Генетика как наука: история развития, основные понятия, значение в жизни человека. История развития генетики. Г.Мендель – основоположник классической генетики. Гибридологический анализ – фундаментальный метод генетики, его основные положения

Г. Менделю принадлежит открытие явлений дискретной наследственности и ее законов. Это открытие заложило основы генетики - науки о наследственности и изменчивости организмов. Установление принципа дискретной наследственности и ее законов наложило печать на все развитие биологии XX в.

Кроме основного открытия, в работе Г. Менделя и в его письмах к К. Негели содержался целый ряд других важных элементов, которые заложили основу многих отдельных направлений в генетике.

Г. Мендель внес в генетику количественный метод и принципы теории вероятности. Он показал, что биологические законы общего значения допускают функциональные выражения, они могут быть выражены математически. Язык алгебры, который раскрыл перед Менделем законы расщепления в их обобщенной форме, явился первым шагом в современном математическом анализе проблем наследственности.

Функциональное выражение законов расщепления позволило использовать их для предсказаний хода расщепления, которые оправдываются с поразительной точностью. Мендель в своей работе сам сделал несколько таких предсказаний, часть из них была получена им самим, а часть была доказана уже в XX в.

Исходя из поведения гибридов при их скрещивании, Мендель предсказал, что их зародышевые клетки получат в половине случаев один ген и в другой половине - другой ген из пары аллелей. Его эксперимент с обратным скрещиванием точно доказал правоту предсказания. Затем в XX в. изучение мейоза раскрыло, что этому явлению есть причинное объяснение на основе поведения гомологов в паре хромосом. Г. Мендель показал, что число генотипов при сложном расщеплении во втором поколении составляет 3 n . Это предсказание было положено в основу громадного количества опытов в XX в., и какой бы сложности случай ни был изучен, предсказание оправдывалось с поразительной точностью. Эта реализация предсказаний была следствием всеобщности принципов, открытых Менделем на горохе. Эта общность вытекает из единства поведения хромосом при образовании половых клеток и из осуществления всех вероятностей встреч разных классов гамет друг с другом, которые всегда имеют место при наличии достаточно большого числа случаев.

Работа Менделя не была признана. Современникам казалось, что эта работа представляет собой смесь элементарной математики и малоинтересных частных фактов. Хотя работа Менделя и была разослана в 120 научных учреждений и ряду крупных ученых, в том числе и К. Негели, с которым Мендель состоял в оживленной переписке, ссылки на эту работу в течение 35 лет (1865-1900) появились только в трех исследованиях. В 1869 г. о ней кратко упоминают Гофманн и в 1881 г. Фоке. Наиболее интересное изложение работы Менделя сделано И. Ф. Шмальгаузеном в 1874 г. в его магистерской диссертации.

В 1900 г. гениальная работа Г. Менделя становится известной миру. Наступает эпоха триумфального шествия менделевских законов, раскрытых как один из самых фундаментальных законов органического мира.

Г. Мендель предвидел, что его законы будут иметь всеобщее значение. Он начал создавать линии мышей, чтобы изучить у них действие принципов дискретной наследственности. Однако часть доказательств единства законов наследственности растений и животных выпала на долю В. Бэтсона.

Вполне понятно, что в эпоху увлечения менделизмом, когда на бесчисленных примерах было показано, что предсказания из законов Менделя с поразительной точностью осуществляются на любых растениях, животных и на многих микроорганизмах, самое пристальное внимание привлекли факты, не укладывающиеся в закон независимого расщепления. Эти факты послужили источником учения о хромосомах как о носителях блоков генов в виде групп сцепления. В 1910-4930 гг. Т. X . Морган и другие исследователи создали учение о внутриклеточных материальных основах наследственности - хромосомную теорию.

Т. Мендель обосновал идею о наследственных факторах и разработал для них знаковую модель на базе использования идей математической статистики. В результате центральный пункт современной молекулярной генетики - проблема гена берет свои прямые истоки из открытия Менделя. Мендель строит весь свой анализ на базе введенного им метода генетического анализа. Он кропотливо во всех опытах изучает, в какой мере генотип каждого класса растений отвечает гипотезе. Апогей этого метода достигается в экспериментах по скрещиванию гибридов с рецессивным гомозиготом (анализатором), когда Мендель в прямом опыте раскрывает наследственные структуры гамет гибридов. Таким образом, основа основ генетики, ее генетический метод, который раскрыл законы наследования, позволил, сочетаясь с цитологией, войти в глубины генетического строения хромосом, а затем, войдя в комплекс с физикой, химией и математикой, создал современное учение о записи генетической информации и, наконец, раскрыл тайну строения гена. Все это находит свои прямые истоки в работе Г. Менделя. Мендель доказал важнейшее положение, что оплодотворение у растений базируется на слиянии одной яйцеклетки с одним спермием. В письме к К. Негели Мендель высказал гипотезу о наследовании пола как о моногибридном расщеплении, что было затем реализовано в учении о половых хромосомах. Мендель на примере группы самоопыляющихся растений впервые провел исследования по генетике популяций.

Все это создало работе Г. Менделя положение исходного пункта в теоретическом анализе явлений наследственности. Величие этой работы таково, что законы Менделя простирают свое влияние на все будущее биологии. Скромный исследователь из Брно, биолог, математик и физик, создал алгебру новой громадной области знания - генетики, которая в наши дни находится в центре великих преобразований всей науки о жизни.

В наши дни генетика составляет сердцевину всей биологии. Исследования в биологии, посвященные сущности жизни, имеют громадное значение для сельского хозяйства и медицины. Так же как в центре атомной науки стоит изучение глубин атома, его строения из элементарных частиц и сил, обеспечивающих их взаимодействие, так в центре современной генетики стоит изучение глубин гена, его химических и физических свойств как биологической единицы наследственности. Мендель обосновал алгебру биологии, обозначив отдельные гены буквами. В его знаковой системе это были буквы A , В, С и др.

