Этапы построения математической модели. Математическое моделирование и процесс создания математической модели

В предложенной вашему вниманию статье мы предлагаем примеры математических моделей. Кроме этого, мы обратим внимание на этапы создания моделей и разберем некоторые задачи, связанные с математическим моделированием.

Еще один наш вопрос - это математические модели в экономике, примеры, определение которых мы рассмотрим немного позже. Начать наш разговор мы предлагаем с самого понятия «модель», кратко рассмотрим их классификацию и перейдем к основным нашим вопросам.

Понятие «модель»

Мы часто слышим слово «модель». Что же это такое? Данный термин имеет множество определений, вот только три из них:

  • специфический объект, который создается для получения и хранения информации, отражающий некоторые свойства или характеристики и так далее оригинала данного объекта (этот специфический объект может выражаться в разной форме: мысленный, описание при помощи знаков и так далее);
  • еще под моделью подразумевается отображение какой-либо конкретной ситуации, жизненной или управленческой;
  • моделью может служить уменьшенная копия какого-либо объекта (они создаются для более подробного изучения и анализа, так как модель отражает структуру и взаимосвязи).

Исходя из всего, что было сказано ранее, можно сделать небольшой вывод: модель позволяет подробно изучить сложную систему или объект.

Все модели можно классифицировать по ряду признаков:

  • по области использования (учебные, опытные, научно-технические, игровые, имитационные);
  • по динамике (статические и динамические);
  • по отрасли знаний (физические, химические, географические, исторические, социологические, экономические, математические);
  • по способу представления (материальные и информационные).

Информационные модели, в свою очередь, делятся на знаковые и вербальные. А знаковые - на компьютерные и некомпьютерные. Теперь перейдем к подробному рассмотрению примеров математической модели.

Математическая модель

Как не трудно догадаться, математическая модель отражает какие-либо черты объекта или явления при помощи специальных математических символов. Математика и нужна для того, чтобы моделировать закономерности окружающего мира на своем специфическом языке.

Метод математического моделирования зародился достаточно давно, тысячи лет назад, вместе с появлением данной науки. Однако толчок для развития данного способа моделирования дало появление ЭВМ (электронно-вычислительных машин).

Теперь перейдем к классификации. Ее так же можно провести по некоторым признакам. Они представлены в таблице ниже.

Мы предлагаем остановиться и подробнее рассмотреть последнюю классификацию, так как она отражает общие закономерности моделирования и цели создаваемых моделей.

Дескриптивные модели

В данной главе мы предлагаем остановиться подробнее на дескриптивных математических моделях. Для того чтобы было все предельно понятно, будет приведен пример.

Начнем с того, что этот вид можно назвать описательным. Это связано с тем, что мы просто делаем расчеты и прогнозы, но никак не можем повлиять на исход события.

Ярким примером описательной математической модели является вычисление траектории полета, скорости, расстояния от Земли кометы, которая вторглась в просторы нашей Солнечной системы. Эта модель является описательной, так как все полученные результаты могут только предупредить нас о какой-либо опасности. Повлиять на исход события, увы, мы не можем. Однако, основываясь на полученных расчетах, можно предпринять какие-либо меры для сохранения жизни на Земле.

Оптимизационные модели

Сейчас мы немного поговорим об экономико-математических моделях, примерами которых могут служить разные сложившиеся ситуации. В данном случае речь идет о моделях, которые помогают найти верный ответ в определенных условиях. Они обязательно имеют некие параметры. Чтобы стало предельно понятно, рассмотрим пример из аграрной части.

У нас есть зернохранилище, но зерно очень быстро портится. В этом случае нам необходимо правильно подобрать температурный режим и оптимизировать процесс хранения.

Таким образом, мы можем дать определение понятию «оптимизационная модель». В математическом смысле это система уравнений (как линейных, так и нет), решение которой помогает найти оптимальное решение в конкретной экономической ситуации. Пример математической модели (оптимизационной) мы рассмотрели, но хочется еще добавить: данный вид относится к классу экстремальных задач, они помогают описать функционирование экономической системы.

