казавшейся медленно, оказалась весьма плодотворной - она привела к открытию того, что все звезды очень малой абсолютной величины (т. е. низкой светимости) имеют спектральный класс M (т. е. очень низкую поверхностную температуру). Я вспоминаю, как обсуждая этот вопрос, я спросил у Пикеринга о некоторых других слабые звезды, вспомнил числе 40 Эридана B. Поводя себя характерным для него образом, он сразу же послал запрос в офис (Гарвардской) обсерватории, и вскоре был получен ответ (я считаю, миссис Флеминг), что спектр этой звезды - A (т. е. высокая поверхностная температура). Даже в те "палеозойские" времена я знал об этих вещах достаточно, чтобы сразу же понять, что здесь есть существенное несоответствие между тем, что мы тогда назвали бы "возможными" значениями поверхностной яркости и плотности. Я, пожалуй, не скрыл, что не только удивлен, а просто поражен этим исключением из правила, которое казалось вполне нормальным для характеристики звезд. Пикеринг улыбнулся мне и сказал: "именно такие исключения и приводят к расширению наших знаний" - и белые карлики вошли в мир изучаемого "

Удивление Рассела вполне понятно: 40 Эридана B относится к сравнительно близких звезд, и за параллаксом можно достаточно точно определить расстояние до нее и, соответственно, светимость. Светимость 40 Эридана B оказалась аномально низкой для ее спектрального класса - белые карлики образовали новую область на диаграмме Герцшпрунга-Рассела. Такое сочетание светимости, массы и температуры было непонятным и не находило объяснения в рамках стандартной модели строения звезд главной последовательности, разработанную в 1920-х годах.

Высокая плотность белых карликов оставалась необъяснимой с точки зрения классической физики, однако нашла объяснение в квантовой механике после появления статистики Ферми-Дирака. 1926 года Фаулер в статье "Густая материя" ("Dense matter", Monthly Notices R. Astron. Soc . 87, 114-122 ) Доказал, что, в отличие от звезд главной последовательности, для которых уравнения состояния построено на модели идеального газа (стандартная модель Едингтона), для белых карликов плотность и давление вещества определяются свойствами вырожденного электронного газа (Ферми-газа).

Следующим этапом в объяснении природы белых карликов стали работы и Чандрасекара. 1928 года Френкель указал, что для белых карликов должен существовать верхний предел массы, и 1930 года Чандрасекар в работе "Максимальная масса идеального белого карлика" (" The maximum mass of ideal white dwarfs", Astroph. J. 74, 81-82 ) Доказал, что белые карлики с массой свыше 1,4 солнечной неустойчивые (предел Чандрасекара) и имеют коллапсировать .

2. Происхождение белых карликов

Решение Фаулера объяснил внутреннее строение белых карликов, но не объяснил механизма их происхождения. В объяснении генезиса белых карликов ключевую роль сыграли две идеи:

    мнение Е. Эпика, что красные гиганты образуются из звезд главной последовательности в результате выгорания ядерного топлива предположение, сделанное вскоре после Второй мировой войны, что звезды главной последовательности должны терять массу, и такая потеря массы должна существенно влиять на эволюцию звезд.

Эти предположения полностью подтвердились.

2.1. Тройная гелиевая реакция и изотермические ядра красных гигантов

В процессе эволюции звезд главной последовательности происходит "выгорание" водорода - нуклеосинтез с образованием гелия (см. цикл Бете). Такое выгорание приводит к прекращению энерговыделения в центральных частях звезды, сжатия и, соответственно, к повышению плотности и температуры в ее ядре. Рост плотности и температуры в звездном ядре приводит к условиям, в которых активизируется новый источник термоядерной энергии: выгорания гелия (тройная гелиевая реакция или тройной альфа-процесс), характерное для красных гигантов и сверхгигантов.

При температурах около 10 8 K кинетическая энергия ядер гелия становится достаточной для преодоления кулоновского барьера: два ядра гелия (альфа-частицы) могут сливаться с образованием нестабильного изотопа бериллия Be 8:

He 4 + He 4 = Be 8

Большая часть Be 8 еще распадается на две альфа-частицы, но если за короткое время существования ядро Be 8 зиткнется с высокоэнергетической альфа-частицей может образоваться стабильное ядро углерода C 12:

Be 8 + He 4 = C 12 + 7,3 м эВ.

Несмотря на довольно низкую равновесную концентрацию Be 8 (например, при температуре ~ 10 8 K отношение концентраций / ~, скорость такой тройной гелиевой реакции оказывается достаточной для достижения нового гидростатического равновесия в горячем ядре звезды. Зависимость энерговыделения от температуры в тройной гелиевой реакции чрезвычайно сильна, так, для диапазона температур ~ 1-2 ? 10 8 K энерговыделения http://*****/images/ukbase_2__1234.jpg" alt="\ Varepsilon _ {3 \ alpha} = 10 ^ 8 \ rho ^ 2 Y ^ 3 * \ left ({{T \ over {10 ^ 8}}} \ right) ^ {30}" width="210 height=46" height="46">

где выгорания" водорода она близка к единице).

Стоит, однако, отметить, что тройная гелиевая реакция характеризуется значительно меньшим энерговыделением, чем цикл Бете в пересчете на единицу массы: энерговыделения при "горении" гелия более чем в 10 раз ниже, чем при "горении" водорода. По мере выгорания гелия и исчерпания этого источника энергии в ядре становятся возможными сложные реакции нуклеосинтеза, однако, во-первых, для таких реакций требуются все более высокие температуры и, во-вторых, энерговыделение на единицу массы таких реакций падает с ростом массовых чисел ядер, вступающих в реакцию.

http://*****/images/ukbase_2__519.jpg" alt="\" width="84" height="20 src=">, Т. е. выполняются условия вырождения электронного газа. Расчеты показывают, что плотность изотермических ядер соответствует плотности белых карликов, то есть ядрами красных гигантов есть белые карлики.

нормальные" белые карлики с высоким содержанием углерода.

На фотографии шаровидного звездного скопления NGC 6397 (Рис. 5) идентифицируются белые карлики обоих типов: и гелиевые белые карлики, возникшие при эволюции менее массивных звезд, и углеродные белые карлики - результат эволюции звезд с большей массой.

2.2. Потеря массы красными гигантами и сброс ими оболочки

Ядерные реакции в красных гигантах происходят не только в ядре: по мере выгорания водорода в ядре, нуклеосинтез гелия распространяется на еще богатые водородом области звезды, образуя сферический слой на границе бедных и богатых водород областей. Аналогичная ситуация возникает и с утроенной гелиевой реакции: по мере выгорания гелия в ядре она также сосредотачивается в сферическом слое на границе между бедными и богатыми гелий областями. Светимость звезд с такими "двухслойными" областями нуклеосинтеза значительно возрастает, достигая нескольких тысяч светимости Солнца, звезда при этом "раздувается", увеличивая свой диаметр до размеров земной орбиты. Зона нуклеосинтеза гелия поднимается к поверхности звезды: доля массы внутри этой зоны составляет ~ 70% массы звезды. "Раздувание" сопровождается довольно интенсивным утечкой вещества с поверхности звезды, такие объекты наблюдаются как протопланетарного туманности (см. рис. 6).