В наши дни мы знаем, что кроется за этой алгеброй генетики. Раскрыта сущность гена. Показано, что материальным носителем наследственности служит ядро клетки, точнее, хромосомы, входящие в его состав. Гены лежат внутри хромосом в линейном порядке. Сам ген состоит из комплекса атомных группировок (азотистых оснований) внутри молекул ДНК, составляющих генетически активную часть хромосом. Установлено, что генетическая информация, записанная в отдельных генах, управляет в клетке синтезом белков и другими сторонами химии и жизнедеятельности клетки. Разработаны методы вмешательства в развитие гена на основе бесконечного изменения его под действием факторов внешней среды.

Современная общая теория генетики, опирающаяся на достижения молекулярной, радиационной, химической, эволюционной, математической и многих других новых разделов, разрабатывает методы управления наследственностью.

Эти новые методы, входя в жизнь, создают в наши дни перелом в целых отраслях сельского хозяйства и вызывают к жизни новые формы биологической промышленности. С использованием особых методов генетической селекции и скрещивания была создана гибридная кукуруза. Это повело к изменению зернового баланса целых стран. Используя алкалоид колхицин и воздействуя им на клетки растений, получают в них удвоение числа хромосом. Такие полиплоидные формы растений в ряде случаев обладают выдающимися качествами. Триплоидные сорта сахарной свеклы на 15-20% увеличивают выход сахара с гектара посева. В 1965 г. первый триплоидный сорт сахарной свеклы, районированный для Кубани, вышел на производственные площади.

Радиация и активные химические соединения, проникая внутрь клетки, изменяют гены. Так можно внешними факторами через внутренние основы клетки изменить ее химизм; заставить ее вырабатывать вещества, нужные человеку. Этими путями идет в наши дни новая радиационная и химическая селекция растений, борющаяся против болезней растений, против полегаемости, за увеличение количества белка в зерне и за другие нужные нам качества. Радиационная и химическая селекция микроорганизмов, получая мутанты со свойствами «сверхсинтеза» определенных веществ, создала основы промышленного использования продуцентов антибиотиков, аминокислот, витаминов и других веществ, жизненно нужных медицине и сельскому хозяйству. Получение живых вакцин является примером блестящего использования принципов общей генетики в медицине. В последние годы получены живые вакцины против полиомиелита. Эти вакцины получены из мутантов вирусов, давших начало авирулентным штаммам. Р. И. Салгаником предложен новый метод лечения считавшегося неизлечимым вирусного заболевания глаз. Этот метод связан с использованием фермента, разрушающего молекулы ДНК вируса.

Вирусология и микробиология - могущественные науки современности, их будущее в руках генетики. Вирус представляет собой устройство из белка и нуклеиновой кислоты, молекулярное строение которых глубоко расшифровано. Нуклеиновые кислоты вируса, материальная основа генов, проникают в клетку и подчиняют ее жизнь новой «вирусной» информации. В клетках бактерий кольцевая нить из молекул ДНК несет в себе всю программу жизни клетки, ее размножения, основ для ее эволюции. Генетика нашла пути для глубокого изменения наследственности вирусов и бактерий.

Как необычайна, тревожна, полна волнения и интересна будет встреча с жизнью вне Земли! Молекулярная генетика призвана решить вопрос, является ли основой жизни во Вселенной взаимодействие нуклеиновых кислот и белков или мы можем встретить что-то совсем другое.

Среди громадных «земных» проблем на очереди вмешательство генетики в такую проблему, как злокачественный рост. Установлено, что появление раковой клетки связано с изменением ее наследственного аппарата, найдены даже хромосомы-маркеры, которые в ряде случаев накладывают печать на ядро каждой клетки в пределах данной опухоли. Генетика разрешила загадку пола, показав, что тип наследования половых хромосом обеспечивает рождение или девочки, или мальчика. Теперь установлено, что нарушение в правильной передаче хромосом ведет к появлению многих тяжелых врожденных заболеваний у человека.

На молекулярном и хромосомном уровне изучается поражающее влияние радиации на наследственность организмов и ведется разработка методов защиты. Советские ученые создали такое направление, как космическая генетика, послав в космос целый ряд живых организмов и изучив на них влияние факторов космического полета на наследственность. Разработав генетические основы эволюции, генетика в качестве очередной задачи ставит проблему управления эволюцией жизни в природе, с чем связано решение множества народнохозяйственных и медицинских проблем.

Наука в нашей стране все больше и больше становится непосредственной производительной силой, преобразующей мир. Вплотную начато изучение сущности биологических процессов, и в первую очередь явлений наследственности на молекулярном уровне. Это поведет к открытию пока загадочных для нас физико-химических свойств живого, которых нет в неживой природе, и будет использовано техникой будущего, обеспечит создание совершенно новых производств, использующих принципы синтезов, идущих в живой клетке, обеспечит использование новых принципов в кибернетических устройствах и т. д. Развитие новых методов управления наследственностью на базе теории гена создаст новую селекцию и новые пути в медицине в ее борьбе за совершенство, здоровье, за длительную юность человека.

Мы вступили в век атома, гена и космоса. Грегор Мендель, открыв для человечества существование гена, простер руки над будущим всей биологии.

В августе 1965 г. Чехословацкая Академия наук торжественно отметила 100-летие со дня открытия Менделя. Человечество обязано Г. Менделю одним из величайших открытий в истории естествознания, оно чтит подвиг гениального сына Чехословакии.

Источник---

Дубинин, Н.П. Горизонты генетики/ Н.П. Дубинин. – М.: Просвещение, 1970.- 560 с.

Мендель был монахом и с огромным удовольствием проводил занятия по математике и физике в школе, находившейся неподалеку. Но ему не удалось пройти государственную аттестацию на должность учителя. видел его тягу к знаниям и очень высокие способности интеллекта. Он послал его в Венский университет для получений высшего образования. Там Грегор Мендель проучился два года. Он посещал занятия по естественным наукам, математике. Это помогло ему в дальнейшем сформулировать законы наследования.

Сложные учебные годы

Грегор Мендель был вторым ребенком в семье крестьян, имеющих немецкие и славянские корни. В 1840 году мальчик окончил шесть классов обучения в гимназии, а уже на следующий год поступил в философский класс. Но в те годы финансовое состояние семьи ухудшилось, и 16-летний Мендель должен был самостоятельно заботиться о собственном пропитании. Это было очень трудно. Поэтому по окончании обучения в философских классах он стал послушником в монастыре.