Отметим еще один нюанс: модели могут носить разный характер (см. таблицу ниже).

Многокритериальные модели

Сейчас предлагаем вам поговорить немного о математической модели многокритериальной оптимизации. До этого мы привели пример математической модели оптимизации процесса по какому-либо одному критерию, но что делать, если их много?

Ярким примером многокритериальной задачи служит организация правильного, полезного и одновременно экономного питания больших групп людей. С такими задачами часто встречаются в армии, школьных столовых, летних лагерях, больницах и так далее.

Какие критерии нам даны в данной задаче?

  1. Питание должно быть полезным.
  2. Расходы на пищу должны быть минимальными.

Как видите, эти цели совсем не совпадают. Значит, при решении задачи необходимо искать оптимальное решение, баланс между двумя критериями.

Игровые модели

Говоря об игровых моделях, необходимо понимать понятие «теория игр». Если говорить просто, то данные модели отражают математические модели настоящих конфликтов. Только стоит понимать, что, в отличие от реального конфликта, игровая математическая модель имеет свои определенные правила.

Сейчас будет приведен минимум информации из теории игр, которая поможет вам понять, что такое игровая модель. И так, в модели обязательно присутствуют стороны (две или более), которых принято называть игроками.

Все модели имеют некие характеристики.

Игровая модель может быть парной или множественной. Если у нас есть два субъекта, то конфликт парный, если больше - множественный. Также можно выделить антагонистическую игру, ее еще называют игрой с нулевой суммой. Это модель, в которой выигрыш одного из участников равняется проигрышу другого.

Имитационные модели

В данном разделе мы обратим внимание на имитационные математические модели. Примерами задач могут служить:

  • модель динамики численности микроорганизмов;
  • модель движения молекул, и так далее.

В данном случае мы говорим о моделях, которые максимально приближены к реальным процессам. По большому счету, они имитируют какое-либо проявление в природе. В первом случае, например, мы можем моделировать динамику численности муравьев в одной колонии. При этом можно наблюдать за судьбой каждой отдельной особи. В данном случае математическое описание используют редко, чаще присутствуют письменные условия:

  • через пять дней женская особь откладывает яйца;
  • через двадцать дней муравей погибает, и так далее.

Таким образом, используются для описания большой системы. Математическое заключение - это обработка полученных статистических данных.

Требования

Очень важно знать, что к данному виду модели предъявляют некоторые требования, среди которых - приведенные в таблице ниже.

Универсальность

Это свойство позволяет использовать одну и ту же модель при описании однотипных групп объектов. Важно отметить, что универсальные математические модели совершенно не зависят от физической природы исследуемого объекта

Адекватность

Здесь важно понимать, что данное свойство позволяет максимально правильно воспроизводить реальные процессы. В задачах эксплуатации очень важно данное свойство математического моделирования. Примером модели может служить процесс оптимизации использования газовой системы. В данном случае сопоставляются расчетные и фактические показатели, в результате проверяется правильность составленной модели

Точность

Данное требование подразумевает совпадение значений, которые мы получаем при расчете математической модели и входных параметров нашего реального объекта

Экономичность

Требование экономичности, предъявляемое к любой математической модели, характеризуется затратами на реализацию. Если работа с моделью осуществляется ручным способом, то необходимо рассчитать, сколько времени уйдет на решение одной задачи при помощи данной математической модели. Если речь идет об автоматизированном проектировании, то рассчитываются показатели затрат времени и памяти компьютера

Этапы моделирования

Всего в математическом моделировании принято выделять четыре этапа.

  1. Формулировка законов, связывающих части модели.
  2. Исследование математических задач.
  3. Выяснение совпадений практических и теоретических результатов.
  4. Анализ и модернизация модели.

