Дайте определение параллельных плоскостей сформулируйте. Параллельность плоскостей: признак, условие

В данной статье будут изучены вопросы параллельности плоскостей. Дадим определение плоскостям, которые параллельны между собой; обозначим признаки и достаточные условия параллельности; рассмотрим теорию на иллюстрациях и практических примерах.

Yandex.RTB R-A-339285-1 Определение 1

Параллельные плоскости – плоскости, не имеющие общих точек.

Чтобы обозначить параллельность применяют такой символ: ∥ . Если заданы две плоскости: α и β , являющиеся параллельными, краткая запись об этом будет выглядеть так: α ‖ β .

На чертеже, как правило, плоскости, параллельные друг другу, отображаются как два равных параллелограмма, имеющих смещение относительно друг друга.

В речи параллельность можно обозначить так: плоскости α и β параллельны, а также – плоскость α параллельна плоскости β или плоскость β параллельна плоскости α .

Параллельность плоскостей: признак и условия параллельности

В процессе решения геометрических задач зачастую возникает вопрос: а параллельны ли заданные плоскости между собой? Для получения ответа на этот вопрос используют признак параллельности, который также является достаточным условием параллельности плоскостей. Запишем его как теорему.

Теорема 1

Плоскости являются параллельными, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости.

Доказательство этой теоремы приводится в программе геометрии за 10 - 11 класс.

В практике для доказательства параллельности, в том числе, применяют две следующие теоремы.

Теорема 2

Если одна из параллельных плоскостей параллельна третьей плоскости, то другая плоскость или также параллельна этой плоскости, или совпадает с ней.

Теорема 3

Если две несовпадающие плоскости перпендикулярны некоторой прямой, то они параллельны.

На основе этих теорем и самого признака параллельности доказывается факт параллельности любых двух плоскостей.

Рассмотрим подробнее необходимое и достаточное условие параллельности плоскостей α и β , заданных в прямоугольной системе координат трехмерного пространства.

Допустим, что в некоторой прямоугольной системе координат задана плоскость α, которой соответствует общее уравнение A 1 x + B 1 y + C 1 z + D 1 = 0 , а также задана плоскость β , которую определяет общее уравнение вида A 2 x + B 2 y + C 2 z + D 2 = 0 .

Теорема 4

Для параллельности заданных плоскостей α и β необходимо и достаточно, чтобы система линейных уравнений A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 не имела решения (являлась несовместной).

Доказательство

Предположим, что заданные плоскости, определяемые уравнениями A 1 x + B 1 y + C 1 z + D 1 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 являются параллельными, а значит не имеют общих точек. Таким образом, не существует ни одной точки в прямоугольной системе координат трехмерного пространства, координаты которой отвечали бы условиям одновременно обоих уравнений плоскостей, т.е. система A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 не имеет решения. Если указанная система не имеет решений, тогда не существует ни одной точки в прямоугольной системе координат трехмерного пространства, чьи координаты одновременно отвечали бы условиям обоих уравнений системы. Следовательно, плоскости, заданные уравнениями A 1 x + B 1 y + C 1 z + D 1 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 не имеют ни одной общей точки, т.е. они параллельны.

Разберем использование необходимого и достаточного условия параллельности плоскостей.

Пример 1

Заданы две плоскости: 2 x + 3 y + z - 1 = 0 и 2 3 x + y + 1 3 z + 4 = 0 . Необходимо определить, являются ли они параллельными.

Решение

Запишем систему уравнений из заданных условий:

2 x + 3 y + z - 1 = 0 2 3 x + y + 1 3 z + 4 = 0

Проверим, возможно ли решить полученную систему линейных уравнений.

Ранг матрицы 2 3 1 2 3 1 1 3 равен одному, поскольку миноры второго порядка равны нулю. Ранг матрицы 2 3 1 1 2 3 1 1 3 - 4 равен двум, поскольку минор 2 1 2 3 - 4 отличен от нуля. Таким образом, ранг основной матрицы системы уравнений меньше, чем ранг расширенной матрицы системы.

Совместно с этим, из теоремы Кронекера-Капелли следует: система уравнений 2 x + 3 y + z - 1 = 0 2 3 x + y + 1 3 z + 4 = 0 не имеет решений. Этим фактом доказывается, что плоскости 2 x + 3 y + z - 1 = 0 и 2 3 x + y + 1 3 z + 4 = 0 являются параллельными.

Отметим, что, если бы мы применили для решения системы линейных уравнений метод Гаусса, это дало бы тот же результат.

