Что такое колебательное движение. Колебания и волны

С одним из видов неравномерного движения - равноускоренным - вы уже знакомы.

Рассмотрим ещё один вид неравномерного движения - колебательное.

Колебательные движения широко распространены в окружающей нас жизни. Примерами колебаний могут служить: движение иглы швейной машины, качелей, маятника часов, вагона на рессорах и многих других тел.

На рисунке 52 изображены тела, которые могут совершать колебательные движения, если их вывести из положения равновесия (т. е. отклонить или сместить от линии ОО").

Рис. 52. Примеры тел, совершающих колебательные движения

В движении этих тел можно найти много различий. Например, шарик на нити (рис. 52, а) движется криволинейно, а цилиндр на резиновом шнуре (рис. 52, б) - прямолинейно; верхний конец линейки (рис. 52, в) колеблется с большим размахом, чем средняя точка струны (рис. 52, г). За одно и то же время одни тела могут совершать большее число колебаний, чем другие.

Но при всём разнообразии этих движений у них есть важная общая черта: через определённый промежуток времени движение любого тела повторяется.

Действительно, если шарик отвести от положения равновесия и отпустить, то он, пройдя через положение равновесия, отклонится в противоположную сторону, остановится, а затем вернётся к месту начала движения. За этим колебанием последует второе, третье и т. д., похожие на первое.

Повторяющимися будут и движения остальных тел, изображённых на рисунке 52.

Промежуток времени, через который движение повторяется, называется периодом колебаний. Поэтому говорят, что колебательное движение периодично.

В движении тел, изображённых на рисунке 52, кроме периодичности есть ещё одна общая черта: за промежуток времени, равный периоду колебаний, любое тело дважды проходит через положение равновесия (двигаясь в противоположных направлениях).

  • Повторяющиеся через равные промежутки времени движения, при которых тело многократно и в разных направлениях проходит положение равновесия, называются механическими колебаниями

Именно такие колебания и будут предметом нашего изучения.

На рисунке 53 изображён шарик с отверстием, надетый на гладкую стальную струну и прикреплённый к пружине (другой конец которой прикреплён к вертикальной стойке). Шарик может свободно скользить по струне, т. е. силы трения настолько малы, что не оказывают существенного влияния на его движение. Когда шарик находится в точке О (рис. 53, а), пружина не деформирована (не растянута и не сжата), поэтому никакие силы в горизонтальном направлении на него не действуют. Точка О - положение равновесия шарика.

Рис. 53. Динамика свободных колебаний горизонтального пружинного маятника

Переместим шарик в точку В (рис. 53, б). Пружина при этом растянется, и в ней возникнет сила упругости F упрB . Эта сила пропорциональна смещению (т. е. отклонению шарика от положения равновесия) и направлена противоположно ему. Значит, при смещении шарика вправо действующая на него сила направлена влево, к положению равновесия.

Если отпустить шарик, то под действием силы упругости он начнёт ускоренно перемещаться влево, к точке О. Направление силы упругости и вызванного ею ускорения будет совпадать с направлением скорости шарика, поэтому по мере приближения шарика к точке О его скорость будет всё время возрастать. При этом сила упругости с уменьшением деформации пружины будет уменьшаться (рис. 53, в).

Напомним, что любое тело обладает свойством сохранять свою скорость, если на него не действуют силы или если равнодействующая сил равна нулю. Поэтому, дойдя до положения равновесия (рис. 53, г), где сила упругости станет равна нулю, шарик не остановится, а будет продолжать двигаться влево.

При его движении от точки О к точке А пружина будет сжиматься. В ней снова возникнет сила упругости, которая и в этом случае будет направлена к положению равновесия (рис. 53, д, е). Поскольку сила упругости направлена против скорости движения шарика, то она тормозит его движение. В результате в точке А шарик остановится. Сила упругости, направленная к точке О, будет продолжать действовать, поэтому шарик вновь придёт в движение и на участке АО его скорость будет возрастать (рис. 53, е, ж, з).

Движение шарика от точки О к точке В снова приведёт к растяжению пружины, вследствие чего опять возникнет сила упругости, направленная к положению равновесия и замедляющая движение шарика до полной его остановки (рис. 53, з, и, к). Таким образом, шарик совершит одно полное колебание. При этом в каждой точке его траектории (кроме точки О) на него будет действовать сила упругости пружины, направленная к положению равновесия.

Под действием силы, возвращающей тело в положение равновесия, тело может совершать колебания как бы само по себе. Первоначально эта сила возникла благодаря тому, что мы совершили работу по растяжению пружины, сообщив ей некоторый запас энергии. За счёт этой энергии и происходили колебания.

  • Колебания, происходящие только благодаря начальному запасу энергии, называются свободными колебаниями

Свободно колеблющиеся тела всегда взаимодействуют с другими телами и вместе с ними образуют систему тел, которая получила название колебательной системы. В рассмотренном примере в колебательную систему входят шарик, пружина и вертикальная стойка, к которой прикреплён левый конец пружины. В результате взаимодействия этих тел и возникает сила, возвращающая шарик к положению равновесия.