Шклов" href="/text/category/shklov/" rel="bookmark">Шкловский предложил механизм образования планетарных туманностей путем сброса оболочек красных гигантов, при этом обнажение изотермических вырожденных ядер таких звезд приводит к образованию белых карликов. Точные механизмы потери массы и последующего сброса оболочки для таких звезд пока неизвестны, но можно предложить такие факторы, которые могут привести к потере оболочки:

    В протяженных звездных оболочках могут развиваться неустойчивости, приводящие к сильным колебательных процессов, сопровождающихся изменением теплового режима звезды. На Рис. 6 четко заметны волны плотности выброшенной звездной материи, которые могут быть последствиями таких колебаний. Вследствие ионизации водорода в областях, лежащих ниже фотосферы может развиться сильная конвективная неустойчивость. Аналогичную природу имеет солнечная активность, в случае красных гигантов мощность конвективных потоков имеет значительно превосходить солнечную. Из-за слишком высокой светимостью существенным становится световое давление потока излучения звезды на ее внешние слои, по расчетным данным, может привести к потере оболочки за несколько тысяч лет.

избытка массы" красных гигантов.

Предложенный Шкловским сценарий эволюции красных гигантов является общепризнанным и подкреплен данным многочисленных наблюдений.

3. Физика и свойства белых карликов

Как уже отмечалось, массы белых карликов близки к солнечной, но их размеры составляют лишь сотую (и даже меньше) часть солнечного, то есть плотность вещества в белых карликах чрезвычайно высока и составляет г / см 3. При такой плотности электронные оболочки атомов разрушаются и вещество становится электронно-ядерной плазмой, причем ее электронная составляющая является вырожденным электронным газом. Давление P такого газа подчиняется зависимости:

где http://*****/images/ukbase_2__17665.jpg" width="180" height="283 src=">

Рис. 8. Зависимость масса-радиус для белых карликов. Вертикальная асимптота соответствует пределу Чандрасекара.

Приведенное выше уравнение состояния действительно для холодного электронного газа, но температура даже в несколько миллионов градусов мала по сравнению с характерной ферми-энергией электронов (). Вместе с тем, при росте плотности вещества через запрет Паули (два электрона не могут иметь одинаковый квантовое состояние, то есть одинаковую энергию и спин), энергия и скорость электронов возрастают настолько, что начинают действовать эффекты теории относительности - вырожденный электронный газ становится релятивистским. Зависимость давления релятивистского вырожденного электронного газа от плотности уже другая:

Для такого уравнения состояния возникает интересная ситуация. Средняя плотность белого карлика http://*****/images/ukbase_2__270.jpg" width="21" height="14 src=">- Масса, а - Радиус белого карлика. Тогда давление http://*****/images/ukbase_2__716.jpg" alt="{P \ over R} \ sim {{M ^ {4/3}} \ over {R ^ 5}}" width="89 height=46" height="46">

Гравитационные силы, противодействующие давления:

есть, хотя перепад давления и гравитационные силы одинаково зависят от радиуса, но они по разному зависят от массы - как ~ и ~ disc"> DA - в спектре есть линии и нет линий гелия. Этот тип ~ 75% белых карликов, они встречаются во всем диапазоне температур; DB - линию ионизированного гелия сильные, линий водорода нет. Гелия в 10 раз больше, температуры - свыше? K; DC - непрерывный спектр, немее линий поглощения с интенсивностью менее 90% от интенсивности непрерывные спектра, температура - до? K; DF - есть линии кальция, нет линий водорода; DG - есть линии кальция, железа, нет линий водорода; DO - линии ионизированного гелия сильные, есть линии нейтрального гелия и (или) водорода. Это горячие белые карлики, их температуры достигает? K

5. Астрономические феномены с участием белых карликов

5.1. Рентгеновское излучение белых карликов

Температура поверхности молодых белых карликов - изотропных ядер звезд после сброса оболочек, очень высока - более 2 ? 10 5 K, однако довольно быстро падает благодаря нейтринных охлаждению и излучению с поверхности. Такие очень молодые белые карлики наблюдаются в рентгеновском диапазоне (например, наблюдения белого карлика HZ 43 спутником ROSAT).

Температура поверхности горячих белых карликов - 7 ? 10 4 K, холодных - ~ 5 ? 10 3 K.

Особенностью излучения белых карликов в рентгеновском диапазоне является то, что основным источником рентгеновского излучения в них фотосфера, что очень отличает их от "нормальных" звезд: в последних в рентгене излучает корона, разогретая до нескольких миллионов кельвинов, а температура фотосферы слишком низкая для образования рентгеновского излучения (см. рис. для них 9).

При отсутствии аккреции белых карликов есть запас тепловой энергии ионов в их недрах, поэтому их светимость зависит от возраста. Количественную теорию охлаждения белых карликов построил конце 1940-х гг.

5.2. Аккреция на белые карлики в двойных системах

disc"> Нестационарная аккреция на белые карлики в случае, если компаньоном является массивный красный карлик, приводит к образованию карликовых новых (звезд типа U Gem (UG)) или новоподобные переменных звезд. Аккреция на белые карлики, имеют сильное магнитное поле, направляется в район магнитных полюсов белого карлика, и циклотронный механизм излучения акрециюючои плазмы в приполярная областях вызывает сильную поляризацию излучения в видимой области спектра (поляры и промежуточные поляры). Аккреция на белые карлики богатой водородом вещества приводит к его накоплению на поверхности (состоящий преимущественно из гелия) и разогрева до температур реакции синтеза гелия, что в случае развития тепловой неустойчивости, приводит к взрыву, который наблюдается как вспышка новой звезды. Довольно длительная и интенсивная аккреция на массивный белый карлик приводит к превосходит его массой предела Чандрасекара и гравитационного коллапса, который наблюдается как вспышка сверхновой типа Ia (см. рис. 10).