Ответ: заданные плоскости параллельны.

Необходимое и достаточное условие параллельности плоскостей возможно описать по-другому.

Теорема 5

Чтобы две несовпадающие плоскости α и β были параллельны друг другу необходимо и достаточно, чтобы нормальные векторы плоскостей α и β являлись коллинеарными.

Доказательство сформулированного условия базируется на определении нормального вектора плоскости.

Допустим, что n 1 → = (A 1 , B 1 , C 1) и n 2 → = (A 2 , B 2 , C 2) являются нормальными векторами плоскостей α и β соответственно. Запишем условие коллинеарности данных векторов:

n 1 → = t · n 2 ⇀ ⇔ A 1 = t · A 2 B 1 = t · B 2 C 1 = t · C 2 , где t – некое действительное число.

Таким образом, чтобы несовпадающие плоскости α и β с заданными выше нормальными векторами были параллельны, необходимо и достаточно, чтобы имело место действительное число t , для которого верно равенство:

n 1 → = t · n 2 ⇀ ⇔ A 1 = t · A 2 B 1 = t · B 2 C 1 = t · C 2

Пример 2

В прямоугольной системе координат трехмерного пространства заданы плоскости α и β . Плоскость α проходит через точки: A (0 , 1 , 0) , B (- 3 , 1 , 1) , C (- 2 , 2 , - 2) . Плоскость β описывается уравнением x 12 + y 3 2 + z 4 = 1 Необходимо доказать параллельность заданных плоскостей.

Решение

Удостоверимся, что заданные плоскости не совпадают. Действительно, так и есть, поскольку координаты точки A не соответствуют уравнению плоскости β .

Следующим шагом определим координаты нормальных векторов n 1 → и n 2 → , соответствующие плоскостям α и β . Также проверим условие коллинеарности этих векторов.

Вектор n 1 → можно задать, взяв векторное произведение векторов A B → и A C → . Их координаты соответственно: (- 3 , 0 , 1) и (- 2 , 2 , - 2) . Тогда:

n 1 → = A B → × A C → = i → j → k → - 3 0 1 - 2 1 - 2 = - i → - 8 j → - 3 k → ⇔ n 1 → = (- 1 , - 8 , - 3)

Для получения координат нормального вектора плоскости x 12 + y 3 2 + z 4 = 1 приведем это уравнение к общему уравнению плоскости:

x 12 + y 3 2 + z 4 = 1 ⇔ 1 12 x + 2 3 y + 1 4 z - 1 = 0

Таким образом: n 2 → = 1 12 , 2 3 , 1 4 .

Осуществим проверку, выполняется ли условие коллинеарности векторов n 1 → = (- 1 , - 8 , - 3) и n 2 → = 1 12 , 2 3 , 1 4

Так как - 1 = t · 1 12 - 8 = t · 2 3 - 3 = t · 1 4 ⇔ t = - 12 , то векторы n 1 → и n 2 → связаны равенством n 1 → = - 12 · n 2 → , т.е. являются коллинеарными.

Ответ : плоскости α и β не совпадают; их нормальные векторы коллинеарные. Таким образом, плоскости α и β параллельны.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

На этом уроке мы дадим определение параллельных плоскостей и вспомним аксиому о пересечении двух плоскостей. Далее мы докажем теорему - признак параллельности плоскостей и, опираясь на нее, решим несколько задач на параллельность плоскостей.

Тема: Параллельность прямых и плоскостей

Урок: Параллельные плоскости

На этом уроке мы дадим определение параллельных плоскостей и вспомним аксиому о пересечении двух плоскостей.

Определение. Две плоскости называются параллельными, если они не пересекаются.

Обозначение : .

Иллюстрация параллельных плоскостей (Рис. 1.)

1. Какие плоскости называются параллельными?

2. Могут ли быть параллельными плоскости, проходящие через непараллельные прямые?

3. Каким может быть взаимное расположение двух прямых, каждая из которых лежит в одной из двух различных параллельных плоскостей?

4. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М.: Мнемозина, 2008. - 288 с.: ил.

Задания 1, 2, 5 стр. 29

е свойство параллельных прямых, называемое транзитив ностью параллельности:

  • Если две прямые а и b параллельны третьей прямой с, то они параллель ны друг другу.

Но доказать это свойство в стереометрии сложнее. На плоскости непараллельные прямые обязаны пересекаться и потому не могут быть одновременно параллельны третьей (иначе нарушается аксиома параллельных). В про странстве существуют непараллельные и при том непересекающиеся прямые если они лежат в разных плоскостях. О таких прямых говорят, что они скрещиваются.