На рисунке 54 изображена колебательная система, состоящая из шарика, нити, штатива и Земли (Земля на рисунке не показана). В данном случае шарик совершает свободные колебания под действием двух сил: силы тяжести и силы упругости нити. Их равнодействующая направлена к положению равновесия.

Рис. 54. Нитяной маятник

  • Системы тел, которые способны совершать свободные колебания, называются колебательными системами

Одно из основных общих свойств всех колебательных систем заключается в возникновении в них силы, возвращающей систему в положение устойчивого равновесия.

Колебательные системы - довольно широкое понятие, применимое к разнообразным явлениям.

Рассмотренные колебательные системы называются маятниками. Существует несколько типов маятников: нитяные (см. рис. 54), пружинные (см. рис. 53, 55) и т. д.

Рис. 55. Пружинный маятник

В общем случае

  • маятником называется твёрдое тело, совершающее под действием приложенных сил колебания около неподвижной точки или вокруг оси

Колебательное движение будем изучать на примере пружинного и нитяного маятников.

Вопросы

  1. Приведите примеры колебательных движений.
  2. Как вы понимаете утверждение о том, что колебательное движение периодично?
  3. Что называется механическими колебаниями?
  4. Пользуясь рисунком 53, объясните, почему по мере приближения шарика к точке О с любой стороны его скорость увеличивается, а по мере удаления от точки О в любую сторону скорость шарика уменьшается.
  5. Почему шарик не останавливается, дойдя до положения равновесия?
  6. Какие колебания называются свободными?
  7. Какие системы называются колебательными? Приведите примеры.

Упражнение 23


Тема данного урока: «Колебательное движение. Свободные колебания. Колебательные системы». Вначале дадим определение нового вида движения, который мы начинаем изучать, - колебательного движения. Рассмотрим в качестве примера колебания пружинного маятника и определим понятие свободных колебаний. Также изучим, что такое колебательные системы, и обсудим условия, необходимые для существования колебаний.

Колебание - это периодическое изменение любой физической величины: колебания температуры, колебания цвета светофора и т. д. (рис. 1).

Рис. 1. Примеры колебаний

Колебания - самый распространенный вид движения в природе. Если касаться вопросов, связанных с механическим движением, то это самый распространенный вид механического движения. Обычно говорят так: движение, которое с течением времени полностью или частично повторяется, называется колебанием . Механические колебания - это периодические изменение физических величин, характеризующих механическое движение: положения тела, скорости, ускорения.

Примеры колебаний: колебание качелей, шевеление листьев и качание деревьев под воздействием ветра, маятник в часах, движение человеческого тела.

Рис. 2. Примеры колебаний

Наиболее распространенными механическими колебательными системами являются:

  • Грузик, закрепленный на пружине - пружинный маятник . Сообщая маятнику начальную скорость, его выводят из состояния равновесия. Маятник совершает колебания вверх-вниз. Для совершения колебаний в пружинном маятнике имеет значение количество пружин и их жесткость.

Рис. 3. Пружинный маятник

  • Математический маятник - твердое тело, подвешенное на длинной нити, совершающее колебание в поле тяготения Земли.

Рис. 4. Математический маятник

Условия существования колебаний

  • Наличие колебательной системы. Колебательная система - это система, в которой могут существовать колебания.

Рис. 5. Примеры колебательных систем

  • Точка устойчивого равновесия. Именно вокруг этой точки и совершаются колебания.

Рис. 6. Точка равновесия

Существует три типа положений равновесия: устойчивое, неустойчивое и безразличное. Устойчивое: когда система стремится вернуться в первоначальное положение при малом внешнем воздействии. Именно наличие устойчивого равновесия является важным условием того, что в системе могут происходить колебания.

  • Запасы энергии, которые приводят к тому, что совершаются колебания. Ведь колебания сами по себе не могут совершаться, мы должны вывести систему из равновесия, чтобы происходили эти колебания. То есть сообщить энергию этой системе, чтобы потом колебательная энергия превращалась в то движение, которое мы рассматриваем.

Рис. 7 Запасы энергии

  • Малое значение сил трения. Если эти силы будут большими, то о колебаниях речи идти не может.

Решение главной задачи механики в случае колебаний

Механические колебания - это один из видов механического движения. Главная задача механики - это определение положения тела в любой момент времени. Получим закон зависимости для механических колебаний.

Закон, который необходимо найти, мы постараемся угадать, а не вывести математически, потому что уровня знаний девятого класса недостаточно для строгих математических выкладок. В физике очень часто пользуются таким методом. Сначала пытаются предсказать справедливое решение, а потом его доказывают.

Колебания - это периодический или почти периодический процесс. Это значит, что закон - периодическая функция. В математике периодическими функциями являются или .

