Детерминированные и стохастические модели. Математические модели в экономике и программировании

Модели систем, о которых мы говорили до сих пор, были детерминированными (определенными), т.е. задание входного воздействия определяло выход системы однозначно. Однако на практике так бывает редко: описанию реальных систем обычно присуща неопределенность. Например, для статической модели неопределенность можно учесть, записывая место (2.1) соотношение

где -погрешность, приведенная к выходу системы.

Причины неопределенности разнообразны:

– погрешности и помехи измерений входов и выходов системы (естественные погрешности);

– неточность самой модели системы, что заставляет искусственно вводить в модель погрешность;

– неполнота информации о параметрах системы и т.д.

Среди различных способов уточнения и формализации неопределенности наибольшее распространение получил хаотический (вероятностный) подход, при котором неопределенные величины считаются случайными. Развитый понятийный и вычислительный аппарат теории вероятностей и математической статистики позволяет дать конкретные рекомендации по выбору структуры системы и оценке ее параметров. Классификация стохастических моделей систем и методов их исследования представлена в табл. 1.4. Выводы и рекомендации основаны на эффекте усреднения: случайные отклонения результатов измерений некоторой величины от ее ожидаемого значения при суммировании взаимно уничтожаются, и среднее арифметическое большого числа измерений оказывается близким к ожидаемому значению. Математические формулировки этого эффекта даются законом больших чисел и центральной предельной теоремой. Закон больших чисел гласит, что если - случайные величины с математическим ожиданием (средним значением) и дисперсией , то



при достаточно больших N . Это говорит о принципиальной возможности сколь угодно точной оценки по измерениям. Центральная предельная теорема, уточняющая (2.32) утверждает, что

где - стандартная нормально распределенная случайная величина

Поскольку распределение величины хорошо извести и затабулировано (например, известно, что то соотношение (2.33) позволяет вычислять погрешность оценки. Пусть, например требуется найти, при каком числе измерений погрешность оценки их математического ожидания с вероятностью 0,95 окажется меньше, чем 0,01, если дисперсия каждого измерения равна 0,25. Из (2.33) получаем, что должно выполняться неравенство откуда N> 10000.

Разумеется, формулировкам (2.32), (2.33) можно придать более строгий вид, и это легко может быть сделано с помощью понятий вероятностной сходимости. Трудности возникают при попытке проверить условия этих строгих утверждений. Например, в законе больших чисел и централь ной предельной теореме требуется независимость отдельных измерений (реализаций) случайной величины и конечность ее дисперсии. Если эти условия нарушаются, то могут нарушаться и выводы. Например, если все измерения совпадают: то, хотя все остальные условия выполняются об усреднении не может быть и речи. Другой пример: закон больших чисел несправедлив, если случайные величины распределены по закону Коши (с плотностью распределения не обладающему конечными математическими ожиданием и дисперсией. А ведь такой закон встречается в жизни! Например, по Коши распределена интегральная освещенность точек прямолинейного берега равномерно вращающимся прожектором, находящимся в море (на корабле) и включающимся в случайные моменты времени.

Но еще большие трудности вызывает проверка обоснованности самого употребления термина «случайный». Что такое случайная величина, случайное событие и т.д. Часто говорят, что событие А случайно, если в результате эксперимента оно может наступить (с вероятностью р) или не наступить (с вероятностью 1-р). Все, однако, не так просто. Само по­нятие вероятности может быть связано с результатами экс­периментов лишь через частоту его наступления в некотором ряде (серии) экспериментов: , где N A - число экс­периментов, в которых событие наступило, N - общее число; экспериментов. Если числа при достаточно большом N приближаются к некоторому постоянному числу р А:

то событие А можно назвать случайным, а число р - его вероятностью. При этом частоты, наблюдавшиеся в различных сериях экспериментов, должны быть близки между собой (это свойство называется статистической устойчивостью или однородностью). Сказанное относится и к понятию случайной величины, поскольку величина является случайной, если случайными являются события {а<£<Ь} для любых чисел а , Ь. Частоты наступления таких событий в длинных сериях экспериментов должны группироваться около некоторых по­стоянных значений.