См.. также

    Аккреция Идеальный газ Вырожденный газ Звезда Нуклеосинтез Планетарная туманность Сверхновая Сириус

Примечания

1. ^ а б в Белые карлики - www. franko. / publish / astro / bukvy / b. pdf / / Астрономический энциклопедический словарь - www. franko. / publish / astro / Под общей редакцией и. - Львов: ЛНУ-ГАО НАНУ, 2003. - С. 54-55. - ISBN -X, УДК

Литература

    Deborah Jean Warner. Alvan Clark and Sons: Artists in Optics, Smithsonian Press, 1968 Шкловский, И. С. О природе планетарных туманностей и их ядер / / Астрономический журнал. - Том 33, № 3, 1956. - Сс. 315-329. , . Физические основы строения и эволюции звезд, М., 1981 - nature. ***** / db / msg. html? mid = 1159166 & uri = index. html Звезды: их рождение, жизнь и смерть, М.: Наука, 1984 - shklovsky-ocr. *****/online/shklovsky. htm Киппенхан г. 100 млрд солнц. Рождение, жизнь и смерть звездах, М.: Мир, 1990 - . ru / astro / index. html Физика космоса. Маленькая энциклопедия, М.: Советская Энциклопедия, 1986 - www. *****/db/FK86/

Белый карлик - звезда, в нашем космосе довольно распространенная. Ученые называют ее результатом эволюции звезд, финальным этапом развития. Всего есть два сценария видоизменения звездного тела, в одном случае завершающий этап - нейтронная звезда, в другом - черная дыра. Карлики - это окончательный эволюционный шаг. Вокруг них есть планетарные системы. Ученые смогли определить это, изучив обогащенные металлами экземпляры.

История вопроса

Белые карлики - звезды, привлекшие внимание астрономов в 1919. Впервые удалось открыть такое небесное тело ученому из Нидерландов Маанену. Для своего времени специалист сделал довольно нетипичное и неожиданное открытие. Увиденный им карлик был похож на звезду, но имел нестандартные маленькие размеры. Спектр, однако, был таков, словно бы это массивное и большое небесное тело.

Причины такого странного явления привлекали ученых довольно долгое время, поэтому было приложено немало усилий для изучения строения белых карликов. Прорыв совершился, когда высказали и доказали предположение обилия в атмосфере небесного тела разнообразных металлических структур.

Необходимо уточнить, что металлы в астрофизике - это всевозможные элементы, молекулы которых тяжелее водородных, гелиевых, а химический состав их более прогрессивен, нежели эти два соединения. Гелий, водород, как удалось установить ученым, в нашей вселенной распространены шире, нежели любые другие вещества. Отталкиваясь от этого, было решено все прочее обозначать металлами.

Развитие темы

Хотя впервые сильно отличающиеся размерами от Солнца белые карлики были замечены в двадцатых годах, только через половину века люди выявили, что наличие металлических структур в звездной атмосфере не является типичным явлением. Как выяснилось, при включении в атмосферу помимо двух самых распространенных веществ более тяжелых происходит их смещение в глубокие слои. Тяжелые вещества, оказавшись среди молекул гелия, водорода, со временем должны переместиться в ядро звезды.

Причин такого процесса удалось обнаружить несколько. Радиус белого карлика мал, такие звездные тела очень компактные - не зря они получили свое название. В среднем радиус сравним с земным, в то время как вес сходен с весом звезды, освещающей нашу планетарную систему. Такое соотношение габаритов и веса становится причиной исключительно большого гравитационного поверхностного ускорения. Следовательно, оседание тяжелых металлов в водородной и гелиевой атмосфере происходит всего лишь за несколько земных дней после попадания молекулы в общую газовую массу.

Возможности и продолжительность

Иногда характеристики белых карликов таковы, что процесс оседания молекул тяжелых веществ может затянуться надолго. Наиболее благоприятные варианты, с точки зрения наблюдателя с Земли, - это процессы, на которые уходят миллионы, десятки миллионов лет. И все же такие временные промежутки исключительно малы в сравнении с продолжительностью существования самого звездного тела.

Эволюция белого карлика такова, что большая часть наблюдаемых человеком в настоящий момент формирований уже насчитывает несколько сотен миллионов земных лет. Если сравнить это с самым медленным процессом поглощения металлов ядром, разница получается более чем существенная. Следовательно, выявление металла в атмосфере определенной наблюдаемой звезды позволяет с уверенностью заключить, что изначально тело не имело такого состава атмосферы, иначе все металлические включения давно пропали бы.

Теория и практика

Описанные выше наблюдения, а также собранная за долгие десятилетия информация о белых карликах, нейтронных звездах, черных дырах позволила предположить, что атмосфера получает металлические включения из внешних источников. Ученые сперва решили, что таковой является среда между звездами. Небесное тело перемещается сквозь такое вещество, аккрецирует среду на свою поверхность, тем самым обогащая атмосферу тяжелыми элементами. Но дальнейшие наблюдения показали, что такая теория несостоятельна. Как уточнили специалисты, если бы изменение атмосферы происходило именно таким путем, преимущественно карлик извне получал бы водород, так как среда между звездами сформирована в своей основной массе именно водородными и гелиевыми молекулами. Лишь малый процент среды приходится на долю тяжелых соединений.

Если бы сформированная из первичных наблюдений за белыми карликами, нейтронными звездами, черными дырами теория оправдала бы себя, карлики состояли бы из водорода как самого легкого элемента. Это не допускало бы существования даже гелиевых небесных тел, ведь гелий тяжелее, а значит, водородная аккреция полностью скрыла бы его от глаза внешнего наблюдателя. Исходя из наличия гелиевых карликов, ученые пришли к выводу, что межзвездная среда не может служить единственным и даже основным источником металлов в атмосфере звездных тел.

Как объяснить?

Ученые, занимавшиеся в 70-х годах прошлого столетия черными дырами, белыми карликами, предположили, что металлические включения могут объясняться падением комет на поверхность небесного тела. Правда, в свое время такие идеи были признаны слишком экзотичными и поддержки не получили. Во многом это объяснялось тем, что люди еще не знали о наличии иных планетных систем - известна была только наша «домашняя» Солнечная.

Существенный шаг вперед в исследовании черных дыр, белых карликов был сделан в конце следующего, восьмого десятилетия прошлого века. Ученые получили в свое распоряжение особенно мощные инфракрасные приборы для наблюдения за глубинами космоса, что позволило вокруг одного из известных астрономам белого карлика обнаружить инфракрасное излучение. Таковое было выявлено именно вокруг карлика, атмосфера которого содержала металлические включения.

Инфракрасное излучение, позволившее оценить температуру белого карлика, также сообщило ученым, что звездное тело окружено некоторым веществом, способным поглощать звездное излучение. Это вещество нагрето до конкретного температурного уровня, меньшего присущего звезде. Это позволяет постепенно перенаправлять поглощенную энергию. Излучение происходит в инфракрасном диапазоне.

Наука движется вперед

Спектры белого карлика стали объектом изучения передовых умов мира астрономов. Как оказалось, из них можно получить довольно объемную информацию об особенностях небесных тел. Особенно интересными были наблюдения за звездными телами с избыточным инфракрасным излучением. В настоящее время удалось выявить около трех десятков систем такого типа. Основной их процент изучался посредством мощнейшего телескопа «Спитцер».