Экономико-математическая модель

В этом разделе кратко осветим вопрос Примерами задач могут служить:

  • формирование производственной программы выпуска мясной продукции, обеспечивающей максимальную прибыль производства;
  • максимизация прибыли организации путем расчета оптимального количества выпуска столов и стульев на мебельной фабрике, и так далее.

Экономико-математическая модель отображает экономическую абстракцию, которая выражена при помощи математических терминов и знаков.

Компьютерная математическая модель

Примерами компьютерной математической модели являются:

  • задачи гидравлики при помощи блок-схем, диаграмм, таблиц, и так далее;
  • задачи на механику твердого тела, и так далее.

Компьютерная модель - это образ объекта или системы, представленный в виде:

  • таблицы;
  • блок-схемы;
  • диаграммы;
  • графика, и так далее.

При этом данная модель отражает структуру и взаимосвязи системы.

Построение экономико-математической модели

Мы уже ранее сказали о том, что такое экономико-математическая модель. Пример решения задачи будет рассмотрен прямо сейчас. Нам необходимо произвести анализ производственной программы для выявления резерва повышения прибыли при сдвиге в ассортименте.

Полностью рассматривать задачу мы не будем, а только построим экономико-математическую модель. Критерий нашей задачи - максимизация прибыли. Тогда функция имеет вид: Л=р1*х1+р2*х2…, стремящееся к максимуму. В данной модели р - это прибыль за единицу, х - это количество производимых единиц. Далее, основываясь на построенной модели, необходимо произвести расчеты и подвести итог.

Пример построения простой математической модели

Задача. Рыбак вернулся со следующим уловом:

  • 8 рыб - обитатели северных морей;
  • 20% улова - обитатели южных морей;
  • из местной реки не обнаружилось ни одной рыбы.

Сколько рыб он купил в магазине?

Итак, пример построения математической модели данной задачи выглядит следующим образом. Обозначаем общее количество рыб за х. Следуя условию, 0,2х - это количество рыб, обитающих в южных широтах. Теперь объединяем всю имеющуюся информацию и получаем математическую модель задачи: х=0,2х+8. Решаем уравнение и получаем ответ на главный вопрос: 10 рыб он купил в магазине.

Этапы создания математических моделей

В общем случае под математической моделью объекта (системы) понимается любое математическое описание, отражающее с требуемой точностью поведения объекта (системы) в реальных условиях. Математическая модель отражает записанную на языке математики совокупность знаний, представлений и гипотез исследователя о моделируемом объекте. Поскольку эти знания никогда не бывают абсолютными, то модель лишь приближенно учитывает поведение реального объекта.

Математическая модель системы – это совокупность соотношений (формул, неравенств, уравнений, логических соотношений), определяющих характеристики состояний системы в зависимости от ее внутренних параметров, начальных условий, входных сигналов, случайных факторов и времени.

Процесс создания математической модели можно разбить на этапы отраженные на рис. 3.2.

Рис. 3.2 Этапы создания математической модели

1. Постановка проблемы и ее качественный анализ. Этот этап включает:

· выделение важнейших черт и свойств моделируемого объекта и абстрагирование от второстепенных;

· изучение структуры объекта и основных зависимостей, связывающих его элементы;

· формирование гипотез (хотя бы предварительных), объясняющих поведение и развитие объекта.

2. Построение математической модели. Это – этап формализации проблемы, выражения ее в виде конкретных математических зависимостей и отношений (функций, уравнений, неравенств и т.д.). Обычно сначала определяется основная конструкция (тип) математической модели, а затем уточняются детали этой конструкции (конкретный перечень переменных и параметров, форма связей). Таким образом, построение модели подразделяется в свою очередь на несколько стадий.

