Дифференциал синуса. Подведение числителя под знак дифференциала


§ 5. Интегралы и их приложения

.


5.1. Основные определения и формулы. Функция F (x ) является первообразной функции f (x ), если на некотором множестве X выполняется равенство F (x )= f (x ). Совокупность всех первообразных для f (x ) называется неопределенным интегралом и обозначается . При этом, если F (x ) – какая-либо из первообразных f (x ), то
, константа C пробегает все множество действительных чисел. В таблице 2 приводятся основные формулы, в которых u = u (x ).

Таблица 2



1)

2)

3)

4)

5)

6)

7)

8)
,

9)


10)

11)

12)

13)

14)

15)

16)


Очевидно, что формулы 10), 12) и 14) являются частными случаями формул 11), 13) и 15) соответственно.

Если f (x ) – функция, непрерывная на отрезке [ a ; b ], то существует определенный интеграл от этой функции, который можно вычислить по формуле Ньютона-Лейбница :

, (5.1)

где F (x ) – какая-либо первообразная для f (x ). В отличие от неопределенного интеграла (представляющего собой множество функций) определенный интеграл – некоторое число.

И неопределенный, и определенный интегралы обладают свойством линейности (интеграл от суммы функций равен сумме интегралов, а постоянный множитель можно выносить за знак интеграла):

.

Пример 5.1 . Найти: а)
; б)
.

Решение. В задании а) подынтегральную функцию сначала упрощаем, разделив почленно каждое слагаемое из числителя на знаменатель, затем используем свойство линейности и «табличные» формулы 1)-3):

В задании б), помимо линейности и «табличных» формул 3), 9), 1), используем формулу Ньютона-Лейбница (5.1):

5.2. Внесение под знак дифференциала и замена переменной. Можно заметить, что иногда часть подынтегральной функции образует дифференциал некоторого выражения, что позволяет применять табличные формулы.

Пример 5.2 Найти: а)
; б)
.

Решение. В примере а) можно заметить, что
, а затем воспользоваться формулой 5) при u =lnx :

В случае б)
, а потому в силу 11) при
получим:

Замечание 1. При внесении под знак дифференциала полезно, наряду с использованными выше, учитывать следующие соотношения:

;
;
; ; ;

;
;
;
.

Замечание 2. Интегралы из примера 5.2. можно было найти и с помощью замены переменной. При этом в определенном интеграле следует менять и пределы интегрирования. Преобразования в 5.2.б) выглядели бы, например, так:

В общем случае выбор замены определяется видом подынтегральной функции. В некоторых случаях рекомендуются специальные замены. Например, если в выражении присутствует иррациональность вида
, то можно положить
или
.

Пример 5.3 Найти: а)
; б)
.

Решение. В случае а) имеем

(после замены применили табличную формулу 11 )).

При решении б) обязательно проводим замену пределов интегрирования.

5.3. Интегрирование по частям. В ряде случаев помогает «формула интегрирования по частям». Для неопределенного интеграла она имеет вид

, (5.2)

для определенного

, (5.3)

При этом важно учитывать следующее.

1) Если подынтегральная функция содержит произведение многочлена от x на функции
, то в качестве u выбирается многочлен, а оставшееся под знаком интеграла выражение относится к dv .

2) Если подынтегральная функция содержит обратные тригонометрические ( ) или логарифмические (
) функции, то в качестве u выбирается одна из них.

Пример 5.4. Найти: а)
; б)
.

Решение. В случае а) применяем формулу (5.2) и второе правило . Именно, полагаем
. Тогда
. Далее,
, а потому
. Следовательно, . В полученном интеграле выделим целую часть подынтегральной функции (так поступают, когда степень числителя не меньше степени знаменателя):

.

Окончательно решение выглядит так:

В примере б) используем (5.3) и первое из правил .

5.4. Интегрирование выражений, содержащих квадратный трехчлен . Основные идеи заключаются в выделении в квадратном трехчлене полного квадрата и в проведении линейной замены, позволяющей свести исходный интеграл к табличным вида 10 )-16 ).

Пример 5.5. Найти: а)
; б)
; в)
.

Решение. В случае а) действуем следующим образом:

поэтому (с учетом 13) )

При решении примера б) потребуются дополнительные преобразования, связанные с присутствием переменной в числителе подынтегральной функции. Выделив полный квадрат в знаменателе (), получим:

Для второго из интегралов в силу 11) (табл.2) имеем:
. В первом интеграле проведем внесение под знак дифференциала:

Таким образом, собирая все вместе и возвращаясь к переменной x , получаем:

В примере в) также предварительно выделяем полный квадрат:

5.5. Интегрирование простейших тригонометрических функций. При интегрировании выражений вида
(где m и n – натуральные числа) рекомендуется принимать во внимание следующие правила.