Ученые, наблюдая за небесными телами, установили, что плотность белых карликов существенно меньше этого параметра, свойственного гигантам. Также было выявлено, что избыточное инфракрасное излучение объясняется наличием дисков, сформированных специфическим веществом, способным поглощать энергетическое излучение. Именно оно затем излучает энергию, но уже в ином диапазоне волн.

Диски расположены исключительно близко и в некоторой степени влияют на массу белых карликов (которая не может превышать предела Чандрасекара). Внешний радиус получил название обломочного диска. Было высказано предположение, что таковой сформировался при разрушении некоторого тела. В среднем радиус по размеру сравним с Солнцем.

Если обратить внимание на нашу планетарную систему, станет ясно, что относительно недалеко от «дома» мы может наблюдать сходный пример - это окружающие Сатурн кольца, размер которых также сравним с радиусом нашего светила. Со временем ученые установили, что эта особенность - не единственная из тех, что роднит карлики и Сатурн. К примеру, и планета, и звезды обладают очень тонкими дисками, которым несвойственна прозрачность при попытке просвечивания светом.

Выводы и развитие теории

Поскольку кольца белых карликов сравнимы с теми, что окружают Сатурн, стало возможным сформулировать новые теории, объясняющие наличие металлов в атмосфере этих звезд. Астрономам известно, что вокруг Сатурна кольца сформированы приливным разрушением некоторых тел, оказавшихся достаточно близко от планеты, чтобы на них повлияло ее гравитационное поле. В такой ситуации внешнее тело не может сохранять собственную гравитацию, что приводит к нарушению целостности.

Около пятнадцати лет назад была представлена новая теория, объяснившая образование колец белых карликов сходным образом. Предположили, что первоначально карлик представлял собой звезду в центре системы планет. Небесное тело с течением времени эволюционирует, на что уходят миллиарды лет, разбухает, теряет оболочку, и это становится причиной формирования карлика, постепенно остывающего. Кстати говоря, цвет белых карликов объясняется именно их температурой. У некоторых она оценивается в 200 000 К.

Система планет в ходе такой эволюции может выжить, что приводит к расширению внешней части системы одновременно с уменьшением массы звезды. В результате формируется крупная система астероиды и многие другие элементы выживают при эволюции.

Что дальше?

Прогресс системы может привести к ее нестабильности. Это приводит к бомбардировке камнями окружающего планеты пространства, и астероиды частично вылетают из системы. Некоторые из них, однако, перемещаются на орбиты, рано или поздно оказываясь в пределах солнечного радиуса карлика. Столкновения не происходит, но приливные силы приводят к нарушению целостности тела. Скопление таких астероидов приобретает форму, сходную с окружающими Сатурн кольцами. Тем самым вокруг звезды формируется диск обломков. Существенно отличается плотность белого карлика (порядка 10^7 г/см3) и его обломочного диска.

Описанная теория стала достаточно полным и логичным объяснением ряда астрономических явлений. Посредством нее можно понять, почему диски компактны, ведь звезда не может все время своего существования окружаться диском, радиус которого сравним с солнечным, иначе первое время такие диски были бы внутри ее тела.

Объяснив формирование дисков и их размер, можно понять, откуда берется своеобразный запас металлов. Он может оказаться на звездной поверхности, загрязнив карлик металлическими молекулами. Описанная теория, не противореча выявленным показателям средней плотности белых карликов (порядка 10^7 г/см3), доказывает, по какой причине металлы наблюдаются в атмосфере звезд, почему измерение химического состава возможно доступными человеку средствами и по какой причине распределение элементов сходно с тем, что свойственно нашей планете и другим изученным объектам.

Теории: а есть ли польза?

Описанная идея получила широкое распространение как база для объяснения, по какой причине оболочки звезд загрязнены металлами, почему появились обломочные диски. Кроме того, из нее вытекает, что вокруг карлика существует планетная система. Удивительного в таком выводе мало, ведь человечество установило, что большая часть звезд имеет собственные системы планет. Это свойственно как тем, что сходны с Солнцем, так и тем, что значительно больше его габаритами - а именно из них и формируются белые карлики.

Темы не исчерпаны

Даже если считать описанную выше теорию общепринятой и доказанной, некоторые вопросы для астрономов и по сей день остаются открытыми. Особенный интерес вызывает специфика переноса вещества между дисками и поверхностью небесного тела. Как предполагают некоторые, это объясняется радиационным излучением. Теории, призывающие таким образом описать перенос вещества, основаны на эффекте Пойнтинга-Робертсона. Это явление, под влиянием которого частицы медленно перемещаются по орбите вокруг молодой звезды, постепенно спирально смещаясь к центру и пропадая в небесном теле. Предположительно, этот эффект должен проявляться на обломочных дисках, окружающих звезды, то есть молекулы, которые присутствуют в дисках, рано или поздно оказываются в исключительной близости от карлика. Твердые вещества подвержены испарению, формируется газ - таковой в виде дисков был зафиксирован вокруг нескольких наблюдаемых карликов. Рано или поздно газ доходит до поверхности карлика, перенося сюда металлы.

Выявленные факты оцениваются астрономами как существенный вклад в науку, поскольку позволяют предположить, как сформированы планеты. Это важно, так как объекты для исследований, привлекающие специалистов, зачастую недоступны. К примеру, планеты, вращающиеся вокруг превышающих Солнце габаритами звезд, крайне редко можно изучить - это слишком сложно на том техническом уровне, который доступен нашей цивилизацией. Вместо этого, люди получили возможность изучения систем планет после превращения звезд в карлики. Если удастся развиваться в этом направлении, наверняка можно будет выявить новые данные о наличии систем планет и их отличительных характеристиках.

Белые карлики, в атмосфере которых выявлены металлы, позволяют составить представление о химическом составе комет и иных космических тел. Фактически иного способа для оценки состава у ученых просто нет. К примеру, изучая планеты-гиганты, можно составить представление только о внешнем слое, но нет никакой достоверной информации о внутреннем содержании. Это касается и нашей «домашней» системы, поскольку химический состав можно изучить лишь у того небесного тела, которое упало на поверхность Земли либо того, куда удалось приземлить аппарат для исследований.

Как все происходит?

Рано или поздно наша планетарная система также станет «домом» белого карлика. Как говорят ученые, звездное ядро располагает ограниченным объемом вещества для получения энергии, и рано или поздно термоядерные реакции исчерпываются. Газ уменьшается в объемах, плотность повышается до тонны на кубический сантиметр, в то время как во внешних слоях реакция по-прежнему протекает. Звезда расширяется, становится красным гигантом, радиус которого сравним с сотнями звезд, равных Солнцу. Когда внешняя оболочка прекращает «горение», в течение 100 000 лет происходит рассеивание вещества в пространстве, что сопровождается формированием туманности.

