Исследовать функцию на четность и нечетность примеры. Исследование функции

Четная функция.

Четной называется функция, знак которой не меняется при изменении знака x .

x выполняется равенство f (–x ) = f (x ). Знак x не влияет на знак y .

График четной функции симметричен относительно оси координат (рис.1).

Примеры четной функции:

y = cos x

y = x 2

y = –x 2

y = x 4

y = x 6

y = x 2 + x

Пояснение:
Возьмем функцию y = x 2 или y = –x 2 .
При любом значении x функция положительная. Знак x не влияет на знак y . График симметричен относительно оси координат. Это четная функция.

Нечетная функция.

Нечетной называется функция, знак которой меняется при изменении знака x .

Говоря иначе, для любого значения x выполняется равенство f (–x ) = –f (x ).

График нечетной функции симметричен относительно начала координат (рис.2).

Примеры нечетной функции:

y = sin x

y = x 3

y = –x 3

Пояснение:

Возьмем функцию y = –x 3 .
Все значения у в ней будут со знаком минус. То есть знак x влияет на знак y . Если независимая переменная – положительное число, то и функция положительная, если независимая переменная – отрицательное число, то и функция отрицательная: f (–x ) = –f (x ).
График функции симметричен относительно начала координат. Это нечетная функция.

Свойства четной и нечетной функций:

ПРИМЕЧАНИЕ:

Не все функции являются четными или нечетными. Есть функции, которые не подчиняются такой градации. К примеру, функция корня у = √х не относится ни к четным, ни к нечетным функциям (рис.3). При перечислении свойств подобных функций следует давать соответствующее описание: ни четна, ни нечетна.

Периодические функции.

Как вы знаете, периодичность – это повторяемость определенных процессов с определенным интервалом. Функции, описывающие эти процессы, называют периодическими функциями . То есть это функции, в чьих графиках есть элементы, повторяющиеся с определенными числовыми интервалами.

Четность и нечетность функции являются одним из основных ее свойств, и на четность занимает внушительную часть школьного курса по математике. Она во много определяет характер поведения функции и значительно облегчает построение соответствующего графика.

Определим четность функции. Вообще говоря, исследуемую функцию считают четной, если для противоположных значений независимой переменной (x), находящихся в ее области определения, соответствующие значения y (функции) окажутся равными.

Дадим более строгое определение. Рассмотрим некоторую функцию f (x), которая задана в области D. Она будет четной, если для любой точки x, находящейся в области определения:

  • -x (противоположная точка) также лежит в данной области определения,
  • f (-x) = f (x).

Из приведенного определения следует условие, необходимое для области определения подобной функции, а именно, симметричность относительно точки О, являющейся началом координат, поскольку если некоторая точка b содержится в области определения четной функции, то соответствующая точка - b тоже лежит в этой области. Из вышесказанного, таким образом, вытекает вывод: четная функция имеет симметричный по отношению к оси ординат (Oy) вид.

Как на практике определить четность функции?

Пусть задается с помощью формулы h(x)=11^x+11^(-x). Следуя алгоритму, вытекающему непосредственно из определения, исследуем прежде всего ее область определения. Очевидно, что она определена для всех значений аргумента, то есть первое условие выполнено.

Следующим шагом подставим вместо аргумента (x) его противоположное значение (-x).
Получаем:
h(-x) = 11^(-x) + 11^x.
Поскольку сложение удовлетворяет коммутативному (переместительному) закону, то очевидно, h(-x) = h(x) и заданная функциональная зависимость - четная.

Проверим четность функции h(x)=11^x-11^(-x). Следуя тому же алгоритму, получаем, что h(-x) = 11^(-x) -11^x. Вынеся минус, в итоге, имеем
h(-x)=-(11^x-11^(-x))=- h(x). Следовательно, h(x) - нечетная.

Кстати, следует напомнить, что есть функции, которые невозможно классифицировать по этим признакам, их называют ни четными, ни нечетными.

Четные функции обладают рядом интересных свойств:

  • в результате сложения подобных функций получают четную;
  • в результате вычитания таких функций получают четную;
  • четной, также четная;
  • в результате умножения двух таких функций получают четную;
  • в результате умножения нечетной и четной функций получают нечетную;
  • в результате деления нечетной и четной функций получают нечетную;
  • производная такой функции - нечетная;
  • если возвести нечетную функцию в квадрат, получим четную.

Четность функции можно использовать при решении уравнений.

Чтобы решить уравнение типа g(x) = 0, где левая часть уравнения представляет из себя четную функцию, будет вполне достаточно найти ее решения для неотрицательных значений переменной. Полученные корни уравнения необходимо объединить с противоположными числами. Один из них подлежит проверке.

Это же успешно применяют для решения нестандартных задач с параметром.

Например, есть ли какое-либо значение параметра a, при котором уравнение 2x^6-x^4-ax^2=1 будет иметь три корня?

Если учесть, что переменная входит в уравнение в четных степенях, то понятно, что замена х на - х заданное уравнение не изменит. Отсюда следует, что если некоторое число является его корнем, то им же является и противоположное число. Вывод очевиден: корни уравнения, отличные от нуля, входят в множество его решений «парами».