Закон не будет являться решением главной задачи механики, так как - безразмерная величина, а единицы измерения - метры. Усовершенствуем формулу, добавив перед синусом множитель, соответствующий максимальному отклонению от положения равновесия - амплитудное значение: . Обратите внимание, что единицами измерения времени являются секунды. Подумайте, что значит, например, ? Данное выражение не имеет смысла. Выражение под синусом должно измеряться в градусах или радианах. В радианах измеряется такая физическая величина, как фаза колебания - произведение циклической частоты и времени.

Свободные гармонические колебания описывает закон:

Используя это уравнение, можно найти положение колеблющегося тела в любой момент времени.

Энергия и равновесие

Исследуя механические колебания, особый интерес следует уделять понятию положения равновесия - необходимому условию наличия колебаний.

Существует три типа положений равновесия: устойчивое, неустойчивое и безразличное.

На рисунке 8 изображен шарик, который находится в сферическом желобе. Если вывести шарик из положения равновесия, на него будут действовать следующие силы: сила тяжести , направленная вертикально вниз, сила реакции опоры , направленная перпендикулярно касательной по радиусу. Векторная сумма этих двух сил будет равнодействующей, которая направлена обратно к положению равновесия. То есть шарик будет стремится вернуться в положение равновесия. Такое положение равновесия называется устойчивым .

Рис. 8. Устойчивое равновесие

Положим шарик на выпуклый сферический желоб и немного выведем его из положения равновесия (рис. 9). Сила тяжести по-прежнему направлена вертикально вниз, сила реакции опоры по-прежнему перпендикулярна касательной. Но теперь равнодействующая сила направлена в сторону, противоположную начальному положению тела. Шарик будет стремится скатиться вниз. Такое положение равновесия называется неустойчивым .

Рис. 9. Неустойчивое равновесие

На рисунке 10 шарик находится на горизонтальной плоскости. Равнодействующая двух сил в любой точке на плоскости будет одинаковой. Такое положение равновесия называется безразличным .

Рис. 10. Безразличное равновесие

При устойчивом и неустойчивом равновесии шарик стремится занять такое положение, в котором его потенциальная энергия будет минимальной .

Всякая механическая система стремится самопроизвольно занять такое положение, в котором ее потенциальная энергия будет минимальной. Например, нам комфортнее лежать, чем стоять.

Итак, необходимо дополнить условие существования колебаний тем, что равновесие обязательно должно быть устойчивым.

Если данному маятнику, колебательной системе сообщили энергию, то колебания, происходящие в результате такого действия, будут называться свободными . Более распространенное определение: свободными называют колебания , которые происходят только под действием внутренних сил системы.

Свободные колебания еще называют собственными колебаниями данной колебательной системы, данного маятника. Свободные колебания являются затухающими. Они рано или поздно затухают, так как действует сила трения. В данном случае она хоть и малая величина, но не нулевая. Если никакая дополнительная сила не вынуждает двигаться тело, колебания прекращаются.

Уравнение зависимости скорости и ускорения от времени

Для того чтобы понять, меняются ли скорость и ускорение при колебаниях, обратимся к математическому маятнику.

Маятник вывели из положения равновесия, и он начинает совершать колебания. В крайних точках колебания скорость меняет свое направление, причем в точке равновесия скорость максимальная. Если меняется скорость, значит, у тела есть ускорение. Будет ли такое движение равноускоренным? Конечно, нет, так по мере увеличения (уменьшения) скорости меняется и ее направление. Это значит, что ускорение также будет меняться. Наша задача - получить законы, по которым будут меняться проекция скорости и проекция ускорения со временем.

Координата со временем меняется по гармоническому закону, по закону синуса или косинуса. Логично предположить, что скорость и ускорение также будут меняться по гармоническому закону.

Закон изменения координаты:

Закон, по которому будет меняться проекция скорости со временем:

Данный закон также является гармоническим, но если координата меняется со временем по закону синуса, то проекция скорости - по закону косинуса. Координата в положении равновесия равна нулю, скорость же в положении равновесия максимальная. И наоборот, там, где координата максимальная, скорость равна нулю.

Закон, по которому будет меняться проекция ускорения со временем:

Знак минус появляется, поскольку при приращении координаты возвращающая сила направлена в противоположную сторону. По второму закону Ньютона, ускорение направлено туда же, куда и результирующая сила. Итак, если координата растет, ускорение растет по модулю, но противоположно по направлению, и наоборот, о чем и говорит знак минус в уравнении.