1) Если обе степени четные, то применяются формулы «понижения степени»: ; .

2) Предположим, что какое-либо из чисел m и n – нечетное. Например, n =2 k +1. В этом случае одну из степеней функции cosx «отщепляют», чтобы внести под знак дифференциала (т.к. ). В оставшемся выражении
с помощью основного тригонометрического тождества
выражают через
(). После преобразования подынтегрального выражения (и с учетом свойства линейности) получается алгебраическая сумма интегралов вида
, каждый из которых можно найти с помощью формулы 2) из таблицы 2:
.

Кроме того, в некоторых случаях полезны также формулы

Пример 5.6. Найти: а)
; б)
; в)
.

Решение. а) В подынтегральную функцию входит нечетная (5-я) степень sinx , поэтому действуем по второму правилу , учитывая, что .

В примере б) воспользуемся формулой (5.4 ), линейностью неопределенного интеграла, равенством
и табличной формулой 4):

В случае в) последовательно понижаем степень , учитываем линейность, возможность внесения константы под знак дифференциала и нужные табличные формулы:

5.6. Приложения определенного интеграла. Как известно, криволинейной трапецией, соответствующей неотрицательной и непрерывной на отрезке [ a ; b ] функции f (x ), называется область, ограниченная графиком функции y = f (x ), осью OX и двумя вертикальными прямыми x = a , x = b . Коротко это можно записать так: (см. рис.3 ). и, где

Метод подведения под знак дифференциала редко приводится в литературе, поэтому вначале покажем, почему он выгоден.

Нередко в подынтегральной функции можно увидеть 2 фрагмента, один из которых похож на производную другого. Например,

а) в интеграле числительx похож на производную от :
;

б) интеграл
можно представить как
, где
;

в) функция
в интеграле
– это
.

Подобные интегралы часто предлагают находить, заменив новой переменной функцию, производная которой обнаружена. Так, для указанных интегралов

а) если
, то
, тогда
и
, откуда

б) поскольку
, то
, тогда
и
, поэтому

Более подробно метод замены изложен в § 4.

Однако вычисление 3-го интеграла при помощи замены уже связано с трудностями. Пусть, заметив, что
, мы заменили
.

Тогда
и
. Выразить
черезt можно так:

(
, поэтому
). Подставим:

В результате громоздких действий практически всё сократилось и получился простой табличный интеграл. Возникает вопрос, нельзя ли было прийти к нему быстрее, если почти ни одно выражение не понадобилось.

Действительно, есть более короткое решение:

тогда, заменив
, сразу получаем интеграл

Таким же образом можно было найти интегралы

Здесь действия показаны очень подробно, и половину из них можно пропустить. Особенно коротким сделает решение следующая

Таблица основных дифференциалов

;

;

;

;

;

;

;

;

;

;

.

Примеры подведения под знак дифференциала

3) ;

ПД1. Найдите интегралы

1) а)
; б)
; в)
; г)
; д)
;

е)
; ж)
; з)
; и)
; к)
;

2) а)
; б)
; в)
; г)
; д)
;

е)
; ж)
; з)
; и)
; к)
;

3) а)
; б)
; в)
; г)
; д)

е)
; ж)
; з)
; и)
; к)
;

4) а)
; б)
; в)
; г)
; д)
;

е)
; ж)
; з)
; и)
; к)
;

5) а)
; б)
; в)
; г)
; д)
;

е)
; ж)
; з)
; и)
; к)
.

§ 3. Интегралы от функций, содержащих квадратичное выражение

При интегрировании функций, содержащих выражение
, поможет формула
. Например,

б)
;

Полученную скобку удобно обозначить новой буквой и перейти к интегралу по этой переменной (дифференциалы новой и старой переменных совпадут).

Коэффициент перед квадратом лучше выносить за скобку:

,

а затем, если возможно, и за знак интеграла. Так,

Цель замены – перейти к интегралу без линейного слагаемого
, поскольку интегралы, содержащие только
, находятся проще, и часто – по таблице. При этом важно помнить, что
,
, и т.п.

А именно (см. § 2),

где a – любое число, и число
. Кроме того, при

где
.