Итак, для применимости стохастического подхода должны выполняться следующие требования:

1) массовость проводимых экспериментов, т.е. достаточно большое число;

2) повторяемость условий экспериментов, оправдывающая сравнение результатов различных экспериментов;

3) статистическая устойчивость.

Стохастический подход заведомо нельзя применять к единичным экспериментам: бессмысленны выражения типа «вероятность того, что завтра будет дождь», «с вероятностью 0.8 «Зенит» выиграет кубок» и т.п. Но даже если массовость и повторяемость экспериментов имеются, статистической ус­тойчивости может и не быть, а проверить это - непростое дело. Известные оценки допустимого отклонения частоты от вероятности основаны на центральной предельной теореме или неравенстве Чебышева и требуют дополнительных гипотез о независимости или слабой зависимости измерений. Опытная же проверка условия независимости еще сложнее, так как требует дополнительных экспериментов.

Более подробно методология и практические рецепты применения теории вероятностей изложены в поучительной книге В.Н. Тутубалина , представление о которой дают приводимые ниже цитаты:

«Чрезвычайно важно искоренить заблуждение, встречающееся иногда у недостаточно знакомых с теорией вероятностей инженеров и естествоиспытателей, что результат любого эксперимента можно рассматривать как случайную величину. В особо тяжелых случаях к этому присоединяется вера в нормальный закон распределения, а если уже сами случайные величины не нормальны, то верят, что их логарифмы нормальны».

«По современным представлениям область применения теоретико-вероятностных методов ограничена явлениями, которым присуща статистическая устойчивость. Однако проверка статистической устойчивости трудна и всегда неполна к тому же часто она дает отрицательный вывод. В результате в целых областях знания, например, в геологии, нормой стал такой подход, при котором статистическая устойчивость вовсе не проверяется, что неизбежно приводит к серьезным ошибкам. К тому же пропаганда кибернетики, предпринятая нашими ведущими учеными, дала (в некоторых случаях!) несколько неожиданный результат: теперь считается, что только машина (а не человек) способна получать объективные научные результаты.

В таких обстоятельствах долг каждого преподавателя - вновь и вновь пропагандировать ту старую истину, которую еще Петр I пытался (безуспешно) внушить русским купцам: что торговать надо честно, без обмана, так как в конечном счете это для самих же себя выгоднее».

Как же построить модель системы, если неопределенность в задаче есть, но стохастический подход неприменим? Ниже кратко излагается один из альтернативных подходов, основанный на теории нечетких множеств.


Напоминаем, что отношением (отношением между и) называется подмножество множества. т.е. некоторая совокупности пар R={(x , у )}, где,. Например, функциональная связь (зависимость) может быть представлена как отношение между множествами, включающее пары (х , у ), для которых.

В простейшем случае может быть, a R - отношение тождества, если.

Примеры 12-15 в табл. 1. 1 придуманы в 1988 г. учеником 86 класса 292 школы М. Коротеевым.

Математик здесь, конечно, заметит, что минимум в (1.4), строго говоря, может не достигаться и в формулировке (1.4) нужно заменить rnin на inf («инфимум» - точная нижняя грань множества). Однако ситуация от этого не изменится: формализация в данном случае не отражает существа задачи, т.е. проведена неверно. В дальнейшем, чтобы не«пугать» инженера, мы будем пользоваться обозначениями min, max; имея в виду, что при необходимости их следует заменить на более общие inf, sup.

Здесь термин «структура» используется в смысле, несколько более узком, нем в подразд. 1.1, и означает состав подсистем в системе и типы связей между ними.

Графом называется пара (G , R ), где G={g 1 ... g n }- конечное множество вершин, a - бинарное отношение на G. Если, тогда и только тогда, когда, то граф называется неориентированным, в противном случае - ориентированным. Пары называются дугами (ребрами), а элементы множества G - вершинами графа.