Список литературы

  1. Кикоин А.К. О законе колебательного движения // Квант. - 1983. - № 9. - С. 30-31.
  2. Кикоин И.К., Кикоин А.К. Физика: учеб. для 9 кл. сред. шк. - М.: Просвещение, 1992. - 191 с.
  3. Черноуцан А.И. Гармонические колебания - обычные и удивительные // Квант. - 1991. - № 9. - С. 36-38.
  4. Соколович Ю.А., Богданова Г.С. Физика: справочник с примерами решения задач. - 2-е издание, передел. - X.: Веста: издательство «Ранок», 2005. - 464 с.
  1. Интернет-портал «youtube.com» ()
  2. Интернет-портал «eduspb.com» ()
  3. Интернет-портал «physics.ru» ()
  4. Интернет-портал «its-physics.org» ()

Домашнее задание

  1. Что такое свободные колебания? Приведите несколько примеров таких колебаний.
  2. Вычислите частоту свободных колебаний маятника, если длина его нити 2 м. Определите, сколько времени будут длиться 5 колебаний такого маятника.
  3. Чему равен период свободных колебаний пружинного маятника, если жесткость пружины 50 Н/м, а масса груза 100 г?

Поэтому исследованиями этих закономерностей занимается обобщённая теория колебаний и волн . Принципиальное отличие от волн: при колебаниях не происходит переноса энергии, это, так сказать, «местные» преобразования.

Классификация

Выделение разных видов колебаний зависит от подчёркиваемых свойств систем с колебательными процессами (осцилляторов).

По используемому математическому аппарату

  • Нелинейные колебания

По периодичности

Так, периодические колебания определены следующим образом:

Периодическими функциями называются, как известно, такие функции f (t) {\displaystyle f(t)} , для которых можно указать некоторую величину τ {\displaystyle \tau } , так что f (t + τ) = f (t) {\displaystyle f(t+\tau)=f(t)} при любом значении аргумента t {\displaystyle t} . Андронов и соавт.

По физической природе

  • Механические (звук , вибрация)
  • Электромагнитные (свет , радиоволны , тепловые)
  • Смешанного типа - комбинации вышеперечисленных

По характеру взаимодействия с окружающей средой

  • Вынужденные - колебания, протекающие в системе под влиянием внешнего периодического воздействия. Примеры: листья на деревьях, поднятие и опускание руки. При вынужденных колебаниях может возникнуть явление резонанса : резкое возрастание амплитуды колебаний при совпадении собственной частоты осциллятора и частоты внешнего воздействия.
  • Свободные (или собственные) - это колебания в системе под действием внутренних сил после того, как система выведена из состояния равновесия (в реальных условиях свободные колебания всегда затухающие). Простейшими примерами свободных колебаний являются колебания груза, прикреплённого к пружине, или груза, подвешенного на нити.
  • Автоколебания - колебания, при которых система имеет запас потенциальной энергии , расходующейся на совершение колебаний (пример такой системы - механические часы). Характерным отличием автоколебаний от вынужденных колебаний является то, что их амплитуда определяется свойствами самой системы, а не начальными условиями.
  • Параметрические - колебания, возникающие при изменении какого-либо параметра колебательной системы в результате внешнего воздействия.

Параметры

Период колебаний T {\displaystyle T\,\!} и частота f {\displaystyle f\,\!} - обратные величины;

T = 1 f {\displaystyle T={\frac {1}{f}}\qquad \,\!} и f = 1 T {\displaystyle f={\frac {1}{T}}\,\!}

В круговых или циклических процессах вместо характеристики «частота» используется понятие круговая (циклическая) частота ω {\displaystyle \omega \,\!} (рад /с, Гц, с −1) , показывающая число колебаний за 2 π {\displaystyle 2\pi } единиц времени:

ω = 2 π T = 2 π f {\displaystyle \omega ={\frac {2\pi }{T}}=2\pi f\,\!}
  • Смещение - отклонение тела от положения равновесия. Обозначение Х, Единица измерения - метр.
  • Фаза колебаний - определяет смещение в любой момент времени, то есть определяет состояние колебательной системы.

Краткая история

Гармонические колебания были известны с XVII века.

Термин «релаксационные колебания» был предложен в 1926 г. ван дер Полем. Обосновывалось введение такого термина лишь тем обстоятельством, что указанному исследователю казались все подобные колебания связанными с наличием «времени релаксации» - т. е. с концептом, который на тот исторический момент развития науки представлялся наиболее понятным и широко распространённым. Ключевым свойством колебаний нового типа, описанных рядом перечисленных выше исследователей, было то, что они существенно отличались от линейных, - что проявляло себя в первую очередь как отклонение от известной формулы Томсона . Тщательное историческое исследование показало , что ван дер Поль в 1926 г. ещё не осознавал того обстоятельства, что открытое им физическое явление «релаксационные колебания» соответствует введённому Пуанкаре математическому понятию «предельный цикл », и понял он это лишь уже после вышедшей в 1929 г. публикации А. А. Андронова .

Иностранные исследователи признают тот факт, что среди советских учёных мировую известность приобрели ученики Л. И. Мандельштама , выпустившие в 1937 г. первую книгу , в которой были обобщены современные сведения о линейных и нелинейных колебаниях. Однако советские учёные «не приняли в употребление термин "релаксационные колебания", предложенный ван дер Полем. Они предпочитали термин "разрывные движения", используемый Блонделем , в частности потому, что предполагалось описывать этих колебаний в терминах медленных и быстрых режимов . Этот подход стал зрелым только в контексте теории сингулярных возмущений » .