Ясно, что само число 0 не является, то есть число корней подобного уравнения может быть только четным и, естественно, ни при каком значении параметра оно не может иметь трех корней.

А вот число корней уравнения 2^x+ 2^(-x)=ax^4+2x^2+2 может быть нечетным, причем для любого значения параметра. Действительно, легко проверить, что множество корней данного уравнения содержит решения «парами». Проверим, является ли 0 корнем. При подстановке его в уравнение, получаем 2=2 . Таким образом, кроме «парных» 0 также является корнем, что и доказывает их нечетное количество.

Для этого воспользуйтесь миллиметровкой или графическим калькулятором. Выберите несколько любых числовых значений независимой переменной x {\displaystyle x} и подставьте их в функцию, чтобы вычислить значения зависимой переменной y {\displaystyle y} . Найденные координаты точек нанесите на координатную плоскость, а затем соедините эти точки, чтобы построить график функции.

  • В функцию подставьте положительные числовые значения x {\displaystyle x} и соответствующие отрицательные числовые значения. Например, дана функция . Подставьте в нее следующие значения x {\displaystyle x} :
    • f (1) = 2 (1) 2 + 1 = 2 + 1 = 3 {\displaystyle f(1)=2(1)^{2}+1=2+1=3} (1 , 3) {\displaystyle (1,3)} .
    • f (2) = 2 (2) 2 + 1 = 2 (4) + 1 = 8 + 1 = 9 {\displaystyle f(2)=2(2)^{2}+1=2(4)+1=8+1=9} . Получили точку с координатами (2 , 9) {\displaystyle (2,9)} .
    • f (− 1) = 2 (− 1) 2 + 1 = 2 + 1 = 3 {\displaystyle f(-1)=2(-1)^{2}+1=2+1=3} . Получили точку с координатами (− 1 , 3) {\displaystyle (-1,3)} .
    • f (− 2) = 2 (− 2) 2 + 1 = 2 (4) + 1 = 8 + 1 = 9 {\displaystyle f(-2)=2(-2)^{2}+1=2(4)+1=8+1=9} . Получили точку с координатами (− 2 , 9) {\displaystyle (-2,9)} .
  • Проверьте, симметричен ли график функции относительно оси Y. Под симметрией подразумевается зеркальное отображение графика относительно оси ординат. Если часть графика справа от оси Y (положительные значения независимой переменной) совпадает с частью графика слева от оси Y (отрицательные значения независимой переменной), график симметричен относительно оси Y. Если функция симметрична относительно оси ординат, такая функция четная.

    • Проверить симметричность графика можно по отдельным точкам. Если значение y {\displaystyle y} x {\displaystyle x} , совпадает со значением y {\displaystyle y} , которое соответствует значению − x {\displaystyle -x} , функция является четной. В нашем примере с функцией f (x) = 2 x 2 + 1 {\displaystyle f(x)=2x^{2}+1} мы получили следующие координаты точек:
      • (1,3) и (-1,3)
      • (2,9) и (-2,9)
    • Обратите внимание, что при x=1 и x=-1 зависимая переменная у=3, а при x=2 и x=-2 зависимая переменная у=9. Таким образом, функция четная. На самом деле, чтобы точно выяснить вид функции, нужно рассмотреть более двух точек, но описанный способ является хорошим приближением.
  • Проверьте, симметричен ли график функции относительно начала координат. Начало координат – это точка с координатами (0,0). Симметрия относительно начала координат означает, что положительному значению y {\displaystyle y} (при положительном значении x {\displaystyle x} ) соответствует отрицательное значение y {\displaystyle y} (при отрицательном значении x {\displaystyle x} ), и наоборот. Нечетные функции обладают симметрией относительно начала координат.

    • Если в функцию подставить несколько положительных и соответствующих отрицательных значений x {\displaystyle x} , значения y {\displaystyle y} будут различаться по знаку. Например, дана функция f (x) = x 3 + x {\displaystyle f(x)=x^{3}+x} . Подставьте в нее несколько значений x {\displaystyle x} :
      • f (1) = 1 3 + 1 = 1 + 1 = 2 {\displaystyle f(1)=1^{3}+1=1+1=2} . Получили точку с координатами (1,2).
      • f (− 1) = (− 1) 3 + (− 1) = − 1 − 1 = − 2 {\displaystyle f(-1)=(-1)^{3}+(-1)=-1-1=-2}
      • f (2) = 2 3 + 2 = 8 + 2 = 10 {\displaystyle f(2)=2^{3}+2=8+2=10}
      • f (− 2) = (− 2) 3 + (− 2) = − 8 − 2 = − 10 {\displaystyle f(-2)=(-2)^{3}+(-2)=-8-2=-10} . Получили точку с координатами (-2,-10).
    • Таким образом, f(x) = -f(-x), то есть функция нечетная.
  • Проверьте, имеет ли график функции какую-нибудь симметрию. Последний вид функции – это функция, график которой не имеет симметрии, то есть зеркальное отображение отсутствует как относительно оси ординат, так и относительно начала координат. Например, дана функция .