Кстати, имя, данное ему при рождении, - Иоганн. Уже в монастыре его стали именовать Грегором. Поступил он сюда не зря, так как получил покровительство, а также финансовую поддержку, дающую возможность продолжать обучение. В 1847-м его посвятили в сан священника. В этот период он обучался в теологической школе. Здесь имелась богатая библиотека, что оказывало положительное влияние на обучение.

Монах и преподаватель

Грегор, который еще не знал, что он - будущий основоположник генетики, вел занятия в школе и после провала аттестации попал в университет. После его окончания Мендель вернулся в город Брюнн и продолжил преподавать природоведение и физику. Он вновь попытался пройти аттестацию на должность педагога, но вторая попытка тоже оказалась провальной.

Опыты с горохом

Почему Менделя считают основоположником генетики? С 1856 года он в монастырском саду начал проводить обширные и тщательно продуманные опыты, связанные со скрещиванием растений. На примере гороха он выявлял закономерности наследования различных признаков в потомстве гибридных растений. Спустя семь лет эксперименты были закончены. А еще через пару лет, в 1865 году, на заседаниях общества естествоиспытателей Брюнна он выступил с докладом о проделанной работе. Через год вышла его статья об опытах над растительными гибридами. Именно благодаря ей были заложены как самостоятельной научной дисциплины. Благодаря этому, Мендель - основоположник генетики.

Если раньше ученые не могли все собрать воедино и сформировать принципы, то Грегору это удалось. Им были созданы научные правила исследования и описания гибридов, а также их потомков. Была разработана и применена символьная система для обозначения признаков. Менделем были сформулированы два принципа, благодаря которым можно делать предсказания о наследовании.

Позднее признание

Несмотря на публикацию его статьи, работа имела только один положительный отзыв. Благосклонно отнесся к трудам Менделя немецкий ученый Негели, который тоже изучал гибридизацию. Но и у него были сомнения насчет того, что законы, которые выявлены лишь на горохе, могут иметь всеобщий характер. Он посоветовал, чтобы Мендель, основоположник генетики, повторил опыты и на других видах растений. Грегор с этим почтительно согласился.

Он попытался повторить опыты на ястребинке, но результаты были неудачными. И только спустя много лет стало понятно, почему так произошло. Дело было в том, что у этого растения семена образуются без полового размножения. Также были и другие исключения из тех принципов, которые вывел основоположник генетики. После публикации статей известных ботаников, которые подтвердили исследования Менделя, начиная с 1900 года, произошло признание его работ. По этой причине именно 1900 год считается годом рождения этой науки.

Все, что открыл Мендель, убеждало его в том, что законы, описанные им при помощи гороха, имеют всеобщий характер. Нужно было только убедить в этом других ученых. Но задача являлась такой же трудной, как и само научное открытие. А все потому, что знание фактов и их понимание - это совершенно разные вещи. Судьба открытия генетика, то есть 35-летняя задержка между самим открытием и его общественным признанием, - это совсем не парадокс. В науке это вполне нормально. Спустя век после Менделя, когда генетика уже расцветала, такая же участь постигла и открытия Мак-Клинток, которые не признавались 25 лет.

Наследие

В 1868 году ученый, основоположник генетики Мендель, стал настоятелем в монастыре. Он почти полностью перестал заниматься наукой. В его архивах были найдены заметки по лингвистике, разведению пчел, а также метеорологии. На месте этого монастыря в настоящее время находится музей имени Грегора Менделя. Также в его честь назван специальный научный журнал.

1. Что изучает генетика?

Ответ. Генетика (от греч. genesis - происхождение) , наука, изучающая закономерности наследственности и изменчивости организмов.

2. Почему основателем генетики считают Г. Менделя?

Ответ. В 1866 году была опубликована работа с изложением фундаментальных открытий Г. Менделя, который установил закономерности передачи наследственных задатков, но эта работа, к сожалению, не была оценена современниками. Основной заслугой Г. Менделя было открытие дискретного характера наследования. Фактически, именно Г. Мендель является основоположником генетики, хотя летоисчисление генетики ведется с 1900 года - момента публикации работ К. Корренса, Г. Де Фриза, Э. Чермака.

3. Как называется метод исследования, созданный Г. Менделем?

Ответ. Основные закономерности наследования были открыты Г. Менделем. Мендель достиг успехов в своих исследованиях благодаря совершенно новому, разработанному им методу, получившему название гибридологического анализа. Сущность гибридологического метода изучения наследственности состоит в том, что о генотипе организма судят по признакам (фенотипу) потомков, полученных при определенных скрещиваниях.

Метод имеет основные положения:

Учитывается не весь многообразный комплекс признаков у родителей и гибридов, а анализируется наследование по отдельным альтернативным признакам.

Проводится точный количественный учет наследования каждого альтернативного признака в ряду последовательных поколений: прослеживается не только первое поколение от скрещивания, но и характер потомства каждого гибрида в отдельности. Гибридологический метод нашел широкое применение в науке и практике.

Вопросы после § 38

1. Почему Г. Мендель выбрал для исследования наследственности именно горох?

Ответ. Проводя свои классические опыты, Мендель следовал нескольким правилам. Во-первых, он использовал растения, которые отличались друг от друга малым количеством признаков. Во-вторых, ученый работал только с растениями чистых линий. Так, у растений одной линии семена всегда были зелеными, а у другой - желтыми. Чистые линии Мендель вывел предварительно, путем самоопыления растений гороха.

Мендель ставил опыты одновременно с несколькими родительскими парами гороха; растения каждой пары принадлежали к двум разным чистым линиям. Это позволило ему получить больше экспериментального материала.

При обработке полученных данных Мендель использовал количественные методы, точно подсчитывая, сколько растений с данным признаком (например, семян с желтой и зеленой окраской) появилось в потомстве.