Краткая характеристика основных типов колебательных систем

Линейные колебания

Важным типом колебаний являются гармонические колебания - колебания, происходящие по закону синуса или косинуса. Как установил в 1822 году Фурье , любое периодическое колебание может быть представлено как сумма гармонических колебаний путём разложения соответствующей функции в

Наряду с поступательным и вращательным движением колебательное движение играет большую роль в макро- и микромире.

Различают хаотические и периодические колебания. Периодические колебания характеризуются тем, что через определенные равные промежутки времени колеблющаяся система проходит одни и те же положения. В качестве примера можно привести кардиограмму человека, представляющую собой запись колебаний электрических сигналов сердца (рис. 2.1). На кардиограмме можно выделить период колебаний, т.е. время Т одного полного колебания . Но периодичность не есть исключительная особенность колебаний, ею обладает также и вращательное движение. Наличие положения равновесия является особенностью механического колебательного движения, тогда как вращение характеризуется так называемым безразличным равновесием (хорошо сбалансированное колесо или игорная рулетка, будучи раскрученными, останавливается в любом положении равновероятно). При механических колебаниях в любом положении, кроме положения равновесия, существует сила, стремящаяся вернуть колеблющуюся систему в начальное положение т.е. возвращающая сила, всегда направленная к положению равновесия. Наличие всех трех признаков отличает механическое колебание от остальных видов движения.

Рис. 2.1.

Рассмотрим конкретные примеры механических колебаний.

Зажмем в тиски один конец стальной линейки, а другой, свободный, отведем в сторону и отпустим. Под действием сил упругости линейка будет возвращаться в исходное положение, которое является положением равновесия. Проходя через это положение (которое является положением равновесия), все точки линейки (кроме зажатой части) будут иметь определенную скорость и определенный запас кинетической энергии. По инерции колеблющаяся часть линейки пройдет положение равновесия и будет совершать работу против внутренних сил упругости за счет убыли кинетической энергии. Это приведет к возрастанию потенциальной энергии системы. Когда кинетическая энергия полностью исчерпается, потенциальная энергия достигнет максимума. Сила упругости, действующая на каждую колеблющуюся точку, также достигнет максимума и будет направлена к положению равновесия. Это описано в подразделах 1.2.5 (соотношение (1.58)), 1.4.1, а также в 1.4.4 (см. рис. 1.31) на языке потенциальных кривых. Так будет повторяться до тех пор, пока полная механическая энергия системы не перейдет во внутреннюю энергию (энергию колебаний частиц твердого тела) и не рассеется в окружающее пространство (напомним, что силы сопротивления относятся к диссипативным силам).

Таким образом, в рассматриваемом движении есть повторяемость состояний и есть силы (силы упругости), стремящиеся вернуть систему в положение равновесия. Следовательно, линейка будет совершать колебательное движение.

Другой известный всем пример - колебания маятника. Положение равновесия маятника отвечает низшему положению его центра тяжести (в этом положении потенциальная энергия, обусловленная силами тяжести, минимальна). В отклоненном положении на маятник будет действовать момент силы относительно оси вращения, стремящийся вернуть маятник в положение равновесия. В этом случае также есть все признаки колебательного движения. Понятно, что в отсутствии силы тяжести (в состоянии невесомости) не будут выполнены оговоренные выше условия: в состоянии невесомости отсутствует сила тяжести и возвращающий момент этой силы. И здесь маятник, получив толчок, будет двигаться по окружности, то есть совершать не колебательное, а вращательное движение.

Колебания могут быть не только механическими. Так, например, можно говорить о колебаниях заряда на пластинах конденсатора, соединенного параллельно с катушкой индуктивности (в колебательном контуре), или напряженности электрического поля в конденсаторе. Их изменение со временем описывается уравнением, подобным тому, что определяет механическое смещение от положения равновесия маятника. Ввиду того, что одинаковыми уравнениями можно описывать колебания самых различных физических величин, оказывается очень удобным рассмотрение колебаний безотносительно к тому, какая физическая величина колеблется. Это порождает систему аналогий, в частности, электромеханическую аналогию. Для определенности будем пока рассматривать механические колебания. Рассмотрению подлежат только периодические колебания, при которых значения изменяющихся в процессе колебаний физических величин повторяются через равные промежутки времени.

Величина, обратная периоду Т колебаний (как и времени одного полного оборота при вращении), выражает число полных колебаний, совершаемых в единицу времени, и называется частотой (это просто частота, она измеряется в герцах или с -1)

(при колебаниях так же, как при вращательном движении).

Угловая скорость связывается с введенной соотношением (2.1) частотой v формулой

измеряется в рад/с или с -1 .