Ядро звезды, освободившись от оболочки, понижает температуру, что и приводит к формированию белого карлика. Фактически такая звезда - это высокоплотный газ. В науке карлики нередко именуют вырожденными небесными телами. Если бы наше светило сжалось и его радиус насчитывал бы лишь несколько тысяч километров, но вес бы полностью сохранился, то здесь также имел бы место белый карлик.

Особенности и технические моменты

Рассматриваемый тип космического тела способен светиться, но этот процесс объясняется иными механизмами, отличными от термоядерных реакций. Свечение называют остаточным, оно объясняется понижением температуры. Карлик сформирован веществом, ионы которого иногда холоднее 15000 К. Элементам характерны колебательные движения. Постепенно небесное тело становится кристаллическим, его свечение ослабевает, и карлик эволюционирует в коричневый.

Ученые выявили предел массы для такого небесного тела - до 1,4 веса Солнца, но не больше этой границы. Если масса превышает этот предел, звезда существовать не может. Это объясняется давлением вещества, находящегося в сжатом состоянии - оно меньше гравитационного притяжения, сжимающего вещество. Происходит очень сильное сжатие, которое приводит к появлению нейтронов, вещество нейтронизируется.

Процесс сжатия может привести к вырождению. В этом случае формируется нейтронная звезда. Второй вариант - продолжение сжатия, рано или поздно приводящее к взрыву.

Общие параметры и особенности

Болометрическая светимость рассматриваемой категории небесных тел относительно свойственной Солнцу меньше приблизительно в десять тысяч раз. Радиус карлика меньше солнечного в сто раз, в то время как вес сравним со свойственным основной звезде нашей системы планет. Для определения границы массы для карлика был рассчитан предел Чандрасекара. При его превышении карлик эволюционирует в другую форму небесного тела. Фотосфера звезды в среднем состоит из плотного вещества, оцененного в 105-109 г/см3. В сравнении с главной звездной последовательностью это плотнее приблизительно в миллион раз.

Некоторые астрономы считают, что лишь 3% всех звезд в галактике - это белые карлики, а некоторые убеждены, что к такому классу принадлежит каждая десятая. Оценки столь сильно разнятся о причине сложности наблюдения за небесными телами - они удалены от нашей планеты и слишком слабо светятся.

Истории и имена

В 1785 в списке двойных звезд появилось тело, наблюдениями за которым занимался Гершель. Звезду назвали 40 Эридана B. Именно она считается первой увиденной человеком из категории белых карликов. В 1910 Расселл заметил, что этому небесному телу свойственен крайне низкий уровень свечения, хотя цветовая температура довольно высокая. Со временем было решено, что небесные тела такого класса необходимо выделять в отдельную категорию.

В 1844 Бессель, исследуя информацию, полученную при слежении за Проционом В, Сириусом В, решил, что обе они время от времени смещаются с прямой линии, а значит, там есть близкие спутники. Такое предположение научному сообществу показалось маловероятным, так как не удалось увидеть никакого спутника, в то время как отклонения могли бы объясниться только небесным телом, масса которого исключительно велика (аналогична Сириусу, Проциону).

В 1962 Кларк, работая с наиболее крупным телескопом из существовавших в тот момент, выявил вблизи Сириуса очень тусклое небесное тело. Именно его и назвали Сириусом В, тем самым спутником, который задолго до этого предположил Бессель. В 1896 исследования показали, что Процион также имеет спутника - он получил название Процион В. Следовательно, идеи Бесселя полностью подтвердились.

Белые карлики — проэволюционировавшие звёзды с массой, не превышающей предел Чандрасекара, лишённые собственных источников термоядерной энергии. Это компактные звёзды с массами, сравнимыми с массой Солнца, но с радиусами в ~100 и, соответственно, светимостями в ~10 000 раз меньшими солнечной. Плотность белых карликов составляет порядка 10 6 г/см³, что почти в миллион раз выше плотности обычных звёзд главной последовательности. По численности белые карлики составляют по разным оценкам 3—10 % звёздного населения нашей Галактики.
На рисунке сравнительные размеры Солнце (справа) и двойной системы IK Пегаса компонент B - белый карлик с температурой поверхности 35,500 K (по центру) и компонент А - звезда спектрального типа A8 (слева).

Открытие В 1844г директор Кёнигсбергской обсерватории Фридрих Бессель обнаружил, что Сириус, ярчайшая звезда северного неба, периодически, хотя и весьма слабо, отклоняется от прямолинейной траектории движения по небесной сфере. Бессель пришёл к выводу, что у Сириуса должен быть невидимый «тёмный» спутник, причём период обращения обеих звёзд вокруг общего центра масс должен быть порядка 50 лет. Сообщение было встречено скептически, поскольку тёмный спутник оставался ненаблюдаемым, а его масса должна была быть достаточно велика — сравнимой с массой Сириуса.
В январе 1862г А.Г. Кларк, юстируя 18-ти дюймовый рефрактор, самый большой на то время телескоп в мире (Dearborn Telescope), поставленный семейной фирмой Кларков в Чикагскую обсерваторию, обнаружил в непосредственной близости от Сириуса тусклую звёздочку. Это был тёмный спутник Сириуса, Сириус B, предсказанный Бесселем. Температура поверхности Сириуса B составляет 25 000 К, что, с учётом его аномально низкой светимости, указывает на очень малый радиус и, соответственно, крайне высокую плотность — 10 6 г/см³ (плотность Сириуса ~0,25 г/см³, плотность Солнца ~1,4 г/см³).
В 1917г Адриан Ван Маанен открыл следующий белый карлик — звезду Ван Маанена в созвездии Рыб.

Парадокс плотности В начале XX века Герцшпрунгом и Расселом была открыта закономерность в отношении спектрального класса (температуры) и светимости звёзд — Диаграмма Герцшпрунга — Рассела (Г—Р диаграмма). Казалось, что всё разнообразие звёзд укладывается в две ветви Г—Р диаграммы — главную последовательность и ветвь красных гигантов. В ходе работ по накоплению статистики распределения звёзд по спектральному классу и светимости Рассел обратился в 1910г к профессору Э. Пикерингу. Дальнейшие события Рассел описывает так:

«Я был у своего друга … профессора Э. Пиккеринга с деловым визитом. С характерной для него добротой он предложил получить спектры всех звёзд, которые Хинкс и я наблюдали … с целью определения их параллаксов. Эта часть казавшейся рутинной работы оказалась весьма плодотворной — она привела к открытию того, что все звёзды очень малой абсолютной величины (т. е. низкой светимости) имеют спектральный класс M (т. е. очень низкую поверхностную температуру). Как мне помнится, обсуждая этот вопрос, я спросил у Пиккеринга о некоторых других слабых звёздах…, упомянув в частности 40 Эридана B. Ведя себя характерным для него образом, он тут же отправил запрос в офис (Гарвардской) обсерватории, и вскоре был получен ответ (я думаю, от миссис Флеминг), что спектр этой звезды — A (т. е. высокая поверхностная температура). Даже в те палеозойские времена я знал об этих вещах достаточно, чтобы сразу же осознать, что здесь имеется крайнее несоответствие между тем, что мы тогда назвали бы «возможными» значениями поверхностной яркости и плотности. Я, видимо, не скрыл, что не просто удивлён, а буквально сражён этим исключением из того, что казалось вполне нормальным правилом для характеристик звёзд. Пиккеринг же улыбнулся мне и сказал: «Именно такие исключения и ведут к расширению наших знаний» — и белые карлики вошли в мир исследуемого»

Удивление Рассела вполне понятно: 40 Эридана B относится к относительно близким звёздам, и по наблюдаемому параллаксу можно достаточно точно определить расстояние до неё и, соответственно, светимость. Светимость 40 Эридана B оказалась аномально низкой для её спектрального класса — белые карлики образовали новую область на Г—Р диаграмме. Такое сочетание светимости, массы и температуры было непонятно и не находило объяснения в рамках стандартной модели строения звёзд главной последовательности, разработанной в 1920-х годах.
Высокая плотность белых карликов нашла объяснение лишь в рамках квантовой механики после появления статистики Ферми-Дирака. В 1926г Фаулер в статье «Плотная материя» («Dense matter», Monthly Notices R. Astron. Soc. 87, 114—122) показал, что, в отличие от звёзд главной последовательности, для которых уравнение состояния основывается на модели идеального газа (стандартная модель Эддингтона), для белых карликов плотность и давление вещества определяются свойствами вырожденного электронного газа (Ферми-газа).
Следующим этапом в объяснении природы белых карликов стали работы Я. И. Френкеля и Чандрасекара. В 1928г Френкель указал, что для белых карликов должен существовать верхний предел массы, и в 1930г Чандрасекар в работе «Максимальная масса идеального белого карлика» («The maximum mass of ideal white dwarfs», Astroph. J. 74, 81—82) показал, что белые карлики с массой выше 1,4 солнечных неустойчивы (предел Чандрасекара) и должны коллапсировать.

Происхождение белых карликов
Решение Фаулера объяснило внутреннее строение белых карликов, но не прояснило механизм их происхождения. В объяснении генезиса белых карликов ключевую роль сыграли две идеи: мысль Э. Эпика, что красные гиганты образуются из звёзд главной последовательности в результате выгорания ядерного горючего и предположение В.Г. Фесенкова, сделанное вскоре после Второй мировой войны, что звёзды главной последовательности должны терять массу, и такая потеря массы должна оказывать существенное влияние на эволюцию звёзд. Эти предположения полностью подтвердились.
В процессе эволюции звёзд главной последовательности происходит «выгорание» водорода с образованием гелия (цикл Бете). Такое выгорание приводит к прекращению энерговыделения в центральных частях звезды, сжатию и, соответственно, к повышению температуры и плотности в её ядре, что ведет к условиям, в которых активируется новый источник термоядерной энергии: выгорание гелия при температурах порядка 10 8 K (тройная гелиевая реакция или тройной альфа-процесс), характерный для красных гигантов и сверхгигантов:
He 4 + He 4 = Be 8 - два ядра гелия (альфа-частицы) сливаются и образуется нестабильный изотоп бериллия;
Be 8 + He 4 = C 12 + 7,3 МэВ - большая часть Be 8 снова распадается на две альфа-частицы, но при столкновении Be 8 с высокоэнергетической альфа-частицей может образоваться стабильное ядро углерода C 12 .
Следует, однако, отметить, что тройная гелиевая реакция характеризуется значительно меньшим энерговыделением, чем цикл Бете: в пересчёте на единицу массы энерговыделение при «горении» гелия более чем в 10 раз ниже, чем при «горении» водорода . По мере выгорания гелия и исчерпания источника энергии в ядре возможны и более сложные реакции нуклеосинтеза, однако, во-первых, для таких реакций требуются все более высокие температуры и, во-вторых, энерговыделение на единицу массы в таких реакциях падает по мере роста массовых чисел ядер, вступающих в реакцию.
Дополнительным фактором, по видимому влияющим на эволюцию ядер красных гигантов, является сочетание высокой температурной чувствительности тройной гелиевой реакции и реакций синтеза более тяжёлых ядер с механизмом нейтринного охлаждения : при высоких температурах и давлениях возможно рассеяние фотонов на электронах с образованием нейтрино-антинейтринных пар, которые свободно уносят энергию из ядра: звезда для них прозрачна. Скорость такого объёмного нейтринного охлаждения, в отличие от классического поверхностного фотонного охлаждения, не лимитирована процессами передачи энергии из недр звезды к её фотосфере. В результате реакции нуклеосинтеза в ядре звезды достигается новое равновесие, характеризующееся одинаковой температурой ядра: образуется изотермическое ядро .
В случае красных гигантов с относительно небольшой массой (порядка солнечной) изотермические ядра состоят, в основном, из гелия, в случае более массивных звёзд — из углерода и более тяжёлых элементов. Однако, в любом случае плотность такого изотермического ядра настолько высока, что расстояния между электронами образующей ядро плазмы становятся соизмеримыми с их длиной волны Де Бройля λ = h / m v , то есть выполняются условия вырождения электронного газа. Расчёты показывают, что плотность изотермических ядер соответствует плотности белых карликов, т. е. ядрами красных гигантов являются белые карлики .

Потеря массы красными гигантами
Ядерные реакции в красных гигантах происходят не только в ядре: по мере выгорания водорода в ядре, нуклеосинтез гелия распространяется на ещё богатые водородом области звезды, образуя сферический слой на границе бедных и богатых водородом областей. Аналогичная ситуация возникает и с тройной гелиевой реакцией: по мере выгорания гелия в ядре она также сосредотачивается в сферическом слое на границе между бедными и богатыми гелием областями. Светимость звёзд с такими «двухслойными» областями нуклеосинтеза значительно возрастает, достигая порядка нескольких тысяч светимостей Солнца, звезда при этом «раздувается», увеличивая свой диаметр до размеров земной орбиты. Зона нуклеосинтеза гелия поднимается к поверхности звезды: доля массы внутри этой зоны составляет ~70 % массы звезды. «Раздувание» сопровождается достаточно интенсивным истечением вещества с поверхности звезды, такие объекты наблюдаются как протопланетарные туманности, например Nebula HD44179 (рисунок ).
Такие звезды явно являются нестабильными и в 1956г И.С. Шкловский предложил механизм образования планетарных туманностей через сброс оболочек красных гигантов, при этом обнажение изотермических вырожденных ядер таких звёзд приводит к рождению белых карликов (данный сценарий конца эволюции красных гигантов является общепринятым и подкреплён многочисленными наблюдательными данными). Точные механизмы потери массы и дальнейшего сброса оболочки для таких звёзд пока до конца неясен, но можно предположить следующие факторы, могущие внести свой вклад в потерю оболочки:

  • В протяжённых звёздных оболочках могут развиваться неустойчивости, приводящие к сильным колебательным процессам, сопровождающимися изменением теплового режима звезды. На рисунке чётко заметны волны плотности выброшенной звездой материи, которые могут быть следствиями таких колебаний.
  • Вследствие ионизации водорода в областях, лежащих ниже фотосферы может развиться сильная конвективная неустойчивость. Аналогичную природу имеет солнечная активность, в случае же красных гигантов мощность конвективных потоков должна значительно превосходить солнечную.
  • Из-за крайне высокой светимости существенным становится световое давление потока излучения звезды на её внешние слои, что, по расчётным данным, может привести к потере оболочки за несколько тысяч лет.