То есть алгебраические или трансцендентные.

Строго говоря, счетное множество представляет собой некоторую идеализацию, которую невозможно реализовать практически из-за конечности размеров технических систем и пределов человеческого восприятия. Такие идеализированные модели (например, множество натуральных чисел N ={1, 2,...}) имеет смысл вводить для множеств конечных, но с за­ранее не ограниченным (или неизвестным) числом элементов.

Формально понятие операции является частным случаем понятия отношения между элементами множеств. Например, операция сложения Двух чисел задает 3-местное (тернарное) отношение R: тройка чисел (х, у, z ) z ) принадлежит отношению R (пишем (х,у,z)), если z = х+у.

Комплексное число, аргумент полиномов А (), В ().

Это предположение часто выполняется на практике.

Если величина неизвестна, то следует заменить в (2.33) на оценку где При этом величина будет распределена уже не нормально, а по закону Стьюдента, который при практически неотличим от нормального.

Легко заметить, что (2.34) есть частный случай (2.32), когда берется, если событие А наступило в j- м эксперименте, в противном случае.При этом

А сегодня можно добавить «... и информатики» (прим. автора).

Технические системы. Параметрами технических объектов являются движущие объекты, объекты энергетики, объекты химической промышленности, объекты машиностроения, бытовая техника и многие другие. Объекты технических систем хорошо изучены в теории управления.

Экономические объекты. Экономическими объектами являются: цех, завод, предприятия различных отраслей. В качестве одной из переменных в них выступают экономические показатели - например - прибыль.

Биологические системы. Живые системы поддерживают свою жизнедеятельность благодаря заложенным в них механизмам управления.

Детерминированные и стохастические системы

Если внешние воздействия, приложенные к системе (управляющие и возмущающие) являются определенными известными функциями времени u=f(t). В этом случае состоянии системы описываемой обыкновенными дифференциальными уравнениями, в любой момент времени t может быть однозначно описано по состоянию системы в предшествующий момент времени. Системы для которых состояние системы однозначно определяется начальными значениями и может быть предсказано для любого момента времени называются детерминированными.

Стохастические системы - системы изменения в которых носят случайный характер. Например воздействие на энергосистему различных пользователей. При случайных воздействиях данных о состоянии системы недостаточно для предсказания в последующий момент времени.

Случайные воздействия могут прикладываться к системе из вне, или возникать внутри некоторых элементов (внутренние шумы). Исследование систем при наличии случайных воздействий можно проводить обычными методами, минимизировав шаг моделирования чтобы не пропустить влияния случайных параметров. При этом так как максимальное значение случайной величины встречается редко (в основном в технике преобладает нормальное распределение), то выбор минимального шага в большинстве моментов времени не будет обоснован.

В подавляющем большинстве случаев при проектировании систем закладываются не максимальным а наиболее вероятным значением случайного параметра. В этом случае поучается более рациональная система, заранее предполагая ухудшение работы системы в отдельные промежутки времени. Например установка катодной защиты.

Расчет систем при случайных воздействиях производится с помощью специальных статистических методов. Вводятся оценки случайных параметров, выполненные на основании множества испытаний. Например карта поверхности уровня грунтовых вод СПб.

Статистические свойства случайной величины определяют по ее функции распределения или плотности вероятности.

Открытые и закрытые системы

Понятие открытой системы ввел Л. фон Берталанфи. Основные отличительные черты открытых систем - способность обмениваться с внешней средой энергией и информацией. Закрытые (замкнутые) системы изолированны от внешней среды (с точностью принятой в модели).