Естественно начать анализ колебательных процессов с наиболее простых случаев колебательных систем с одной степенью свободы. Число степеней свободы - это число независимых переменных, необходимых для полного определения положения в пространстве всех частей данной системы . Если, например, колебания маятника (груз на нити и др.) ограничены плоскостью, в которой только и может перемещаться маятник, и если нить маятника нерастяжима, то достаточно задать только один угол отклонения нити от вертикали или только величину смещения от положения равновесия - для груза, колеблющегося вдоль одного направления на пружине, чтобы полностью определить его положение. В этом случае мы говорим, что рассматриваемая система обладает одной степенью свободы. Тот же маятник, если он может занимать любое положение на поверхности сферы, на которой лежит траектория его движения, обладает двумя степенями свободы. Возможны и трехмерные колебания, как это имеет место, например, при тепловых колебаниях атомов кристаллической решетки (см. подраздел 10.3). Для анализа процесса в реальной физической системе мы выбираем его модель, заранее ограничив исследование рядом условий.

  • Здесь и далее период колебаний будет обозначаться той же буквой, что и кинетическаяэнергия - Т (не путать!).
  • В главе 4 «Молекулярная физика» будет дано и другое определение числа степеней свободы.

Лабораторная работа №3

«Определение коэффицента упругости пружины с помощью пружинного маятника»

УДК 531.13(07)

Рассматриваются законы колебательного движения на примере пружинного маятника. Даны методические указания к выполнению лабораторной работы по определению коэффициента жёсткости пружины динамическим методами. Дан разбор типовых задач по теме «Гармонические колебания. Сложение гармонических колебаний.

Теоретическое введение

Колебательное движение является одним из наиболее распространённых движений в природе. С ним связаны звуковые явления, переменный ток, электромагнитные волны. Колебания совершают отдельные части самых разнообразных машин и приборов, атомы и молекулы в твёрдых телах, жидкостях и газах, сердечные мышцы у человека и животных и т. п.

Колебанием называют физический процесс, характеризующийся повторяемостью во времени физических величин, связанных с этим процессом. Движение маятника или качелей, сокращения сердечной мышцы, переменный ток - всё это примеры систем, совершающих колебания.

Колебания считают периодическими, если значения физических величин повторяются через равные промежутки времени, называемые периодом Т. Число полных колебаний, совершаемых системой за единицу времени, называют частотой ν. Очевидно, что Т = 1/ν. Частота измеряется в герцах (Гц). При частоте 1 герц система совершает 1 колебание в секунду.

Простейшим видом колебательного движения являются свободные гармонические колебания. Свободными , или собственными называются колебания, происходящие в системе после того, как она была выведена из положения равновесия внешними силами, которые в дальнейшем участия в движении системы не принимают. Наличие периодически меняющихся внешних сил вызывает в системе вынужденные колебания .

Гармоническими называют свободные колебания, происходящие под действием упругой силы при отсутствии трения. Согласно закону Гука, при малых деформациях сила упругости прямо пропорциональна смещению тела х от положения равновесия и направлена к положению равновесия: F упр. = - κх, где κ - коэффициент упругости, измеряемый в Н/м, а x - смещение тела из положения равновесия.

Силы, не упругие по своей природе, но аналогичные по виду зависимости от смещения, называют квазиупругими (лат. quasi - якобы). Такие силы также вызывают гармонические колебания. Например, квазиупругие силы действуют на электроны в колебательном контуре, вызывая гармонические электромагнитные колебания. Примером квазиупругой силы может также служить составляющая силы тяжести математического маятника при малых углах отклонения его от вертикали.

Уравнение гармонических колебаний . Пусть тело массой m прикреплено к концу пружины, масса которой мала по сравнению с массой тела. Колеблющееся тело называют осциллятором (лат. oscillum- колебание). Пусть осциллятор может свободно и без трения скользить вдоль горизонтальной направляющей, по которой направим ось координат ОХ (рис. 1). Начало координат поместим в точке, соответствующей равновесному положению тела (рис. 1, а). Приложим к телу горизонтальную силу F и сместим его из положения равновесия вправо в точку с координатой х . Растяжение пружины внешней силой вызывает появление в ней силу упругости F ynp. , направленной к положению равновесия (рис. 1, б). Если теперь убрать внешнюю силу F , то под действием силы упругости тело приобретает ускорение а , движется к положению равновесия, а сила упругости уменьшается, становясь равной нулю в положении равновесия. Достигнув положения равновесия, тело, однако, в нем не останавливается и движется влево за счёт своей кинетической энергии. Пружина вновь сжимается, возникает сила упругости, направленная вправо. Когда кинетическая энергия тела перейдет в потенциальную энергию сжатой пружины, груз остановится, затем начнет двигаться вправо, и процесс повторяется.

Таким образом, если при непериодическом движении каждую точку траектории тело проходит только один раз, двигаясь в одном направлении, то при колебательном движении за одно полное колебание в каждой точке траектории, кроме самых крайних, тело бывает дважды: один раз двигаясь в прямом направлении, другой раз -в обратном.