На рис. 4 изображён куб; прямые АВ и ВС пересекаются, АВ и CD параллельны, а АВ и В С скрещиваются. В дальнейшем мы часто будем прибегать к помощи куба, чтобы иллюс трировать понятия и факты стереометрии. Наш куб склеен из шести граней-квадратов. Исходя из этого, мы будем выводить и другие его свойства. Например, можно утверждать, что прямая АВ параллельна C D, потому что обе они параллельны общей стороне CD со держащих их квадратов.

В стереометрии отношение параллельности рассматривается и для плоскостей: две пло скости или прямая и плоскость параллельны, если они не имеют общих точек. Прямую и плоскость удобно считать параллельными и в том случае, когда лежит в плоскости. Для плоскостей и прямых справедливы теоремы о транзитивности:

  • Если две плоскости параллельны третьей плоскости, то они параллельны между собой.
  • Если прямая и плоскость параллельны некоторой прямой(или плоскости), то они параллельны друг другу.

Наиболее важный частный случай второй теоремы- признак параллельности прямой и плоскости:

  • Прямая параллельна плоскости, если она параллельна некоторой прямой в этой плоскости.

А вот признак параллельности плоскостей:

  • Если две пересекающиеся прямые в одной плоскости соответственно параллельны двум пересекающимся прямым в другой плоскости, то и плоскости параллельны.

Часто используется и такая простая теорема:

  • Прямые, по которым две параллельные плоскости пересекаются третьей, параллельны друг другу.

Посмотрим еще раз на куб (рис. 4). Из признака параллельности прямой и плоскости следует, например, что прямая А В параллельна плоскости АВСD (так как она параллельна прямой АВ в этой плоскости), а противоположные грани куба, в частности А В С D и ABCD, параллельны по признаку параллельности плоскостей: прямые A B и B С в одной грани соответственно параллельны прямым АВ и ВС в другой. И чуть менее простой пример. Плоскость, содержащая параллельные прямые AA и СС , пересекают параллельные плоскости АВСD и A B C D по прямым АС и А С , значит, эти прямые параллельны: аналогично, параллельные прямые В С и А D. Следовательно, параллельные плоскости АВ С и А DC, пересекающие куб по треугольникам.

III. Изображение пространственных фигур.

Есть такой афоризм Геометрия это искус ство правильно рассуждать на неправильном чертеже. Действительно, если вернуться к из ложенным выше рассуждениям, то окажется:

единственная польза, которую мы извлекли из сопровождавшего их рисунка куба, состоит в том, что он сэкономил нам место на объясне нии обозначений. С тем же успехом можно было изобразить его, как тело на рис. 4, я, хотя, очевидно, представленное на нём нечто не только не куб, но и не многогранник. И всё же в приведённом афоризме заключена лишь часть правды. Ведь прежде, чем рассуждать излагать готовое доказательство, надо его при думать. А для этого нужно ясно представлять себе заданную фигуру, соотношения между её элементами. Выработать такое представление помогает хороший чертёж. Более того, как мы увидим, в стереометрии удачный чертёж мо жет стать не просто иллюстрацией, а основой решения задачи.

Художник (вернее, художник-реалист) на рисует наш куб таким, каким мы его видим (рис. 5, б), т. е. в перспективе, или централь ной проекции. При центральной проекции из точки О (центр проекции) на плоскость а про извольная точка Х изображается точкой X, в которой а пересекается с прямой ОХ (рис. 6). Центральная проекция сохраняет прямоли нейное расположение точек, но, как правило, переводит параллельные прямые в пересека ющиеся, не говоря уже о том, что изменяет расстояния и углы. Изучение её свойств при вело к появлению важного раздела геометрии (см. статью Проективная геометрия).

Но в геометри-ческих чертежах исполь-зуется другая проекция. Можно сказать, что она получается из централь-ной когда центр О уда-ляется в бесконечность и прямые ОХ становятся па раллельными.

Выберем плоскость а и пересекающую её прямую l. Проведём через точку Х прямую, па раллельную l. Точка X, в которой эта прямая встречается с а, и есть параллельная проекция Х на плоскость, а вдоль прямой l (рис. 7). Про екция фигуры состоит из проекций всех её точек. В геометрии под изображением фигуры понимают её параллельную проекцию.

В частности, изображение прямой линии это прямая линия или (в исключительном слу чае, когда прямая параллельна направлению проекции) точка. На изображении параллель