Необходимо добавить, что Мендель очень удачно выбрал объект для своих опытов. Горох легко выращивать в условиях Чехии он размножается несколько раз в год, сорта гороха отличаются друг от друга рядом хорошо различимых признаков, и, наконец, в природе горох самоопыляем, но в эксперименте самоопыление легко предотвратить, и исследователь может опылить растение пыльцой с другого растения.

Исследуя закономерности наследования признаков, Г. Мендель использовал в опытах 22 чистые линии садового гороха. Растения этих линий имели сильно выраженные отличия друг от друга: форма семян (круглые-морщинистые); окраска семян (желтые – зеленые); форма бобов (гладкие – морщинистые); расположение цветков на стебле (пазушные – верхушечные); высота растения (нормальные - карликовые).

2. Что такое чистая линия?

Ответ. Чистая линия - группа организмов, имеющих некоторые признаки, которые полностью передаются потомству в силу генетической однородности всех особей. В случае гена, имеющего несколько аллелей, все организмы, относящиеся к одной чистой линии, являются гомозиготными по одному и тому же аллелю данного гена. Чистыми линиями часто называют сорта растений, при самоопылении дающих генетически идентичное и морфологически сходное потомство. Аналогом чистой линии у микроорганизмов является штамм. Чистые линии у животных с перекрестным оплодотворением получают путем близкородственных скрещиваний в течение нескольких поколений. В результате животные, составляющие чистую линию, получают одинаковые копии хромосом каждой из гомологичных пар.

3. Почему именно Г. Менделя считают основоположником генетики?

Ответ. Г. Мендель обладал важнейшими для настоящего учёного качествами. Во-первых, Г. Мендель сумел сформулировать конкретный вопрос, на который ему хотелось бы получить ответ, и, во-вторых, он умел правильно понимать и трактовать результаты опытов, т. е. был способен сделать корректные выводы из результатов своих экспериментов. Результаты многолетней работы Г. Мендель обобщил в публикации «Опыты над растительными гибридами», которая вышла в свет 8 февраля 1865 г. В этой статье были изложены основные закономерности наследования признаков, которые легли в основу современной генетики. Таким образом, генетика – одна из немногих научных дисциплин, у которых есть точная дата рождения. Однако работы Г. Менделя опередили своё время; они были оценены по достоинству только через 35 лет.

В 1900 г. три исследователя (Гуго де Фриз, Карл Эрих Корренс, Эрих Чермак) независимо друг от друга на разных объектах переоткрыли законы Менделя. Результаты работ этих исследователей доказали правильность закономерностей, установленных в своё время Г. Менделем. Они честно признали его первенство в этом вопросе и присвоили этим закономерностям имя Менделя. 1900 год считается официальной датой рождения науки генетики.

Тема: «Генетика. Г. Мендель - основоположник генетики. Генетическая терминология и символика.»

План.

    Генетика – как наука о наследственности и изменчивости.

    Г. Мендель – основоположник генетической науки.

    Как работал Мендель.

    Основные генетические термины и символика.

    Гибридологический метод изучения наследственности.

    Значение открытий Менделя.

1.Генетика – наука, изучающая законы наследственности и изменчивости .

Двадцатый век для биологии начался с сенсационного открытия. Одновременно три ботаника - голландец Гуго де Фриз, немец К. Корренс и австриец К. Чермак - сообщили, что еще 35 лет назад никому не известный чешский ученый Грегор Иоганн Мендель (1822-1884) открыл основные законы наследования отдельных признаков. 1900-й год, год вторичного открытия законов Менделя, принято теперь считать годом рождения науки о наследственности - генетики.

2.Г. Мендель – основоположник генетической науки .

Иоганн Мендель родился 22 июля 1822 года в Хайзендорфе, Австрия. Ещё в детстве он начал проявлять интерес к изучению растений и окружающей среды.
Иоганн родился вторым ребенком в крестьянской семье смешанного немецко-славянского происхождения и среднего достатка, у Антона и Розины Мендель. В 1840 Мендель окончил шесть классов гимназии в Троппау(ныне г. Опава) и в следующем году поступил в философские классы при университете в г. Ольмюце (ныне г. Оломоуц). Однако, материальное положение семьи в эти годы ухудшилось, и с 16 лет Мендель сам долженбыл заботиться о своем пропитании. Не будучи в силах постоянно выносить подобное напряжение, Мендель по окончании философских классов, в октябре 1843, поступил послушником в Брюннский монастырь (где он получил новое имя Грегор). Там он нашел покровительство и финансовую поддержку для дальнейшего обучения. Уже в 1847 году он стал священником.
Жизнь священнослужителя состоит не только из молитв. Мендель успевал много времени посвящать учебе и науке. В 1850 году он решил сдать экзамены на диплом учителя, однако провалился, получив "два" по биологии и геологии. 1851-1853 годы Мендель провел в Университете Вены, где изучал физику, химию, зоологию, ботанику и математику. По возвращении в Брюнн отец Грегор начал все-таки преподавать в школе, хотя так никогда и не сдал экзамен на диплом учителя. В 1868 году Иоганн Мендель стал аббатом.

Свои эксперименты, которые, в конце концов, привели к сенсационному открытию законов генетики, Мендель проводил в своем маленьком приходском саду с 1856 года. Надо отметить, что окружение святого отца способствовало научным изысканиям. Дело в том, что некоторые его друзья имели очень хорошее образование в области естествознания. Они часто посещали различные научные семинары, в которых участвовал и Мендель. Кроме того, монастырь имел весьма богатую библиотеку, завсегдатаем которой был, естественно, Мендель. Его очень воодушевила книга Дарвина "Происхождение видов", но доподлинно известно, что опыты Менделя начались задолго до публикации этой работы.