Напишем второй закон Ньютона для осциллятора: ma = F ynp. , где

F упр = –κx (1)

Знак «–» в формуле указывает на то, что смещение и сила имеют противоположные направления, иными словами, сила, действующая на прикрепленный к пружине груз, пропорциональна смещению его из положения равновесия и направлена всегда к положению равновесия. Коэффициент пропорциональности «κ» носит название коэффициента упругости. Численно он равен силе, вызывающей деформацию пружины, при которой её длина изменяется на единицу. Иногда его называют коэффициентом жёсткости .

Так как ускорение есть вторая производная от смещения тела, то это уравнение можно переписать в виде

, или
(2)

Уравнение (2) может быть записано в виде:

, (3)

где обе части уравнения разделены на массу m и введено обозначение:

(4)

Легко проверить подстановкой, что этому уравнению удовлетворяет решение:

х = А 0 cos (ω 0 t + φ 0) , (5)

где А 0 - амплитуда или максимальное смещение груза от положения равновесия, ω 0 - угловая или циклическая частота, которая может быть выражена через период Т собственных колебаний формулой
(см. ниже).

Величину φ = φ 0 + ω 0 t (6), стоящую под знаком косинуса и измеряемую в радианах, называют фазой колебания в момент времени t , а φ 0 - начальная фаза. Фаза представляет собой число, определяющее величину и направление смещения колеблющейся точки в данный момент времени. Из (6) видно, что

. (7)

Таким образом, величина ω 0 определяет быстроту изменения фазы и называется циклической частотой . С обычной чистотой её связывает формула

Если фаза изменяется на 2π радиан, то, как известно из тригонометрии, косинус принимает исходное значение, а следовательно, исходное значение принимает и смещение х . Но гак как время при этом изменяется на один период, то получается, что

ω 0 (t + T ) + φ 0 = (ω 0 t + φ 0) + 2π

Раскрывая скобки и сокращая подобные члены, получим ω 0 T = 2π или
. Но так как из (4)
, то получим:
. (9)

Таким образом, период колебания тела , подвешенного на пружине, как это следует из формулы (8), не зависит от амплитуды колебаний, но зависит от массы тела и от коэффициента упругости (или жесткости) пружины.

Дифференциальное уравнение гармонических колебаний:
,

Собственная круговая частота колебаний, определяемая природой и параметрами колеблющейся системы:


-для материальной точки массой m , колеблющейся под действием квазиупругой силы, характеризующейся коэффициентом упругости (жёсткости) k ;


-для математического маятника, имеющего длину l ;


-для электромагнитных колебаний в контуре с емкостью С и индуктивностью L .

ВАЖНОЕ ЗАМЕЧАНИЕ

Эти формулы верны при малых отклонениях от положения равновесия.

Скорость при гармоническом колебании:

.

Ускорение при гармоническом колебании:

Полная энергия гармонического колебания:

.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Задание 1

Определение зависимости периода собственных колебаний пружинного маятника от массы груза

1. Подвесьте к одной из пружин груз и выведите маятник из положения равновесия примерно на 1 - 2 см.

2. Предоставив грузу свободно колебаться, измерьте секундомером промежуток времени t , в течение которого маятник совершит n (n = 15 - 25) полных колебаний
. Найдите период колебания маятника, разделив измеренный вами промежуток времени на число колебаний. Для большей точности проведите измерения не менее 3 раз и вычислите среднее значение периода колебания.

Примечание : Следите за тем, чтобы боковые колебания груза отсутствовали, т. е. чтобы колебания маятника были строго вертикальными.

3. Повторите измерения с другими грузами. Результаты измерений запишите в таблицу.

4. Постройте зависимость периода колебаний маятника от массы груза. График будет более простым (прямая линия), если на горизонтальной оси откладывать значения маcсы грузов, а на вертикальной оси - значения квадрата периода.

Задание 2

Определение коэффициента упругости пружины динамическим методом

1. Подвесьте к одной из пружин груз массой 100 г., выведите его из положения равновесия на 1 - 2 см и, измерив время 15 - 20 полных колебаний, определите период колебания маятника с выбранным грузом по формуле
. Из формулы
вычислите коэффициент упругости пружины.

2. Проделайте аналогичные измерения с грузами от 150 г до 800 г (в зависимости от оборудования), определите для каждого случая коэффициент упругости и подсчитайте среднее значение коэффициента упругости пружины. Результаты измерений запишите в таблицу.

Задание 3 . По результатам лабораторной работы (задания 1 - 3):

– найдите значение циклической частоты маятника ω 0 .

– ответьте на вопрос: зависит ли амплитуда колебаний маятника от массы груза.

Возьмите на графике, полученном при выполнении задания 1 , произвольную точку и проведите из неё перпендикуляры до пересечения с осями Om и OT 2 . Определите для этой точки значения m и T 2 и по формуле
вычислите величину коэффициента упругости пружины.