Неправильно полагать, что чем больше факторов (т.е. входных и выходных переменных состояния) учитывает модель, тем она лучше «работает» и дает лучшие результаты. То же можно сказать о таких характеристиках сложности модели, как используемые формы математических зависимостей (линейные и нелинейные), учет факторов случайности и неопределенности и т.д. Излишняя сложность и громоздкость модели затрудняют процесс исследования. Нужно не только учитывать реальные возможности информационного и математического обеспечения, но и сопоставлять затраты на моделирование с получаемым эффектом (при возрастании сложности модели нередко рост затрат на моделирование может превысить рост эффекта от внедрения моделей в задачи управления).

3. Математический анализ модели. Целью этого этапа является выяснение общих свойств модели. Здесь применяются чисто математические приемы исследования. Наиболее важный момент – доказательство существования решений в сформулированной модели (теорема существования). Если удается доказать, что математическая задача не имеет решения, то необходимость в последующей работе по первоначальному варианту модели отпадает; следует скорректировать либо постановку задачи, либо способы ее математической формализации. При аналитическом исследовании модели выясняются такие вопросы, как, например, единственно ли решение, какие переменные могут входить в решение, каковы будут соотношения между ними, в каких пределах и в зависимости от каких исходных условий они изменяются, каковы тенденции их изменений и т.д.

4. Подготовка исходной информации. Моделирование предъявляет жесткие требования к системе информации. В процессе подготовки информации широко используются методы теории вероятностей, теоретической и математической статистики. При системном математическом моделировании исходная информация, используемая в одних моделях, является результатом функционирования других моделей.

5. Численное решение. Этот этап включает разработку алгоритмов для численного решения задачи, составления программ на ЭВМ и непосредственное проведение расчетов. Здесь приобретают актуальности различные методы обработки данных, решения разнообразных уравнений, вычисления интегралов и т.п. Нередко расчеты по математической модели носят многовариантный, имитационный характер. Благодаря высокому быстродействию современных ЭВМ удается проводить многочисленные «модельные» эксперименты, изучая «поведение» модели при различных изменениях некоторых условий.

6. Анализ численных результатов и их применение. На этом заключительном этапе цикла встает вопрос о правильности и полноте результатов моделирования, об адекватности модели, о степени ее практической применимости. Математические методы проверки результатов могут выявлять некорректности построения модели и тем самым сужать класс потенциально правильных моделей.

Неформальный анализ теоретических выводов и численных результатов, получаемых посредством модели, сопоставление их с имеющимися знаниями и фактами действительности также позволяют обнаруживать недостатки исходной постановки задачи, сконструированной математической модели, ее информационного и математического обеспечения.

Поскольку современные математические задачи могут быть сложны по своей структуре, иметь большую размерность, то часто случается, что известные алгоритмы и программы для ЭВМ не позволяют решить задачу в первоначальном виде. Если невозможно в короткий срок разработать новые алгоритмы и программы, исходную постановку задачи и модель упрощают:

· снимают и объединяют условия, уменьшают число учитываемых факторов.

· нелинейные соотношения заменяют линейными и т.д.

Недостатки, которые не удается исправить на промежуточных этапах моделирования, устраняются в последующих циклах. Но результаты каждого цикла имеют и вполне самостоятельное значение. Начав исследование с построения простой модели, можно быстро получить полезные результаты, а затем перейти к созданию более совершенной модели, пополняемой новыми условиями, включающей уточненные математические зависимости.

Если цель моделирования ясна, то возникает следующая задача – задача построения математической модели. На этом этапе исходные предположения переводятся на четкий однозначный язык количественных отношений и устраняются нечеткие, неоднозначные высказывания или определения, которые заменяются, быть может, и приближенными, но четкими, не допускающими различных толкований высказываниями.

Построение математической модели выполняется в следующей последовательности :

1) выбор вида моделей и подмоделей;

2) проектирование структуры и состава моделей (подмоделей);

3) разработка отдельных подмоделей;

4) сборка модели в целом;

5) идентификация параметров моделей и подготовка исходных данных;

6) проверка достоверности модели системы.