8 февраля и 8 марта 1865 году Грегор (Иоганн) Мендель выступал на заседаниях Общества Естествознания в Брюнне, где рассказал о своих необычных открытиях в неизвестной пока области (которая позже станет называться генетикой). Опыты Грегор Мендель ставил на простых горошинах, однако, позже спектр объектов эксперимента был значительно расширен. В результате, Мендель пришел к выводу, что различные свойства конкретного растения или животного появляются не просто из воздуха, а зависят от "родителей". Информация об этих наследственных свойствах передается через гены (термин, введенный Менделем, от которого произошел термин "генетика"). Уже в 1866 году вышла книга Менделя "Versuche uber Pflanzenhybriden" ("Эксперименты с растительными гибридами"). Однако современники не оценили революционность открытий скромного священника из Брюнна.
На заседании не было задано ни одного вопроса, а статья не получила откликов. Мендель послал копию статьи К. Негели, известному ботанику,авторитетному специалисту по проблемам наследственности, но Негели также не сумел оценить ее значения. В вежливой форме профессор советовал повременить с выводами, а пока продолжить опыты с другими растениями, например, ястребинками. Сомнений в чистоте менделевского опыта у него не было. Он высеял присланные Менделем семена и сам убедился в результатах.
Но у каждого биолога есть свой излюбленный объект для наблюдений. У Негели это была ястребинка – довольно коварное растение. Ее уже тогда называли «крестом ботаников», ибо по сравнению с другими растениями процесс передачи признаков у нее был необычным. И Негели усомнился в общебиологическом значении открытых Менделем законов. Он предложил Менделю практически невыполнимую задачу: заставить гибриды ястребинки вести себя так же, как горох. Если это сделать удастся, то он поверит в справедливость выводов автора.
Профессор дал роковой совет. Как было обнаружено намного позднее,вести эксперименты с ястребинками нельзя, поскольку они способны размножаться и не половым путем. Опыты по скрещиванию ястребинок были бессмысленны. Три года экспериментов показали это. Мендель проводил опыты на мышах, кукурузе, фуксии – результат был! Но объяснить причину своих неудач с ястребинкой он не мог. Лишь в начале XX в. стало ясно, что существует ряд растений (ястребинка, одуванчик), которые размножаются неполовым путем (партеногенезом) и при этом образуют семена. Ястребинка оказалась растением – исключением из общего правила.
А Мендель, проведя по совету Негели дополнительную серию экспериментов, засомневался в своих выводах и больше к ним не возвращался. После неудачных попыток получить аналогичные результаты при скрещивании других растений, Мендель прекратил опыты и до конца жизни занимался пчеловодством, садоводством и метеорологическими наблюдениями.
В начале 1868 г. умер прелат Напп. Открылась очень высокая выборная вакансия, сулившая счастливому избраннику сан прелата, огромный вес в обществе и 5 тыс. флоринов ежегодного жалования. Капитул монастыря избрал на этот пост Грегора Менделя. По обычаю и закону настоятель монастыря Святого Томаша автоматически занимает важное место в политической и финансовой жизни провинции и всей империи.
В первые годы своего аббатства Мендель расширил монастырский сад. Там по его проекту был сооружен каменный пчельник, где обитали кроме местных пород еще и кипрские, египетские и даже «нежалящие» американские пчелы. Опыты с ястребинкой не дали нужных результатов, и он увлекся проблемами скрещивания пчел. Он пытался получить гибриды пчел, но не знал – как и все в то время, – что царица спаривается со многими трутнями и хранит сперму многие месяцы, в течение которых день за днем откладывает яйца. Поставить эксперимент по скрещиванию пчел не удастся ученым еще более полувека… Лишь в 1914 г. первые гибриды пчел будут получены, и на них также будут подтверждены открытые Менделем законы.

Очередным научным увлечением Менделя стала метеорология. В его метеорологических трудах все было просто и понятно: температура, атмосферное давление, таблицы, графики колебания температур. Он выступает на заседаниях Общества естествоиспытателей. Изучает смерч, который 13 октября 1870 г. прокатился по окрестностям Брюнна.

Но годы неумолимо берут свое... Еще летом 1883 г. прелату Менделю был поставлен диагноз: нефрит, сердечная слабость, водянка... – и предписан полный покой.

Он не мог уже выходить в сад для работы со своими маттиолами, фуксиями и ястребинками... В прошлом остались опыты с пчелами, мышами. Последнее увлечение больного аббата – изучение лингвистических явлений с помощью методов математики. В монастырском архиве были найдены листки со столбцами фамилий, оканчивающихся на «mann», «bauer», «mayer» с какими-то дробями и вычислениями. Стремясь обнаружить формальные законы происхождения фамильных имен, Мендель производит сложные подсчеты, в которых учитывает количество гласных и согласных в немецком языке, общее число рассматриваемых слов, количество фамилий и т.д. Он был верен себе и подошел к анализу языковых явлений как человек точной науки. И в лингвистику он внес статистическо-вероятностный метод анализа. В 90-е годы XIX в. лишь самые смелые лингвисты и биологи заявляли о целесообразности такого метода. Современных филологов эта работа заинтересовала лишь в 1968 г.

3.Как работал Г. Мендель

Г. Мендель проводил свои опыты, используя горох. Выбор объекта для экспериментов был удачным:

    Bo времена, когда жил Г. Мендель уже существовало много сортов гороха, различающихся между собой по многим признакам.

    Растение горох легко выращивать.

    Растение самоопыляемое (т. е., когда пыльца попадает на рыльце пестика того же самого цветка, и такой цветок размножается в чистоте, без влияния факторов окружающей среды).

    Данное растение можно искусственно опылять, что и делал Г. Мендель. (Для этого пыльцу из пыльника одного сорта гороха с помощью кисточки он наносил на рыльце пестика другого сорта гороха. Затем надевал на искусственно опылённые цветки маленькие колпачки, чтобы сюда случайно не попала чужая пыльца).

    Г. Мендель работал лишь с небольшим количеством признаков, это были:

    • Высота стебля;

      Форма семян;

      Окраска семян;

      Форма плодов;

      Окраска плодов;

      Расположение цветков;

      Окраска лепестков.

    Над своими опытами Г. Мендель работал в течении 2 – 3 лет и всегда использовал контрольные растения, а так же вёл точный количественный учёт потомства, которое всегда в его опытах было многочисленным.

Задание: назвать альтернативные признаки к имеющимся.

Низкий рост – высокий

Белые цветки – розовые

Гладкие семена – морщинистые

Для животных

Гладкая шерсть – мохнатая

Темная окраска - светлая

Для человека

Карие глаза – голубые

Темные волосы – светлые

Прямые волосы – кудрявые и т.д.