Хорошо и плохо организованные системы

Хорошо организованные системы. Представить анализируемый объект или процесс в виде «хорошо организованной системы» означает определить элементы системы, их взаимосвязь, правила объединения в более крупные компоненты, т. е. определить связи между всеми компонентами и целями системы, с точки зрения которых рассматривается объект или ради достижения которых создается система. Проблемная ситуация может быть описана в виде математического выражения, связывающего цель со средствами, т. е. в виде критерия эффективности, критерия функционирования системы, который может быть представлен сложным уравнением или системой уравнений. Решение задачи при представлении ее в виде хорошо организованной системы осуществляется аналитическими методами формализованного представления системы.

Примеры хорошо организованных систем: солнечная система, описывающая наиболее существенные закономерности движения планет вокруг Солнца; отображение атома в виде планетарной системы, состоящей из ядра и электронов; описание работы сложного электронного устройства с помощью системы уравнений, учитывающей особенности условий его работы (наличие шумов, нестабильности источников питания и т. п.).

Для отображения объекта в виде хорошо организованной системы необходимо выделять существенные и не учитывать относительно несущественные для данной цели рассмотрения компоненты: например, при рассмотрении солнечной системы не учитывать метеориты, астероиды и другие мелкие по сравнению с планетами элементы межпланетного пространства.

Описание объекта в виде хорошо организованной системы применяется в тех случаях, когда можно предложить детерминированное описание и экспериментально доказать правомерность его применения, адекватность модели реальному процессу. Попытки применить класс хорошо организованных систем для представления сложных многокомпонентных объектов или многокритериальных задач плохо удаются: они требуют недопустимо больших затрат времени, практически нереализуемы и неадекватны применяемым моделям.

Плохо организованные системы. При представлении объекта в виде «плохо организованной или диффузной системы» не ставится задача определить все учитываемые компоненты, их свойства и связи между ними и целями системы. Система характеризуется некоторым набором макропараметров и закономерностями, которые находятся на основе исследования не всего объекта или класса явлений, а на основе определенней с помощью некоторых правил выборки компонентов, характеризующих исследуемый объект или процесс. На основе такого выборочного исследования получают характеристики или закономерности (статистические, экономические) и распространяют их на всю систему в целом. При этом делаются соответствующие оговорки. Например, при получении статистических закономерностей их распространяют на поведение всей системы с некоторой доверительной вероятностью.

Подход к отображению объектов в виде диффузных систем широко применяется при: описании систем массового обслуживания, определении численности штатов на предприятиях и учреждениях, исследовании документальных потоков информации в системах управления и т. д.

Самоорганизующиеся системы. Отображение объекта в виде самоорганизующейся системы - это подход, позволяющий исследовать наименее изученные объекты и процессы. Самоорганизующиеся системы обладают признаками диффузных систем: стохастичностью поведения, нестационарностью отдельных параметров и процессов. К этому добавляются такие признаки, как непредсказуемость поведения; способность адаптироваться к изменяющимся условиям среды, изменять структуру при взаимодействии системы со средой, сохраняя при этом свойства целостности; способность формировать возможные варианты поведения и выбирать из них наилучший и др. Иногда этот класс разбивают на подклассы, выделяя адаптивные или самоприспосабливающиеся системы, самовосстанавливающиеся, самовоспроизводящиеся и другие подклассы, соответствующие различным свойствам развивающихся систем.

Примеры: биологические организации, коллективное поведение людей, организация управления на уровне предприятия, отрасли, государства в целом, т. е. в тех системах, где обязательно имеется человеческий фактор.

При применении отображения объекта в виде самоорганизующейся системы задачи определения целей и выбора средств, как правило, разделяются. При этом задача выбора целей может быть, в свою очередь, описана в виде самоорганизующейся системы, т. е. структура функциональной части АСУ, структура целей, плана может разбиваться так же, как и структура обеспечивающей части АСУ (комплекс технических средств АСУ) или организационная структура системы управления.

Большинство примеров применения системного анализа основано на представлении объектов в виде самоорганизующихся систем.

Моделирование является одним из самых важных инструментов в современной жизни, когда хотят предвидеть будущее. И это не удивительно, ведь точность такого способа весьма велика. Давайте же в рамках данной статьи рассмотрим, что собой представляет детерминированная модель.