    • В функцию подставьте несколько положительных и соответствующих отрицательных значений x {\displaystyle x} :
      • f (1) = 1 2 + 2 (1) + 1 = 1 + 2 + 1 = 4 {\displaystyle f(1)=1^{2}+2(1)+1=1+2+1=4} . Получили точку с координатами (1,4).
      • f (− 1) = (− 1) 2 + 2 (− 1) + (− 1) = 1 − 2 − 1 = − 2 {\displaystyle f(-1)=(-1)^{2}+2(-1)+(-1)=1-2-1=-2} . Получили точку с координатами (-1,-2).
      • f (2) = 2 2 + 2 (2) + 2 = 4 + 4 + 2 = 10 {\displaystyle f(2)=2^{2}+2(2)+2=4+4+2=10} . Получили точку с координатами (2,10).
      • f (− 2) = (− 2) 2 + 2 (− 2) + (− 2) = 4 − 4 − 2 = − 2 {\displaystyle f(-2)=(-2)^{2}+2(-2)+(-2)=4-4-2=-2} . Получили точку с координатами (2,-2).
    • Согласно полученным результатам, симметрии нет. Значения y {\displaystyle y} для противоположных значений x {\displaystyle x} не совпадают и не являются противоположными. Таким образом, функция является ни четной, ни нечетной.
    • Обратите внимание, что функцию f (x) = x 2 + 2 x + 1 {\displaystyle f(x)=x^{2}+2x+1} можно записать так: f (x) = (x + 1) 2 {\displaystyle f(x)=(x+1)^{2}} . Будучи записанной в такой форме, функция кажется четной, потому что присутствует четный показатель степени. Но этот пример доказывает, что вид функции нельзя быстро определить, если независимая переменная заключена в скобки. В этом случае нужно раскрыть скобки и проанализировать полученные показатели степени.
  • Функция - это одно из важнейших математических понятий. Функция - зависимость переменной у от переменной x , если каждому значению х соответствует единственное значение у . Переменную х называют независимой переменной или аргументом. Переменную у называют зависимой переменной. Все значения независимой переменной (переменной x ) образуют область определения функции. Все значения, которые принимает зависимая переменная (переменная y ), образуют область значений функции.

    Графиком функции называют множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты - соответствующим значениям функции, тоесть по оси абсцисс откладываются значения переменной x , а по оси ординат откладываются значения переменной y . Для построения графика функции необходимо знать свойства функции. Основные свойства функции будут рассмотрены далее!

    Для построения графика функции советуем использовать нашу программу - Построение графиков функций онлайн. Если при изучении материала на данной странице у Вас возникнут вопросы, Вы всегда можете задать их на нашем форуме. Также на форуме Вам помогут решить задачи по математике, химии, геометрии, теории вероятности и многим другим предметам!

    Основные свойства функций.

    1) Область определения функции и область значений функции .

    Область определения функции - это множество всех допустимых действительных значений аргумента x (переменной x ), при которых функция y = f(x) определена.
    Область значений функции - это множество всех действительных значений y , которые принимает функция.

    В элементарной математике изучаются функции только на множестве действительных чисел.

    2) Нули функции .

    Значения х , при которых y=0 , называется нулями функции . Это абсциссы точек пересечения графика функции с осью Ох.

    3) Промежутки знакопостоянства функции .

    Промежутки знакопостоянства функции – такие промежутки значений x , на которых значения функции y либо только положительные, либо только отрицательные, называются промежутками знакопостоянства функции.

    4) Монотонность функции .

    Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.

    Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.

    5) Четность (нечетность) функции .

    Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого х f(-x) = f(x) . График четной функции симметричен относительно оси ординат.

    Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любогох из области определения справедливо равенство f(-x) = - f(x ). График нечетной функции симметричен относительно начала координат.

    Четная функция
    1) Область определения симметрична относительно точки (0; 0), то есть если точка a принадлежит области определения, то точка -a также принадлежит области определения.
    2) Для любого значения x f(-x)=f(x)
    3) График четной функции симметричен относительно оси Оу.

    Нечетная функция обладает следующими свойствами:
    1) Область определения симметрична относительно точки (0; 0).
    2) для любого значения x , принадлежащего области определения, выполняется равенство f(-x)=-f(x)
    3) График нечетной функции симметричен относительно начала координат (0; 0).

    Не всякая функция является четной или нечетной. Функции общего вида не являются ни четными, ни нечетными.

    6) Ограниченная и неограниченная функции .

    Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . Если такого числа не существует, то функция - неограниченная.

    7) Периодическость функции .

    Функция f(x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f(x+T) = f(x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими. (Тригонометрические формулы).

    Функция f называется периодической, если существует такое число, что при любом x из области определения выполняется равенство f(x)=f(x-T)=f(x+T) . T - это период функции.

    Всякая периодическая функция имеет бесконечное множество периодов. На практике обычно рассматривают наименьший положительный период.

    Значения периодической функции через промежуток, равный периоду, повторяются. Это используют при построении графиков.