4.Генетическая символика.

Предложена Г. Менделем, используется для записи результатов скрещиваний: Р - родители; F - потомство, число внизу или сразу после буквы указывает на порядковый номер поколения (F1 - гибриды первого поколения - прямые потомки родителей, F2 - гибриды второго поколения - возникают в результате скрещивания между собой гибридов F1); × - значок скрещивания; G - мужская особь; E - женская особь; A - доминантный ген, а - рецессивный ген; АА - гомозигота по доминанте, аа - гомозигота по рецессиву, Аа - гетерозигота.

Гибридологический метод. Основной метод, который Г. Мендель разработал и положил в основу своих опытов, называют гибридологическим - система скрещиваний, позволяющая проследить закономерности наследования признаков в ряду поколений. Поколения потомков называют «Гибрид» F (от лат «филие»- дети). Отличительные особенности метода:

1) целенаправленный подбор родителей – Р (от лат «парента»)

2) чистые линии, т.е растения в потомстве которых не наблюдалось разнообразия по изучаемому признаку (только желтые или только зелёные)

3) альтернативные признаки по типу « или – или» (желтые или зелёные)

4) строгий количественный учет наследования признаков у гибридов;

3) индивидуальная оценка потомства от каждого родителя в ряду поколений.

Признак - любая особенность строения, любое свойство организма. Развитие признака зависит как от присутствия других генов, так и от условий среды, формирование признаков происходит в ходе индивидуального развития особей. Поэтому каждая отдельно взятая особь обладает набором признаков, характерных только для нее. Рецессивный признак, не проявляющийся в 1 поколении, подавляемый ген – (а). Доминантный признак – преобладающий ген - (А)

Локус - местоположение гена в хромосоме.

Аллельные гены - гены, расположенные в идентичных локусах гомологичных хромосом.

Генетика - наука о закономерностях наследственности и изменчивости.

Наследственность - свойство организмов передавать свои признаки от одного поколения к другому. Мы наследуем не свойства, а генетическую информацию.

Ген – элементарная единица наследственности, участок ДНК, содержащий информацию о структуре одного белка.

Генотип – сумма всех генов организма, т.е. совокупность всех наследственных задатков. Свойство противоположное наследственности - Изменчивость - свойство организмов приобретать новые по сравнению с родителями признаки.

Фенотип - совокупность свойств и признаков организма, которые являются результатом взаимодействия генотипа особи и окружающей среды.

5.Значение открытий Менделя .

Так что же он все-таки сделал для науки?

Работы по гибридизации растений и изучению наследования признаков в потомстве гибридов проводились десятилетия до Менделя в разных странах и селекционерами, и ботаниками. Были замечены и описаны факты доминирования, расщепления и комбинирования признаков, особенно в опытах французского ботаника Ш. Нодена. Даже Дарвин,скрещивая разновидности львиного зева, отличные по структуре цветка,получил во втором поколении соотношение форм, близкое к известному менделевскому расщеплению 3:1, но увидел в этом лишь «капризную игру сил наследственности». Разнообразие взятых в опыты видов и форм растений увеличивало количество высказываний, но уменьшало их обоснованность.Смысл или «душа фактов» (выражение Анри Пуанкаре) оставались до Менделя туманными.
Совсем иные следствия вытекали из семилетней работы Менделя, по праву составляющей фундамент генетики.
Во-первых , он создал научные принципы описания и исследования гибридов и их потомства (какие формы брать в скрещивание, как вести анализ в первом и втором поколении). Мендель разработал и применил алгебраическую систему символов и обозначений признаков, что представляло собой важное концептуальное нововведение.
Во-вторых, Грегор Мендель сформулировал два основных принципа, или закона наследования признаков в ряду поколений, позволяющие делать предсказания.
Наконец , Мендель в неявной форме высказал идею дискретности и бинарности наследственных задатков: каждый признак контролируется материнской и отцовской парой задатков (или генов, как их потом стали называть), которые через родительские половые клетки передаются гибридам и никуда не исчезают. Задатки признаков не влияют друг на друга, но расходятся при образовании половых клеток и затем свободно комбинируются у потомков (законы расщепления и комбинирования признаков). Парность задатков, парность хромосом, двойная спираль ДНК - вот логическое следствие и магистральный путь развития генетики 20 века на основе идей Менделя.

Сегодня установлено, что предрасположенность к алкоголизму или наркомании тоже может иметь генетическую основу. Открыто уже 7 генов, повреждения которых связаны с возникновением с зависимости от химических веществ. Из тканей больных алкоголизмом был выделен мутантный ген, который приводит к дефектам клеточных рецепторов дофамина – вещества, играющего ключевую роль в работе центров удовольствия мозга Недостаток дофамина или дефекты его рецепторов напрямую связаны с развитием алкоголизма.
Сегодня можно на основе генов узнать человека по следовым количествам крови, чешуйкам кожи, и т.п.
В настоящее время интенсивно изучается проблема зависимости способностей и талантов человека от его генов.
Главная задача будущих исследований – выявление различий между людьми на генетическом уровне. Это позволит создавать генные портреты людей и эффективнее лечить болезни, оценивать способности и возможности каждого человека, оценивать степень приспособленности конкретного человека к той или иной экологической обстановке
Необходимо упомянуть об опасности распространения генетической информации о конкретных людях. В некоторых странах уже приняты законы, запрещающие распространение такой информации.

Основоположник генетики - австровенгерский естествоиспытатель Грегор Иоганн Мендель (1822-1884). В молодые годы он преподавал физику и естествознание в общеобразовательной школе, впоследствии стал послушником, а затем настоятелем Брюнненского монастыря ордена Святого Августина, расположенного в небольшом городке Брюнна в Австро-Венгрии (ныне город Брно в Чехии). В 1865 г. Г. Мендель опубликовал в трудах провинциального общества естествоиспытателей природы статью «Опыты над растительными гибридами», в которой на примере скрещивания различных линий садового гороха выделил закономерности наследования признаков. Однако эта работа долгое время оставалась неизвестной большинству современников Г. Менделя. Только в 1900 г. ботаники из разных стран - Хуго де Фриз (1848-1935) из Голландии, Карл Корренс (1864- 1933) из Германии и Эрих фон Чермак (1871-1962) из Австрии - на других биологических объектах, независимо друг от друга и почти одновременно «переоткрыли» закономерности наследования, установленные Г. Менделем.