На первом и втором подэтапах выполняется формализация описания системы: устанавливаются ее структура и существенные зависимости между элементами. Основная задача этих двух подэтапов – получение математического описания процессов в моделируемой системе и её структурной схемы, которая должна быть идентична структурной схеме промышленной системы.

При большой сложности системы первоначально производится разбиение процесса функционирования системы на отдельные достаточно автономные подпроцессы. Таким образом, модель функционально подразделяется на подмодели, каждая из которых в свою очередь может быть разбита на еще более мелкие элементы.

Для правильно построенной модели характерным является то, что она выявляет лишь те закономерности, которые нужны исследователю, и не рассматривает свойства системы, не существенные для данного исследования. Следует отметить, что оригинал и модель должны быть одновременно сходны по одним признакам и различны по другим, что позволяет выделить наиболее важные изучаемые свойства.

Разработка отдельных подмоделей состоит в составлении их математического описания: в установлении связей между параметрами процесса и выявлении их граничных и начальных условий, а также в формализации процесса в виде системы математических соотношений, характеризующих изучаемый объект (технологический процесс). При составлении математического описания используется либо теоретический, либо статистический подход (см. п.2.2.4).

При выполнении этого этапа особенно важно выбрать математическую модель минимально необходимой сложности. Если модель сложной системы образуется простым объединением полных моделей подсистем нижних уровней, то может возникнуть диспропорция между требуемой точностью и фактической сложностью модели. Эта диспропорция может быть устранена загрублением моделей низшего уровня (после детального автономного исследования их). Возможными вариантами такого загрубления являются:

Сведение детальных описаний многокомпонентного процесса к главной составляющей с поправочными коэффициентами;

Укрупнение состояний и фаз процессов;

Аппроксимация выявленных зависимостей;

Усреднение характеристик процессов по их аргументам;

Замораживание медленно меняющихся параметров;

Снижение требований к точности итераций;

Пренебрежение взаимной зависимостью переменных;

Для выведенных математических соотношений на следующем подэтапе выполняется идентификация их параметров. В настоящее время широко применяют различные способы оценки параметров: по методу наименьших квадратов, по методу максимального правдоподобия, байесовские, марковские оценки.

Подготовка исходных данных состоит в сборе и обработке результатов наблюдений за изучаемой системой. Обработка в типичном случае заключается в построении функций распределения соответствующих случайных величин или вычислении числовых характеристик распределений. Эти исходные данные, полученные в результате проведения исследования на реальной системе, будут использоваться в качестве параметров модели при реализации ее на ЭВМ.

Проверка достоверности модели системы является первой из проверок, выполняемых на этапе реализации модели. Так как модель представляет собой приближенное описание процесса функционирования реальной системы, то до тех пор, пока не доказана достоверность модели, нельзя утверждать, что с ее помощью будут получены результаты, совпадающие с теми, которые могли бы быть получены при проведении натурного эксперимента с реальной системой. Поэтому определение достоверности модели устанавливает степень доверия к результатам, полученным методом моделирования. Проверка модели на рассматриваемом подэтапе должна дать ответ на вопрос, насколько логическая схема модели системы и используемые математические соотношения отражают замысел модели, сформированный на первом этапе. При этом проверяются возможность решения поставленной задачи, точность отражения замысла в логической схеме, полнота логической схемы модели, правильность используемых математических соотношений.

Только после того, как разработчик убеждается путем соответствующей проверки в правильности всех этих положений, можно считать, что разработанная логическая схема модели системы пригодна для дальнейшей работы по реализации модели на ЭВМ.

Всего, найдите в учебниках или справочниках формулы, характеризующие его закономерности. Заранее подставьте во те из параметров, которые являются константами. Теперь найдите неизвестную информацию о ходе процесса в той или иной его стадии, подставив в формулу известные данные о его ходе в данной стадии.
Например, необходимо моделировать изменение мощности, выделяющейся на резисторе, в зависимости от напряжения на ней. В этом случае, придется воспользоваться известным сочетанием формул: I=U/R, P=UI

При необходимости, составьте график или графиков обо всем ходе процесса. Для этого разбейте его ход на некоторое количество точек (чем их больше, тем точнее результат, но вычисления). Осуществите вычисления для каждой из точек. Особенно трудоемкими будет расчет в том случае, если независимо друг от друга меняется несколько параметров, поскольку осуществить его необходимо для всех их сочетаний.