Общая информация

Детерминированные модели систем имеют ту особенность, что могут исследоваться аналитически, если они являются достаточно простыми. В противоположном случае при использовании значительного числа уравнений и переменных для этой цели могут задействоваться электронно-вычислительные машины. Причем помощь ЭВМ, как правило, сводится исключительно к их решению и нахождению ответов. Из-за этого приходится менять системы уравнений и использовать другую дискретизацию. А это влёчет за собой повышенную опасность погрешности при расчетах. Все типы детерминированных моделей характеризуются тем, что знание параметров на определённом исследуемом интервале позволяет нам полностью определить динамику развития за границей известных показателей.

Особенности

Факторное моделирование

Отсылки к этому можно было увидеть на протяжении всей статьи, но что это такое, мы пока не обсуждали. Факторное моделирование подразумевает, что выделяются основные положения, для которых необходимо количественное сопоставление. Для выполнения поставленных целей исследованием производят преобразование формы.

Если жестко детерминированная модель имеет больше двух факторов, то она называется многофакторной. Ее анализ может осуществляться посредством различных приёмов. В качестве примера приведем В этом случае она рассматривает поставленные задачи с точки зрения заранее установленных и проработанных априорных моделей. Выбор среди них осуществляется по содержательному представлению.

Для качественного построения модели необходимо использовать теоретические и экспериментальные исследования сущности технологического процесса и его причинно-следственных связей. Именно в этом и заключается главное преимущество рассматриваемых нами субъектов. Модели детерминированного позволяют осуществлять точное прогнозирование во многих сферах нашей жизни. Благодаря их качественным параметрам и универсальности они и получили такое широкое распространение.

Кибернетические детерминированные модели

Они представляют для нас интерес благодаря основанным на анализе переходным процессам, которые возникают при любых, даже самых ничтожных изменениях агрессивных свойств внешней среды. Для простоты и быстроты расчетов существующее положение дел заменяется упрощенной моделью. Важным является то, чтобы она удовлетворяла всем основным запросам.

От единства всех необходимых параметров зависит работоспособность системы автоматического управления и эффективность принимаемых ею решений. При этом необходимо решить такую задачу: чем больше будет собрано информации, тем выше вероятность ошибки и значительнее срок обработки. Но если ограничить сбор своих данных, то можно рассчитывать на менее надёжный результат. Поэтому необходимо найти золотую середину, которая позволит получить информацию достаточной точности, и одновременно это не будет излишне усложнено лишними элементами.

Мультипликативная детерминированная модель

Она строится посредством разделения факторов на их множество. В качестве примера можно рассмотреть процесс формирования объема производимой продукции (ПП). Итак, для этого необходимо иметь рабочую силу (РС), материалы (М) и энергию (Э). В таком случае фактор ПП можно разбить на множество (РС;М;Э). Такой вариант отображает мультипликативный вид факторной системы и возможность её разделения. В этом случае можно использовать такие методы преобразования: расширение, формальное разложение и удлинение. Первый вариант нашел широкое применение в анализе. Он может использоваться для того, чтобы высчитать эффективность деятельности работника, и так далее.

При удлинении одно значение заменяется другими факторами. Но в конечном итоге должно получиться то же самое число. Пример удлинения был рассмотрен нами выше. Осталось только формальное разложение. Оно предусматривает использование удлинения знаменателя исходной факторной модели благодаря замене одного или нескольких параметров. Рассмотрим такой пример: мы рассчитываем рентабельность производства. Для этого сумма прибыли делится на размер затрат. При мультипликации вместо единого значения делим на просуммированные траты на материал, персонал, налоги и так далее.