Теперь 1900 г. считается официальным (но не фактическим) годом рождения генетики как науки, хотя сам термин «генетика» пред-

ложен только в 1906 г. англичанином Уильямом Бэтсоном (ученый перепроверил эксперименты Г. Менделя и полностью подтвердил их огромное значение).

Начало XX в. примечательно для историков генетики еще рядом событий. В 1901 г. немецкий врач Карл Ландштейнер разделил кровь человека по антигенам на 4 группы: 0, А, В и АВ, т.е. впервые привел пример наследования признаков у человека. Позже К. Ландштейнер совместно с П. Левиным и О. Винером описали Rh-фактор и группы крови системы MN (1927).

В дальнейшем в биологии и медицине произошли грандиозные перемены, связанные с возникновением и последующим торжеством идей эволюционизма, представлений о законах наследственности. Уже к 1950 г. не одни лишь прогрессивно мыслящие люди, но даже самые непримиримые ортодоксы, священники Римской католической церкви, были вынуждены согласиться с правомочностью эволюционной теории: ее признал в специальной энциклике «Происхождение человека» Папа Римский Пий XII. Однако католики настаивали: «Душа человека создана Богом!»

Следует отметить: материалистический термин «эволюция« впервые применил в начале XX в. английский врач Френсис Гальтон (1822-1911), основоположник евгеники - науки о совершенствовании человеческого рода.

Известно, что Ф. Гальтон приходился кузеном гораздо более знаменитому англичанину - Чарльзу Дарвину (1809-1882). Но тот отдавал предпочтение теории «пангенезиса«, основанной еще до н.э. древними философами Гиппократом (460-557), Платоном (429-347) и Аристотелем (384-322). Именно увлечение «пангенезисом» помешало Ч. Дарвину полностью обосновать (до рождения генетики) собственную прогрессивную теорию. Его ошибку в дальнейшем исправили последователи ученого.

Согласно современным представлениям, эволюция есть процесс происхождения биологических видов или прогрессивного развития живой материи, обусловленный внутренними (мутации) и внешними (естественный отбор, изоляция, дрейф генов) факторами.

Следует отметить: в конце XX в. дарвиновская интерпретация эволюции и даже правомерность самой постановки вопроса о том, была ли эволюция на Земле, ставились под сомнение деятелями церкви и поддерживающими их учеными-профессионалами. В частности, в противовес эволюционизму (эволюционизм - современный

дарвинизм как синтетическая теория эволюции) они выдвинули концепцию креационизма, предлагая рассматривать многообразие органического мира как результат божественного творения. Сторонники креационизма основываются на сравнении положений дарвиновской теории эволюции с данными биологических дисциплин (включая молекулярную биологию) и утверждают: теория эволюции - лишь одно из возможных объяснений существования органического мира, не имеющее фактического обоснования, а потому сходное с религиозными системами взглядов. По мнению таких исследователей, «наступает закат эпохи дарвинизма».

Существует также еще одна точка зрения на происхождение жизни на Земле: «...возможно, что это длительный эксперимент внеземных цивилизаций» на людях и других земных биологических видах, доставленных сюда из космоса в качестве «подопытных кроликов» много тысяч (если не миллионов) лет назад.

В пользу последней гипотезы свидетельствует, например, библейская легенда о Всемирном потопе: достаточно вспомнить «пассажиров» Ноева ковчега. Однако хотелось бы знать: куда столь странный, аморальный, по земным меркам, «эксперимент» заведет наш органический мир? Оставим данный вопрос без ответа и продолжим рассмотрение истории развития генетики, весьма неоднозначного в нашей стране.

В России о зарождении генетики как науки впервые сообщил в 1912 г. на лекции в Петербургском университете Николай Иванович Вавилов (1887-1943) - великий русский генетик, положивший начало пониманию эволюции мутационного процесса, создавший учение о генетических основах селекции, сформулировавший закон гомологичных рядов в наследственной изменчивости. Именно по инициативе Н.И. Вавилова в 1929 г. было принято решение об организации кафедр генетики и селекции в университетах СССР.

Большой вклад в мировую и отечественную генетику внес Николай Константинович Кольцов (1872-1940), в 1928 г. - заведующий кафедрой биологии во 2-м Московском университете (в дальнейшем - 2-й Московский медицинский институт им. Н.И. Пирогова, а затем - Российский медицинский университет). Работы Н.К. Кольцова (по изучению групп крови, активности фермента каталазы, проблем мутационной изменчивости; химического мутагенеза, трансплантации органов и тканей; их сохранения в высушенном состоянии, методов омоложения организма и культивирования клеток in vitro)

стали поистине новаторскими. Но главное его достижение - обоснование положения о наследственных молекулах - хромосомах, пророчески предугаданный принцип самоудвоения наследственных молекул (1927).

Правда, Н.К. Кольцов считал носителем наследственной информации не молекулу ДНК, а молекулу белка (в дальнейшем оказалось, что белок есть функция или проявление гена). Только в 1953 г. Джеймс Уотсон, Френсис Крик, Морис Уилкинс и Розалинда Франклин в своих работах доказали обратное, впервые описав молекулярную структуру нативной ДНК и получив ее рентгенограмму в виде двойной спирали («нечто вроде штопора»). В 1962 г. за это открытие трое из авторов получили Нобелевскую премию (Р. Франклин тогда уже скончалась от рака).

Предположение Н.К. Кольцова о наличии хромосом сыграло огромную роль в развитии генетики. Следует отметить, что биологическую функцию молекулы ДНК связали с ее химическим строением раньше 1953 г. Еще в 1944 г. О.Т. Эйвери и его коллеги установили: ДНК является носителем генетической информации.