Приложение

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

ПО СЛОЖЕНИЮ ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ

Амплитуда А результирующего колебания, полученного при сложении двух колебаний с одинаковыми частотами и амплитудами А 1 и А 2 , происходящих по одной прямой, определяется по формуле

где φ 0, 1 , φ 0, 2 - начальные фазы.

Начальная фаза φ 0 результирующего колебания может быть найдена по формуле

tg
.

Биения , возникающие при сложении двух колебаний x 1 =A cos2πν 1 t , происходящих по одной прямой с различными, но близкими по значению частотами ν 1 и ν 2 , описываются формулой

x = x 1 + x 2 + 2A cosπ (ν 1 – ν 2)t cosπ(ν 1 +ν 2)t .

Уравнение траектории точки, участвующей в двух взаимно перпендикулярных колебаниях одинаковой частоты с амплитудами А 1 и А 2 и начальными фазами φ 0, 1 и φ 0, 2:

Если начальные фазы φ 0, 1 и φ 0, 2 составляющих колебаний одинаковы, то уравнение траектории принимает вид
. Если же начальные фазы отличаются на π, то уравнение траектории имеет вид
. Это уравнения прямых линий, проходящих через начало координат, иными словами, в этих случаях точка движется по прямой. В остальных случаях движение происходит по эллипсу. При разности фаз
оси этого эллипса расположены по осямО X и О Y и уравнение траектории принимает вид
. Такие колебания называются эллиптическими. При A 1 =A 2 =A x 2 +y 2 =A 2 . Это уравнение окружности, и колебания называются круговыми. При других значениях частот и разностей фаз траектории колеблющейся точки образует причудливой формы кривые, называемые фигурами Лиссажу .

РАЗБОР НЕКОТОРЫХ ТИПОВЫХ ЗАДАЧ

ПО УКАЗАННОЙ ТЕМЕ

Задача 1. Из графика колебаний материальной точки следует, что модуль скорости в момент времени t = 1/3 с равен...


Период гармонического колебания, изображенного на рисунке, равен 2 секундам. Амплитуда этого колебания 18 см. Поэтому зависимость x (t ) можно записать в виде x(t) = 18sinπ t . Скорость равна производной функции х (t ) по времени v (t ) = 18π cosπ t . Подставив t = (1/3) с, получим v (1/3) = 9π (см/с).

Правильным является ответ: 9 π см/с.

Складываются два гармонических колебания одного направления с одинаковыми периодами и равными амплитудами A 0 . При разности
амплитуда результирующего колебания равна...


Решение существенно упрощается, если использовать векторный метод определения амплитуды и фазы результирующего колебания. Для этого одно из складываемых колебаний представим в виде горизонтального вектора с амплитудой А 1 . Из конца этого вектора построим второй вектор с амплитудой А 2 так, чтобы он образовал угол
с первым вектором. Тогда длина вектора, проведенного из начала первого вектора в конец последнего, будет равна амплитуде результирующего колебания, а угол, образуемый результирующим вектором с первым вектором, будет определять разность их фаз. Векторная диаграмма, соответствующая условию задания, приведена на рисунке. Отсюда сразу видно, что амплитуда результирующего колебания в
раз больше амплитуды каждого из складываемых колебаний.

Правильным является ответ:
.

ТочкаМ одновременно колеблется по гармоническому закону вдоль осей координат ОХ и OY с различными амплитудами, но одинаковыми частотами. При разности фаз π/2 траектория точки М имеет вид:

При заданной в условии разности фаз уравнением траектории является уравнение эллипса, приведенного к координатным осям, причем полуоси эллипса равны соответствующим амплитудам колебаний (см. теоретические сведения).

Правильным является ответ: 1.

Два одинаково направленных гармонических колебания одного периода с амплитудами A 1 =10 см и А 2 =6 см складываются в одно колебание с амплитудой А рез =14 см. Разность фаз
складываемых колебаний равна...

В этом случае удобно воспользоваться формулой . Подставив в нее данные из условия задания, получим:
.

Этому значению косинуса соответствует
.

Правильным является ответ: .

Контрольные вопросы

1. Какие колебания называются гармоническими? 2. Какой вид имеет график незатухающих гармонических колебаний? 3. Какими величинами характеризуется гармонический колебательный процесс? 4. Приведите примеры колебательных движений из биологии и ветеринарии. 5. Напишите уравнение гармонических колебаний. 6. Как получить выражение для периода колебательного движения пружинного маятника?

ЛИТЕРАТУРА

    Грабовский Р. И. Курс физики. - М.: Высшая школа, 2008, ч. I, § 27-30.

    Основы физики и биофизики. Журавлёв А. И. , Белановский А. С., Новиков В. Э., Олешкевич А. А. и др. - М., Мир, 2008, гл. 2.

    Трофимова Т. И. Курс физики: Учебник для студ. вузов. - М.: МГАВМиБ, 2008. - гл. 18.

    Трофимова Т. И. Физика в таблицах и формулах: Учеб. пособие для студентов вузов. - 2-е изд., испр. - М.: Дрофа, 2004. - 432 с.