Если объем расчетов значителен, воспользуйтесь вычислительной техникой. Используйте тот язык программирования, которым вы хорошо владеете. В частности, чтобы рассчитать изменение мощности на нагрузке сопротивлением в 100 Ом при изменении напряжения от 1000 до 10000 В с шагом в 1000 В (в реальности построить такую нагрузку затруднительно, поскольку мощность на ней достигнет мегаватта), можно такую программу на Бейсик:
10 R=100

20 FOR U=1000 TO 10000 STEP 1000

При желании, воспользуйтесь для моделирования одного процесса другим, подчиняющимся тем же закономерностям. Например, маятник можно заменить электрическим колебательным контуром, или наоборот. Иногда имеется возможность воспользоваться в качестве моделирующего тем же явлением, что и моделируемое, но в уменьшенном или увеличенном масштабе. Например, если взять уже упомянутое сопротивление в 100 Ом, но подавать на него напряжения в диапазоне не от 1000 до 10000, а от 1 до 10 В, то мощность, выделяемая на нем, будет изменяться не от 10000 до 1000000 Вт, а от 0,01 до 1 Вт. Такая уместится на столе, а выделяемую мощность можно будет измерить обычным калориметром. После этого результат измерения будет необходимо умножить на 1000000.
Учитывайте, что масштабированию поддаются не все явления. Например, известно, что если все детали теплового двигателя уменьшить или увеличить в одинаковое число раз, то есть, пропорционально, то велика вероятность, что он не заработает. Поэтому при изготовлении двигателей разных размеров увеличения или уменьшения для каждой из его деталей берут различные.

Для построения математической модели необходимо:

  1. тщательно проанализировать реальный объект или процесс;
  2. выделить его наиболее существенные черты и свойства;
  3. определить переменные, т.е. параметры, значения которых влияют на основные черты и свойства объекта;
  4. описать зависимость основных свойств объекта, процесса или системы от значения переменных с помощью логико-математических соотношений (уравнения, равенства, неравенства, логико-математические конструкций);
  5. выделить внутренние связи объекта, процесса или системы с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций;
  6. определить внешние связи и описать их с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций.

Математическое моделирование, кроме исследования объекта, процесса или системы и составления их математического описания, также включает:

  1. построение алгоритма, моделирующего поведение объекта, процесса или системы;
  2. проверка адекватности модели и объекта, процесса или системы на основе вычислительного и натурного эксперимента;
  3. корректировка модели;
  4. использование модели.

Математическое описание исследуемых процессов и систем зависит от:

  1. природы реального процесса или системы и составляется на основе законов физики, химии, механики, термодинамики, гидродинамики, электротехники, теории пластичности, теории упругости и т.д.
  2. требуемой достоверности и точности изучения и исследования реальных процессов и систем.

Построение математической модели обычно начинается с построения и анализа простейшей, наиболее грубой математической модели рассматриваемого объекта, процесса или системы. В дальнейшем, в случае необходимости, модель уточняется, делается ее соответствие объекту более полным.