Так или иначе, но достаточно длительный период относительно спокойного истечение вещества с поверхности красных гигантов заканчивается сбросом его оболочки и обнажением его ядра. Такая сброшенная оболочка наблюдается как планетарная туманность. Скорости расширения протопланетарных туманностей составляют десятки км/с, т. е. близки к значению параболических скоростей на поверхности красных гигантов, что служит дополнительным подтверждением их образования сбросом «излишка массы» красных гигантов.

Особенности спектров
Спектры белых карликов сильно отличаются от спектров звёзд главной последовательности и гигантов. Главная их особенность — небольшое число сильно уширенных линий поглощения, а некоторые белые карлики (спектральный класс DC) вообще не содержат заметных линий поглощения. Малое число линий поглощения в спектрах звёзд этого класса объясняется очень сильным уширением линий: только самые сильные линии поглощения, уширяясь, имеют достаточную глубину, чтобы остаться заметными, а слабые, из-за малой глубины, практически сливаются с непрерывным спектром.
Особенности спектров белых карликов объясняются несколькими факторами. Во-первых, из-за высокой плотности белых карликов ускорение свободного падения на их поверхности составляет ~10 8 см/с² (или ~1000 Км/с²), что, в свою очередь, приводит к малым протяжённостям их фотосфер, огромным плотностям и давлениям в них и уширению линий поглощения. Другим следствием сильного гравитационного поля на поверхности является гравитационное красное смещение линий в их спектрах, эквивалентное скоростям в несколько десятков км/с. Во-вторых, у некоторых белых карликов, обладающих сильными магнитными полями, наблюдаются сильная поляризация излучения и расщепление спектральных линий вследствие эффекта Зеемана.

Рентгеновское излучение белых карликов
Температура поверхности молодых белых карликов — изотропных ядер звёзд после сброса оболочек, очень высока — более 2·10 5 K, однако достаточно быстро падает за счёт нейтринного охлаждения и излучения с поверхности. Такие очень молодые белые карлики наблюдаются в рентгеновском диапазоне. Температура поверхности наиболее горячих белых карликов — 7·10 4 K, наиболее холодных — ~5·10³ K.
Особенностью излучения белых карликов в рентгеновском диапазоне является тот факт, что основным источником рентгеновского излучения для них является фотосфера, что резко отличает их от «нормальных» звёзд: у последних в рентгене излучает корона, разогретая до нескольких миллионов кельвинов, а температура фотосферы слишком низка для испускания рентгеновского излучения.
В отсутствие аккреции источником светимости белых карликов является запас тепловой энергии ионов в их недрах, поэтому их светимость зависит от возраста. Количественную теорию остывания белых карликов построил в конце 1940-х гг С.А. Каплан.

Аккреция на белые карлики в двойных системах

  • Нестационарная аккреция на белые карлики в случае, если компаньоном является массивный красный карлик, приводит к возникновению карликовых новых (звёзд типа U Gem (UG)) и новоподобных катастрофических переменных звёзд.
  • Аккреция на белые карлики, обладающие сильным магнитным полем, направляется в район магнитных полюсов белого карлика, и циклотронный механизм излучения аккрецирующей плазмы в околополярных областях поля вызывает сильную поляризацию излучения в видимой области (поляры и промежуточные поляры).
  • Аккреция на белые карлики богатого водородом вещества приводит к его накоплению на поверхности (состоящей преимущественно из гелия) и разогреву до температур реакции синтеза гелия, что, в случае развития тепловой неустойчивости, приводит к взрыву, наблюдаемому как вспышка новой звезды.

Откуда берутся белые карлики?

Что станет со звездой в конце ее жизненного пути зависит от массы, которую звезда имела при рождении. Звезды, которые изначально имели большую массу, заканчивают свою жизнь как черные дыры и нейтронные звезды. Звезды малой или средней массы (с массами менее 8 масс Солнца) станут белыми карликами. Типичный белый карлик имеет приблизительно массу Солнца, а по размеру немного превосходит Землю. Белый карлик представляет собой одну из наиболее плотных форм материи, которую по плотности превосходят только нейтронные звезды и черные дыры.

Звезды средней массы, как наше Солнце, живут благодаря переработке водорода в их ядрах в гелий. Этот процесс происходит на Солнце в настоящий момент. Энергия, которую вырабатывает Солнце посредством термоядерного синтеза гелия из водорода, создает внутреннее давление. В следующие 5 миллиардов лет Солнце израсходует запас водорода в ядре.

Звезду можно сравнить со скороваркой. При нагревании герметичного контейнера в нем повышается давление. Похожая вещь происходит в Солнце, конечно, строго говоря, Солнце нельзя назвать герметичным контейнером. Гравитация действует на вещество звезды, пытаясь сжать его, а давление, создаваемое горячим газом в ядре пытается расширить звезду. Баланс между давлением и гравитацией очень тонкий.
Когда у Солнца закончится запас водорода, в этом балансе начнет доминировать гравитация и звезда начнет сжиматься. Однако при сжатии происходит нагревание и часть водорода, оставшаяся во внешних слоях звезды начинает гореть. Эта горящая оболочка водорода расширяет внешние слои звезды. Когда это произойдет, наше Солнце станет красным гигантом, оно станет таким большим, что Меркурий будет полностью поглощен. Когда звезда увеличивается в размерах, она охлаждается. Однако температура ядра красного гиганта увеличивается до тех пор, пока не станет достаточно высокой, чтобы загорелся гелий (синтезированный из водорода). В конце концов, гелий превратится в углерод и более тяжелые элементы. Стадия, в которой Солнце будет красным гигантом, займет 1 миллиард лет, в то время как стадия горения водорода занимает 10 миллиардов.