Вероятности

О, если бы всё шло именно так, как задумано! Но такое бывает редко. Поэтому на практике часто вместе используются детерминированные и Что можно сказать про последние? Их особенность в том, что они учитывают ещё и различные вероятности. Возьмем, к примеру, следующее. Есть два государства. Отношения между ними очень плохи. Третья сторона решает, инвестировать ли в предприятия одной из стран. Ведь если разгорится война, то прибыль очень пострадает. Или можно привести в пример построение завода в зоне с высокой сейсмической активностью. Здесь ведь действуют природные факторы, которые точно учесть нельзя, можно это сделать только приблизительно.

Заключение

Нами было рассмотрено, что собой представляют модели детерминированного анализа. Увы, но чтобы полноценно разобраться в них и уметь применять на практике, следует очень хорошо поучиться. Теоретические основы уже есть. Также в рамках статьи были представлены и отдельные простые примеры. Далее лучше идти по пути постепенного усложнения рабочего материала. Можно немного упростить себе задачу и начать изучение программного обеспечения, которое может проводить соответствующее моделирование. Но каким бы выбор ни был, понимать основы и уметь дать ответ на вопросы о том, что, как и почему, всё же необходимо. Следует научиться для начала подбирать правильные входные данные и выбирать нужные действия. Тогда программы смогут успешно выполнять свои задачи.

Prev Next

Функциональная департаментализация

Функциональная департаментализация - это процесс деления организации на отдельные подразделения, каждое из которых имеет четко определенные функции и обязанности. Она более характерна для малопродуктовых сфер деятельности: для...

Эффективное осуществление контроля

Контроль должен быть своевременным и гибким, ориентированным на решение поставленных организацией задач и соответствующим им. Непрерывность контроля может быть обеспечена специально разработанной системой мониторинга хода реализации...

Факторы способствующие выработке эффективных стратегических управленческих решений.

Анализ непосредственного окруж:ения организации предполагает прежде всего анализ таких факторов, как покупатели, поставщики, конкуренты, рынок рабочей силы. При анализе внутренней среды основное внимание обращается на кадры,...

Обработка данных экспертизы

Разработка сценариев возможного развития ситуации требует соответствующей обработки данных, в том числе математической. В частности, обязательная обработка данных, полученных от экспертов, требуется при коллективной экспертизе, когда...

Внешние общественные взаимоотношения

Традиционное управление проектами долгое время основывалось на классической модели вход-процесс-выход с обратной связью для контроля выхода. Динамичные руководители обнаружили также, что открытие каналов связи в обоих направлениях создает мощный...

Стратегия инноваций

Высокий уровень конкуренции на подавляюшем большинстве современных рынков сбыта повышает интенсивность конкурентной борьбы, в которой нередко побеждает тот, кто может предложить потребителю более совершенную продукцию, дополнительные...

Различия между провозглашаемыми и глубинными интересами

Основным мотивом, приводящим к созданию организации, нередко считается получение прибыли. Однако единственный ли это интерес? В некоторых случаях не менее важными для руководителя организации являются определенная...

Метод обобщенных линейных критериев

Один из широко используемых методов сравнительной оценки многокритериальных объектов принятия управленческих решений в практике управления - метод обобщенных линейных критериев. В этом методе предполагается определение весовых...

Экспертные кривые

Экспертные кривые отражают оценку динамики прогнозируемых значений показателей и параметров экспертами. Формируя экспертные кривые, эксперты определяют критические точки, в которых тенденция изменения значений прогнозируемых показателей и...

Сопровождение управленческого процесса

Если на менеджера, управляющего подразделением организации или организацией в целом, обрушивается шквал проблем, относительно которых необходимо принять своевременные и эффективные решения, положение становится трудным. Менеджер должен...

Метод матриц взаимовлияний

Метод матриц взаимовлияний, разработанный Гордоном и Хелмером, предполагает определение на основании экспертных оценок потенциального взаимовлияния событий рассматриваемой совокупности. Оценки, связывающие все возможные комбинации событий по...

Разработка сценариев возможного развития ситуации

Разработка сценариев начинается с содержательного описания и определения перечня наиболее вероятных сценариев развития ситуации. Для решения этой задачи может быть использован метод мозговой атаки...