Возьмем простой пример. Нужно определить площадь поверхности письменного стола. Обычно для этого измеряют его длину и ширину, а затем перемножают полученные числа. Такая элементарная процедура фактически обозначает следующее: реальный объект (поверхность стола) заменяется абстрактной математической моделью – прямоугольником. Прямоугольнику приписываются размеры, полученные в результате измерения длины и ширины поверхности стола, и площадь такого прямоугольника приближенно принимается за искомую площадь стола. Однако модель прямоугольника для письменного стола – это простейшая, наиболее грубая модель. При более серьезном подходе к задаче прежде, чем воспользоваться для определения площади стола моделью прямоугольника, эту модель нужно проверить. Проверки можно осуществить следующим образом: измерить длины противоположных сторон стола, а также длины его диагоналей и сравнить их между собой. Если, с требуемой степенью точности, длины противоположных сторон и длины диагоналей попарно равны между собой, то поверхность стола действительно можно рассматривать как прямоугольник. В противном случае модель прямоугольника придется отвергнуть и заменить моделью четырехугольника общего вида. При более высоком требовании к точности может возникнуть необходимость пойти в уточнении модели еще дальше, например, учесть закругления углов стола.

С помощью этого простого примера было показано, что математическая модель не определяется однозначно исследуемым объектом, процессом или системой .

ИЛИ (надо завтра уточнить)

Пути решения мат. Модели:

1, Построение м. на основе законов природы (аналитич. Метод)

2. Формальный путь с помощью статистическ. Обработки и результатов измерения (статист. Подход)

3. Построение м. на основе модели элементов (сложных систем)

1, Аналитический – использование при достаточном изуч. Общей закономерности изв. Моделей.

2. эксперимент. При отсутствии информ.

3. Имитационная м. – исследует св-ва объекта сст. В целом.


Пример построения математической модели.

Математи́ческая моде́ль - это математическое представление реальности.

Математическое моделирование - это процесс построения и изучения математических моделей.

Все естественные и общественные науки, использующие математический аппарат, по сути занимаются математическим моделированием: заменяют объект его математической моделью и затем изучают последнюю. Связь математической модели с реальностью осуществляется с помощью цепочки гипотез, идеализаций и упрощений. С помощью математических методов описывается, как правило, идеальный объект, построенный на этапе содержательного моделирования.

Зачем нужны модели?

Очень часто при исследовании какого либо объекта возникают трудности. Сам оригинал порой бывает недоступен, или его использование не целесообразно, или привлечение оригинала требует больших затрат. Все эти проблемы можно решить с помощью моделирования. Модель в определенном смысле может заменить исследуемый объект.

Простейшие примеры моделей

§ Фотографию можно назвать моделью человека. Для того чтобы узнать человека, достаточно видеть его фотографию.

§ Архитектор создал макет нового жилого района. Он может движением руки переместить высотное здание из одной части в другую. В реальности это было бы не возможно.

Типы моделей

Модели можно разделить на материальные" и идеальные . выше приведенные примеры являются материальными моделями. Идеальные модели часто имеют знаковую форму. Реальные понятия заменяются при этом некоторыми знаками, котое можно легко зафиксировать на бумаге, в памяти компьютера и т.д.

Математическое моделирование

Математическое моделирование относится к классу знакового моделирования. При этом модели могу создаваться из любых математических объектов: чисел, функций, уравнений и т.д.

Построение математической модели

§ Можно отметить несколько этапов построения математической модели:

1. Осмысление задачи, выделение наиболе важных для нас качеств, свойств, велечин и параметров.

2. Введение обозначений.

3. Составление системы ограничений, которым должны удовлетворять введенные величины.

4. Формулировка и запись условий,которым должно удовлетворять искомое оптимальное решение.

Процесс моделирования не заканчивается составлением модели,а только имначинается. Составив модель, выбирают метод нахождения ответа, решают задачу. после того как ответ найден сопостовляют его с реальностью. И возможно что ответ не удовлетворяет, в этом случае модель видоизменяют или даже выбирают совсем другую модель.

Пример математической модели

Задача

Производственное объединение, в которое входят две мебельные фабрики, нуждается в обновлении парка станков. Причем первой мебельной фабрике нужно заменить три станка, а второй-семь. Заказы можно разместить на двух станкостроительных заводах. Первый завод может изготовить не более 6 станков, а второй завод примет заказ если их будет не мение трех. Требуется определить как размещать заказы.