Шаровое скопление М4. Оптическое изображение с наземного телескопа(слева) и снимок телескопа Хаббла (справа). Белые карлики отмечены кружками. Ссылка:Harvey Richer (University of British Columbia, Vancouver, Canada), M. Bolte (University of California, Santa Cruz) and NASA/ESA

Мы уже знаем, что звезды средней массы как наше Солнце станут красными гигантами. Но что произойдет потом? Наш красный гигант будет производить углерод из гелия. Когда закончится гелий, ядро будет еще не достаточно горячим, чтобы запустить горение углерода. Что теперь?

Поскольку Солнце не будет достаточно горячим для того, чтобы пошел процесс горения углерода, за дело снова возьмется гравитация. При сжатии звезды высвободится энергия, которая приведет к дальнейшему расширению оболочки звезды. Теперь звезда станет еще больше, чем прежде! Радиус нашего Солнца станет больше, чем радиус орбиты Земли!

В этот период Солнце станет нестабильным и будет терять свое вещество. Это продолжится до тех пор, пока звезда полностью не сбросит свои внешние слои. Ядро звезды останется целым и станет белым карликом. Белый карлик будет окружен расширяющейся оболочкой из газа, которая называется планетарная туманность. Туманности называются планетарными, потому что первые наблюдатели считали их похожими на планеты Уран и Нептун. Существует несколько планетарных туманностей, которые можно увидеть в любительский телескоп. Примерно в половине из них в центре можно увидеть белый карлик, при использовании телескопа достаточно скромного размера.

Планетарная туманность является признаком перехода звезды средней массы из стадии красного гиганта в стадию белого карлика. Звезды, сравнимые по массе с нашим Солнцем, превратятся в белые карлики примерно за 75000 лет, постепенно сбрасываю свои оболочки. В конце концов, они, как и наше Солнце, будут постепенно охлаждаться и превратятся в черные глыбы углерода, это процесс займет примерно 10 миллиардов лет.

Наблюдения белых карликов

Существует несколько способов наблюдать белые карлики. Первый открытый белый карлик – звезда компаньон Сириуса, яркой звезды в созвездии большого пса. В 1844 году астроном Фридрих Бессель заметил у Сириуса слабые поступательные и попятные движения, как если бы вокруг него вращался невидимый объект. В 1863 оптики и конструктор телескопов Элван Кларк обнаружил этот таинственный объект. Звезда-компаньон была позже отождествлена с белым карликом. В настоящее время эта пара известна как Сириус А и Сириус B, где В – белый карлик. Орбитальный период этой системы 50 лет.

Стрелка указывает на белый карлик, Сириус B, рядом с большим Сириусом А. Ссылка:McDonald Observatory,NASA/SAO/CXC)

Поскольку белые карлики очень малы и, поэтому труднообнаружимы, двойные системы – один из способов их обнаружить. Как и в случае Сириуса, если звезда имеет необъяснимое движение определенного вида, можно обнаружить, что одиночная звезда на самом деле является кратной системой. При более подробном изучении можно определить, является ли звезда-компаньон белым карликом. Космический телескоп Хаббла с 2.4-метровым зеркалом и улучшенной оптикой успешно наблюдал белые карлики с помощью широкоугольной планетарной камеры. В августе 1995 с помощью этой камеры были проведены наблюдения более 75 белых карликов в шаровом скоплении M4 в созвездии Скорпиона. Эти белые карлики были настолько слабы, что самые яркие из них светили не ярче, чем лампочка 100 Вт находящаяся на расстоянии Луны. М4 находится на расстоянии 7000 световых лет от нас и является ближайшим к нам шаровым скоплением. Его возраст примерно 14 миллиардов лет, вот почему большая часть звезд этого скопления находится в завершающей стадии свой жизни.

С массами порядка массы Солнца (М?) и радиусами, примерно в 100 раз меньшими, чем радиус Солнца. Средняя плотность вещества белых карликов 10 8 -10 9 кг/м 3 . Белые карлики составляют несколько процентов всех звёзд Галактики. Многие белые карлики входят в двойные звёздные системы. Первой звездой, отнесённой к белым карликам, был Сириус В (спутник Сириуса), открытый американским астрономом А. Кларком в 1862 году. В 1910-е годы белые карлики выделены в особый класс звёзд; их название связано с цветом первых представителей этого класса.

Имея массу звезды и размер небольшой планеты, белый карлик обладает колоссальным притяжением вблизи своей поверхности, которое стремится сжать звезду. Но она сохраняет устойчивое равновесие, поскольку гравитационным силам противостоит давление вырожденного газа электронов: при высокой плотности вещества, характерной для белых карликов, концентрация практически свободных электронов в нём столь велика, что, согласно принципу Паули, они обладают большим импульсом. Давление вырожденного газа практически не зависит от его температуры, поэтому при остывании белый карлик не сжимается.

Чем больше масса белого карлика, тем меньше его радиус. Теория указывает для белых карликов верхний предел массы около 1,4М? (так называемый Чандрасекара предел), превышение которого приводит к гравитационному коллапсу. Наличие такого предела обусловлено тем, что по мере роста плотности газа скорость электронов в нём приближается к скорости света и далее возрастать не может. В результате давление вырожденного газа уже не способно противостоять силе тяготения.

Белые карлики образуются в конце эволюции обычных звёзд с начальной массой менее 8М? после исчерпания ими запаса термоядерного горючего. В этот период звезда, пройдя через стадию красного гиганта и планетарной туманности, сбрасывает свои внешние слои и обнажает ядро, имеющее очень высокую температуру. Постепенно остывая, ядро звезды переходит в состояние белого карлика, продолжая ещё долго светить за счёт запасённой в недрах тепловой энергии. С возрастом светимость белого карлика падает. При возрасте около 1 миллиарда лет светимость белого карлика в тысячу раз ниже солнечной. Температуpa поверхности у изученных белых карликов лежит в диапазоне от 5·10 3 до 10 5 К.

У некоторых белых карликов обнаружена оптическая переменность с периодами от нескольких минут до получаса, объясняемая проявлением гравитационных нерадиальных колебаний звезды. Анализ этих колебаний методами астросейсмологии позволяет изучать внутреннее строение белых карликов. В спектрах около 3% белых карликов наблюдается сильная поляризация излучения или зеемановское расщепление спектральных линий, что указывает на существование у них магнитных полей индукцией 3·10 4 -10 9 Гс.

Если белый карлик входит в тесную двойную систему, то существенный вклад в его светимость может давать термоядерное горение водорода, перетекающего с соседней звезды. Это горение часто носит нестационарный характер, что проявляется в виде вспышек новых и новоподобных звёзд. В редких случаях накопление водорода на поверхности белого карлика приводит к термоядерному взрыву с полным разрушением звезды, наблюдаемому как вспышка сверхновой.

Лит.: Блинников С. И. Белые карлики. М., 1977; Шапиро С., Тьюколски С. Черные дыры, белые карлики и нейтронные звезды: В 2 часть М., 1985.