Сетевая организация

Повышение нестабильности внешней среды и жесткая конкуренция на рынках сбыта, необходимость достаточно быстрой смены (в среднем 5 лет) поколений производимой продукции, информационно-компьютерная революция, оказавшая существенное влияние...

Эффективный руководитель

Эффективный руководитель должен проявлять свою компетентность в умении решать возникающие проблемы стратегического и тактического характера, в планировании, финансовом управлении и контроле, межличностном общении, профессиональном развитии и...

Ресурсное обеспечение

Особую роль при определении как целей, стоящих перед организацией, так и задач и заданий по реализации поставленных целей играет ресурсное обеспечение. При этом при формировании стратегии и...

Структура системы управления персоналом

Делегирование большего объема полномочий предполагает и больший объем ответственности каждого работника на своем рабочем месте. В таких условиях все большее значение придается системам стимулирования и мотивации деятельности...

Искусство принятия решения

На завершающей стадии решающее значение приобретает искусство принятия решения. Однако не следует забывать, что выдающийся художник создает свои произведения, опираясь на блестяще отточенную и совершенную технику....

Многокритериальные оценки, требования к системам критериев

При разработке управленческих решений важно правильно оценить сломсившуюся ситуацию и альтернативные варианты решений с целью выбора наиболее эффективного решения, соответствующего целям организации и ЛПР. Правильная оценка...

Решения в условиях неопределенности и риска

Поскольку, как уже говорилось выше, процесс принятия решений всегда связан с тем или иным предположением руководителя об ожидаемом развитии событий и принятое решение нацелено в будущее, оно...

Общие правила, согласно которым может быть осуществлено сравнение объектов экспертизы, характеризую…

Альтернативный вариант (объект) а- недоминируем, если не существует альтернативного варианта о, превосходящего (не уступающего) а. по всем компонентам (частным критериям). Естественно, что наиболее предпочтительный среди сравниваемых...

Идеи управления организацией Файоля

Значительный прорыв в науке об управлении связан с работами Анри Файоля (1841 -1925). В течение 30 лет Файоль возглавлял крупную французскую металлургическую и горнодобывающую компанию. Он принял...

Принцип учета и согласования внешних и внутренних факторов развития организации

Развитие организации определяется как внешними, так и внутренними факторами. Сгратегические решения, принятые на основании учета влияния только внешних или только внутренних факторов, будут неизбежно страдать недостаточной...

Возникновение науки об управленческих решениях и ее связь с другими науками об управлении

Разработка управленческих решений является важным процессом, связывающим основные функции управления: планирование, организацию, мотивацию, контроль. Именно решения, принимаемые руководителями любой организации, определяют не только эффективность ее деятельности, но...

Формирование перечня критериев, характеризующих объект принятия управленческого решения

Перечень критериев, характеризующих сравнительную предпочтительность объектов принятия управленческого решения, должен удовлетворять ряду естественных требований. Как уже говорилось выше, само понятие критерий тесно связано с...

Главное правило делегирования полномочий

Мы хотим подчеркнуть важное правило, которое должно соблюдаться при делегировании полномочий. Делегируемые полномочия, как и задачи, которые ставятся перед работником, должны быть четко определены и однозначно...

Основная задача сценария - дать ключ к пониманию проблемы.

При анализе конкретной ситуации переменные, ее характеризующие, принимают соответствующие значения - те или иные градации вербально-числовых шкал каждое из переменных. Определяются все значения парных взаимодействий между...

Этап оперативного управления ходом реализации принятых решений и планов

После этапа передачи информации о принятых решениях и их согласования наступает этап оперативного управления ходом реализации принятых решений и планов. На этом этапе осуществляется контроль за ходом...

Классификация основных методов прогнозирования

Технологическое прогнозирование подразделяется на изыскательское (иногда его называют еще поисковым) и нормативное. В основе изыскательского прогнозирования лежит ориентация на представляющиеся возмож:ности, установление тенденций развития ситуаций на...