Замечание 1. После замены часто появляются интегралы
,
или
. Их можно найти так:

аналогично во 2-м и в 3-м случае.

Однако интегралы вида
достаточно сложны. Воспользуйтесь готовыми формулами

(проверьте дифференцированием, что это действительно так).

КИ1. Найдите при помощи равенства
и замены
:

Пример 1 (для краткости
обозначено как
.

При поиске
и
учли, что
и
соответственно, и применили основное правило табличного интегрирования.

КИ2. Найдите интегралы, разложив каждый на сумму интегралов, один из которых – табличный, а другой аналогичен найденным в задании КИ1:

Пример 2. Найдём интеграл
, разложив на сумму двух:

Ответ: (модуль не нужен, поскольку всегда
).

Пример 3. Возьмём таким же образом интеграл
:

Рациональнее всего найти интегралы так:

где учли, что
;

Тогда , где
.

Ответ: .

Замечание 2. В дальнейшем часто придётся разбивать интеграл на 2 или 3 интеграла, в каждом из которых появляется константа (
, и т.д.). Для краткости будем подразумевать (но не указывать) константы в каждом отдельном вспомогательном интеграле (или указывать, но не сопровождать номером), а записывать будем лишь общую константуC в ответе. При этом всегда C – некая линейная комбинация .

КИ3. Получив в знаменателе полный квадрат и сделав замену, найдите

Пример 4.
Заметив, что

заменяем
, тогда
и.

Подставим в интеграл:

Пример 5.

Поскольку , можно сделать замену
, при которой
и
. Подставим:

Пример 6.

Здесь , заменяем
, откуда
и
. Подставим:

где
. Разобьём интеграл на два:

.

Так же, как в предыдущих примерах,

а 2-й интеграл – табличный:
.

Итак, , где
. Тем самым

Пример 7.

Теперь , замена
, поэтому
и
.

Переходим к интегралу от новой переменной:

где
.

Найдём отдельно

в)
(табличный интеграл).

Умножим 2-й результат на 7, 3-й на 10, соберём подобные слагаемые и вернёмся к старой переменной:

КИ4. Найдите интегралы от иррациональных функций:

Пример 8. Найдём
. Похожий интеграл без корня уже найден выше (пример 6), и достаточно на соответствующем шаге добавить корень:


,

где
. Разбиваем

и находим

б)
.

Таким образом, , где
.

Ответ: .

Пример 9.
Полный квадрат удобно получить так:

где
. Тогда

.

Заменим
. При этом
и
:

Действуем так же, как в примере 8:

Ответ: .

Замечание 3. Нельзя из-под корня выносить знак «–» или любой отрицательный общий множитель:
;, и т.д. В примере 9 показан единственно возможный правильный способ действий.

Пример 10. Посмотрим, что изменится, если в примере 9 поставить квадрат: найдём
. Теперь после тех же замен окажется, что

Как обычно,

и 2-й и 3-й интегралы находятся так же, как в примере 9:

;

.

Согласно указаниям на стр. 19, 1-й интеграл можно преобразовать так:

где снова
, а

Новый интеграл находят или тригонометрической подстановкой
, или повторным интегрированием по частям, взяв
и
. Воспользуемся готовой формулой
(стр. 19):

Умножим все интегралы на соответствующие им коэффициенты и соберём вместе:

в ответе приведём подобные слагаемые.

При решении некоторых типов интегралов выполняется преобразование, как говорят внесение под знак дифференциала . Это делается, чтобы получить интеграл табличного вида и легко его взять. Для этого применяется формула: $$ f"(x) dx = d(f(x)) $$

Хочется отметить такой важный нюанс, над которым задумываются студенты. Чем же отличается этот метод от способа замены переменной (подстановки)? Это то же самое, только в записях выглядит по-разному. И то и другое верно.

Формула

Если в подынтегральной функции прослеживается произведение двух функций, одна из которых является дифференциалом другой, тогда внесите под знак дифференциала нужную функцию. Выглядит это следующим образом:

$$ \int f(\varphi(x)) \varphi"(x) dx = \int f(\varphi(x)) d(\varphi(x))=\int f(u) du $$ $$ u=\varphi(x) $$

Подведение основных функций

Для того, чтобы успешно использовать такой способ решения, необходимо знать таблицы производных и интегрирования. Из них вытекают следующие формулы:

$ dx = d(x+c), c=const $ $ -\sin x dx=d(\cos x) $
$ dx=\frac{1}{a} d(ax) $ $ \cos x dx = d(\sin x) $
$ xdx=\frac{1}{2} d(x^2+a) $ $ \frac{dx}{x} = d(\ln x) $
$ -\frac{dx}{x^2}= d(\frac{1}{x}) $ $ \frac{dx}{\cos^2 x} = d(tg x) $
$$ \int f(kx+b)dx = \frac{1}{k} \int f(kx+b)d(kx+b) = \frac{1}{k} F(kx+b) + C $$

Примеры решений

Пример 1
Найти интеграл $$ \int \sin x \cos x dx $$
Решение

В данном примере можно занести под знак дифференциала любую из предложенных функций, хоть синус, хоть косинус. Для того, чтобы не путаться со сменой знаков удобнее занести $ \соs x $. Используя формулы имеем:

$$ \int \sin x \cos xdx = \int \sin x d(\sin x) = \frac{1}{2} \sin^2 x + C $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \int \sin x \cos x dx = \frac{1}{2} \sin^2 x + C $$

Итак, в статье разобрали как решаются некоторые виды интегралов методом занесения под знак дифференциала. Вспомнили дифференциалы часто распространенных элементарных функций. Если не получается или не хватает времени решить задачи контрольных работ самостоятельно, то мы окажем Вам свою помощь в кратчайшие сроки. Достаточно заполнить форму заказа и мы свяжемся с Вами.

Подведение числителя под знак дифференциала

Это заключительная часть урока, тем не менее, интегралы такого типа встречаются довольно часто! Если накопилась усталость, может, оно, лучше завтра почитать? ;)

Интегралы, которые мы будем рассматривать, похожи на интегралы предыдущего параграфа, они имеют вид: или (коэффициенты , и не равны нулю).

То есть, в числителе у нас появилась линейная функция. Как решать такие интегралы?

Пример 14

Пожалуйста, будьте внимательны, сейчас мы рассмотрим типовой алгоритм.

1) Когда дан интеграл вида или (коэффициенты , и не равны нулю), то первое, что мы делаем, это… берём черновик. Дело в том, что сейчас нам предстоит выполнить небольшой подбор.

2) Заключаем выражение, которое находится в знаменателе (неважно – под корнем или без корня) под знак дифференциала, в данном примере:

3) Раскрываем дифференциал:

Смотрим на числитель нашего интеграла:

Немного разные вещи получились…. А теперь нам нужно подобрать множитель для дифференциала , такой, чтобы при его раскрытии получилось, как минимум, . В данном случае подходящим множителем является:

4) Для самоконтроля снова раскрываем наш дифференциал:

Снова смотрим на числитель нашего интеграла: .
Уже ближе, но у нас не то слагаемое:

5) К нашему дифференциалу :
– приписываем слагаемое, которое у нас изначально было в подынтегральной функции:

– Вычитаем (в данном случае – вычитаем, иногда нужно, наоборот, прибавлять) наше «не то» слагаемое:
– Обе константы берем в скобки и приписываем справа значок дифференциала:

– Вычитаем (в некоторых примерах нужно сложить) константы:

6) Выполняем проверку:

У нас получился в точности числитель подынтегральной функции, значит, подбор выполнен успешно.

Чистовое оформление решения выглядит примерно так:

(1) Выполняем на черновике подбор числителя согласно вышерассмотренному алгоритму. Обязательно выполняем проверку, правильно ли выполнен подбор. При определенном опыте решения интегралов подбор нетрудно выполнить и в уме.

(2) Почленно делим числитель на знаменатель. В практическом решении задач данный шаг можно опускать

(3) Используя свойство линейности, разделяем интегралы. Все константы целесообразно вынести за знаки интегралов.

(4) Первый интеграл фактически является табличным, используем формулу (константу припишем позже, когда возьмем второй интеграл). Во втором интеграле выделяем полный квадрат (такой тип интегралов мы рассмотрели в предыдущем параграфе).

Остальное дело техники.

И, на закуску, пара примеров для самостоятельного решения – один проще, другой сложнее.

Пример 15

Найти неопределенный интеграл:

Пример 16

Найти неопределенный интеграл:

Для решения данных примеров будет полезен частный случай интегрирования степенной функции, которого нет в моей таблице:

Как видите, интегрирование дробей - дело кропотливое, часто приходится применять искусственные приемы и подборы. Но что делать…

Существуют и другие виды дробей, так называемые дробно-рациональные функции, они решаются методом неопределенных коэффициентов. Но это уже тема урока Интегрирование дробно рациональных функций .