Н.К. Кольцов был также близок к представлению, высказанному в 1941 г. Джорджем Бидлом и Эдвардом Тэйтемом в виде формулы: «один ген - один фермент». В дальнейшем она трансформировалась в формулу «один ген - один признак», а затем «один ген - одна полипептидная цепь». Последняя длительное время считалась основной в молекулярной биологии, но в конце XX в. появились и другие: «два гена или семь генов - одна полипептидная цепь; один ген или отдельные участки гена - несколько полипептидных цепей». Тем не менее, несомненно: Н.К. Кольцов, бесспорно, стоял у истоков молекулярной биологии и медицины.

Отечественную классическую школу исследований морфологии хромосом человека основал Григорий Андреевич Левитский (1878- 1942). Он заложил фундамент цитогенетики, создал первое руководство по материальным основам наследственности (1924). В его дискуссиях с С.Г. Навашиным и Л.Н. Делоне в 1931 г. впервые используются термины «кариотип« (хромосомный набор вида со всеми особенностями: числом, формой и деталями строения хромосом) и «идиограмма» (схематическое изображение хромосом).

Один из классиков русской генетики - Сергей Сергеевич Четвериков (1870-1959). Его работа «О некоторых моментах эволюционного процесса с точки зрения современной генетики» (1926)

положила начало целому научному направлению - популяционной генетике, в которой как наиболее важные факторы, оказывающие влияние на формирование генетической структуры популяции, рассматриваются естественный отбор и изоляция.

Впервые термин «популяция» введен В. Иогансеном в 1903 г. для обозначения неоднородной в генетическом отношении группы особей одного биологического вида и их отличия от особей однородной (чистой) линии. Однако еще Чарльз Дарвин объяснял происхождение видов в ходе эволюции в том числе наследственной изменчивостью и конкуренцией в пределах совокупности особей, т.е. популяции.

Многие работы русского генетика Александра Сергеевича Серебровского (1892-1948), опубликованные в 1920-е годы, для своего времени уникальны. Он занимался строением гена, его дробимостью и эволюцией, генетикой и селекцией отдельных видов животных, генетикой популяций, геногеографией, антропогенетикой и закономерностями органической эволюции, генетическими методами борьбы с вредными насекомыми. А.С. Серебровский был первым заведующим кафедрой генетики Московского государственного университета им. М.В. Ломоносова.

Нельзя не отметить заслуги многих других выдающихся советских и русских генетиков. Среди них Борис Львович Астауров (1904-1974) - первый президент Всесоюзного общества генетиков и селекционеров им. Н.И. Вавилова. Работы Б.Л. Астаурова посвящены исследованиям роли ядра и цитоплазмы в наследственности и онтогенезе, экспериментальной эмбриологии, биологии развития, искусственному партеногенезу и андрогенезу.

Широко известны труды Николая Петровича Дубинина (1907- 1998) - многолетнего лидера советской генетики, организатора и директора Новосибирского института цитологии и генетики и Московского института общей генетики АН СССР, академика АН СССР, почетного члена многих иностранных академий и научных обществ. К числу исследованных им проблем относятся: сложная структура гена, эффект положения, теория мутаций, проблемы генетики популяций, радиационной и экологической генетики и генетики человека.

Среди наиболее известных имен отечественных генетиков - имя Юрия Александровича Филипченко (1882-1930), читавшего первый в России курс лекций по генетике в Петербургском университете (1913),

изучавшего генетику пшеницы, эмбриологию и сравнительную анатомию низших насекомых, а также наследственность у человека.

Как сказано в начале главы, год рождения клинической генетики - 1902, когда Арчибальд Гаррод впервые опубликовал сообщение о наследственном заболевании - алкаптонурии. В 1908 г. в другой своей статье под названием «Врожденные нарушения метаболизма» он объединил четыре наследственных заболевания (алкаптонурия, альбинизм, пентозурия и цистинурия).

Основоположник отечественной клинической генетики - Сергей Николаевич Давиденков (1880-1961), первый русский врач-генетик и выдающийся детский врач-невропатолог. В круг его научных интересов входили: наследственные болезни нервной системы и их медикогенетическое консультирование, причины клинического полиморфизма наследственных болезней, эволюционно-генетические проблемы в невропатологии. С.Н. Давиденков обосновал необходимость применения в медицине генеалогического анализа, сформулировал принцип генетической гетерогенности и показал клиническую (фенотипическую) неоднородность многих нозологических форм (штрюмпелевская параплегия, семейные атаксии, амиотрофии). Он ввел в неврологию точные методы генетики, объяснил клинический полиморфизм неврологических заболеваний как результат сходного проявления разных мутаций и разной выраженности действия патологического гена (в зависимости от генотипической среды), предложил первую классификацию наследственных болезней нервной системы, основанную на генетических закономерностях.

Неоценимый вклад в развитие отечественной медицинской и клинической генетики внесли А.П. Акифьев (1938-2007), Л.О. Бадалян (1929-1994), А.Ф. Захаров (1928-1986), С.Г. Левит (1894- 1937), М.Е. Лобашев, А.А. Прокофьева-Бельговская (1903-1984), Н.В. Тимофеев-Рессовский (1900-1981) и др. Их заслуги - внедрение достижений генетики в медицину, распространение и приумножение генетических знаний даже в тридцатилетний период гонений на советскую генетику (1930-1960). В частности, в 1930 г. в Москве был организован Медико-биологический институт, переименованный в 1932 г. в Медико-генетический институт (директор - С.Г. Левит), где до 1937 г. успешно работал центр близнецовых исследований, большое внимание уделялось изучению мультифакториальных заболеваний. Однако затем институт закрыли, его директора и многих сотрудников репрессировали.

Только в 1969 г. в Москве вновь создается Институт медицинской генетики, преобразованный в 1990 г. в Медико-генетический научный центр АМН СССР, а затем РАМН.

Возрождение клинической генетики в России началось в конце 1970-х гг. во 2-м Московском медицинском институте им. Н.И. Пирогова (ныне Российский государственный медицинский университет), на кафедре нервных болезней педиатрического факультета (возглавляемой тогда Левоном Оганесовичем Бадаляном). Именно здесь впервые стали читать лекции по клинической генетике для студентов.