Строительство плотины для водохранилища

Несколько лет тому назад хорошо известная строительная компания стремилась обеспечить необходимые условия для проекта строительства Главной водозадерживающей плотины в Бихаре (Индия). В то...

Безусловно, каждый бизнесмен при планировании производства стремится к тому, чтобы оно было рентабельным, приносило прибыль. Если же удельный вес затрат сравнительно велик, о рентабельной деятельности организации говорить…

  • Принятие решения ЛПР

    Результаты экспертиз по сравнительной оценке альтернативных вариантов решений либо единственного решения, если разработка альтернативных вариантов не предусматривалась, поступают к ЛПР. Они служат основной базой для принятия…

  • Разработка оценочной системы

    В процессе выработки управленческого рещения больщое значение имеет адекватная оценка ситуации, различных ее аспектов, учитывать которые необходимо при принятии решений, приводящих к успеху. Для адекватной оценки…

  • Определение зарплаты и льгот

    Производительная работа персонала на предприятии во многом зависит от проводимой руководством предприятия политики мотивации и стимулирования работников. Большое значение имеет при этом формирование структуры заработной …

  • Стратегическое планирование и целенаправленная деятельность организации

    Реализация управленческих функций организации осуществляется в значительной степени с использованием стратегического и тактического планирования, специально разрабатываемых программ и проектов и четко отслеживаемого хода их выполнения. Стратегическому…

  • Контроль подразделяется на предварительный, текущий и заключительный.

    Предварительный контроль осуществляется до начала работ. На этом этапе контролируются правила, процедуры и линия поведения, чтобы убедиться, что работа развивается в правильном направлении. На этом этапе контролируются,…

  • Цели организации реализуются во внешней среде.

    При анализе состояния внешней среды и ожидаемой динамики изменений обычно рассматриваются экономические, технологические, конкурентные, рыночные, социальные, политические, международные факторы. При анализе внешней среды обрашают внимание…

  • Prev Next

    Детерминированные и вероятностные модели

    Детерминированными называются модели, в которых отсутствуют какие бы то ни было случайные изменения: внешних воздействий, внутренних параметров и самих переменных. В таких моделях все поведение объекта определяется конкретными значениями начальных условий и входных переменных. Иначе говоря, в них все точно определено (детерминировано).

    Вероятностными являются модели, в которых учитывается случайный характер изменений значений входных, промежуточных и выходных переменных, а также параметров моделируемого объекта. В том случае, когда независимой переменной служит время, случайные процессы, а также и соответствующие вероятностные модели, их описывающие, называются стохастическими . Такие модели характеризуются функциями или плотностями распределения вероятностей и средними характеристиками смещения и рассеяния, например, математическим ожиданием и дисперсией.

    Существуют различные точки зрения на реальный характер процессов, протекающих в нашем мире. Одна из них заключается в том, что абсолютно все процессы случайны, но среди них есть более случайные, с большим разбросом значений реализаций относительно средних характеристик, и менее случайные, со значениями, близкими к средним. Полярная точка зрения состоит в том, что наш мир детерминирован, а случайность характеризует степень нашей неосведомленности об истинном положении дел. По мере познания случайность должна отступать, уступая место детерминированному описанию. С нашей точки зрения истина, как всегда, находится где-то посередине, но в любом случае и детерминированные, и случайные модели имеют право на существование, взаимно дополняя друг друга. К этому вопросу целесообразно вернуться позже, при рассмотрении свойства истинности моделей (п. 1.5).

    Можно рассмотреть на примере графиков функций распределения вероятностей (рис. 1.10) постепенный переход от одних вероятностных моделей (1 – равномерное распределение) к другим вероятностным моделям (2 и 3 – нормальное распределение с разными значениями параметра), а также в пределе и к детерминированной модели 4.

    Рис.1.10. Переход от вероятностных моделей: равномерного распределения 1 (на интервале ab ) и нормального распределения 2, 3 к детерминированной модели 4