Как работают ракетные двигатели? Принцип работы реактивного двигателя. Описание и устройство


Жи дкостный раке тный дви гатель (ЖРД), реактивный двигатель, работающий на жидком ракетном топливе. Схема ЖРД разработана К. Э. Циолковским в 1903, доказавшим возможность использования ЖРД для межпланетных полётов. Предложенные им принципы конструктивного решения ЖРД были дополнены Ю. В. Кондратюком и сохранились в современных двигателях. Первые ЖРД были разработаны и испытаны американским учёным Р. Годдардом в 1923 и немецким учёным Г. Обертом в 1929. Над созданием ЖРД за рубежом работали французским учёный Р. Эно-Пельтри, немецкие учёные Э. Зенгер, Г. Вальтер и др. Первые отечественные ЖРД: ОРМ (опытный ракетный мотор) и ОРМ-1 построены и испытаны в Газодинамической лаборатории (ГДЛ) в 1930-1931 В. П. Глушко ; ОР-2 и двигатель-10 разработаны в Группе изучения реактивного движения Ф. А. Цандером и испытаны в 1932-33.

В 30-е гг. в СССР было создано семейство ЖРД ОРМ-1 - ОРМ-102. Эти ЖРД служили для отработки элементов конструкций, обеспечивающих зажигание, запуск, работу на режиме на различных жидких топливах, а также для практического использования в летательных аппаратах (например, ОРМ-50, ОРМ-52 и др.).

С 40-х гг. в СССР и за рубежом разработано большое количество типов ЖРД, нашедших широкое применение на ракетах различного назначения и на некоторых самолётах. В 1942 в Германии были начаты лётные испытания ракеты Фау-2 В. фон Брауна с ЖРД тягой 245 кн конструкции В. Тиля. В 1943-46 на самолётах В. М. Петлякова, С. А. Лавочкина, А. С. Яковлева и П. О. Сухого были проведены лётные испытания вспомогательных авиационных ЖРД, созданных в Опытно-конструкторском бюро, выросшем из ГДЛ (ГДЛ-ОКБ). В СССР в начале 50-х гг. полёты совершали баллистические ракеты, ЖРД которых обладали значительно большей тягой. В дальнейшем под руководством Глушко, А. М. Исаева, С. А. Косберга и др. советских конструкторов были разработаны и созданы двигатели (см. рис. 1 ), обеспечившие полёты первых советских искусственных спутников Земли, искусственных спутников Солнца, Луны, Марса, автоматических станций на Луну, Венеру и Марс, космических кораблей, всех геофизических и др. ракет в 1949-72. ЖРД получили широкое развитие в США, Великобритании, Франции и др. странах.

ЖРД состоит из камеры сгорания с соплом, систем подачи компонентов топлива, органов регулирования, зажигания и вспомогательных агрегатов (теплообменников, смесителей и др.). ЖРД развивает тягу от мн (микроракетные двигатели) до нескольких Мн (ЖРД 1-й ступени ракеты «Сатурн-5» создаёт тягу около 7 Мн ); удельный импульс достигает

для 2-компонентных и до

для 3-компонентных топлив. Масса двигателя, отнесённая к единице тяги, составляет 0,7-2 г/н ; габаритные размеры изменяются в широких пределах. ЖРД бывают с однократным и многократным запуском, одно- и многокамерные. Ракетные силовые установки могут быть одно- и многодвигательные. Система подачи топлива в ЖРД может быть вытеснительная или с турбонасосным агрегатом (ТНА) (рис. 2 ). ЖРД с ТНА бывают 2 основных схем: без дожигания генераторного газа и с дожиганием. В ЖРД с ТНА без дожигания генераторного газа продукты газогенерации после срабатывания в турбине выбрасываются в окружающую среду через вспомогательные сопла, часто являющиеся рулевыми. Генераторный газ, продукт неполного сгорания, имеет относительно низкую температуру, а вспомогательные сопла меньшую степень расширения, чем основные, поэтому удельный импульс, получаемый при истечении продуктов сгорания через вспомогательные сопла, меньше удельного импульса основной камеры ЖРД, т. е. имеет место потеря удельного импульса. В ЖРД с дожиганием генераторного газа относительно низкотемпературные продукты газогенерации, получаемые из основных компонентов топлива, после срабатывания в турбине направляются в камеру ЖРД для дожигания. Такие ЖРД не имеют потери удельного импульса, обусловленной приводом ТНА. По назначению различают ЖРД: основные (маршевые), корректирующие, тормозные, рулевые; микроракетные ЖРД могут быть стабилизирующими и ориентационными. Обычно ЖРД работают при постоянном давлении в камере сгорания, но микроракетные двигатели бывают импульсными. Разрабатываются комбинированные двигатели, использующие ЖРД: турбо- и воздушноракетные. По роду окислителя ЖРД бывают: азотно-кислотные, азоттетроксидные, кислородные, перекисьводородные, фторные и др.

Проблемы, возникающие при создании ЖРД, многочисленны. Необходим рациональный выбор топлива, удовлетворяющего заданным удельному импульсу и условиям эксплуатации, а также совершенство рабочего процесса для достижения заданного удельного импульса. Требуется устойчивая работа на заданных режимах, без развитых низкочастотных и высокочастотных колебаний давления, вызывающих разрушительные вибрации двигателя. Охлаждение двигателя, подверженного воздействию агрессивных продуктов сгорания при весьма высоких температурах (до 5000 К) и давлениях

усугубляемому в некоторых случаях присутствием конденсированной фазы, представляет значительные трудности. Большинство камер охлаждается одним из компонентов топлива. Если при этом не удаётся охладить сопло и камеру до температуры, требуемой условиями прочности (при использовании всего топлива), то в слое газа, прилегающем к стенке, создают пониженную температуру путём обогащения пристеночного слоя одним из компонентов. Часто применяется смешанное охлаждение, т. е. наружное и внутреннее одновременно (рис. 3 ). Для защиты стенок камеры и сопла от нагрева одновременно с их охлаждением широко применяют теплозащитные покрытия. Сложной задачей является надёжность подачи топлива (криогенного, агрессивного и др.) при давлениях

Лит.: Циолковский К. Э., Исследование мировых пространств реактивными приборами. Калуга, 1926; Добровольский М. В., Жидкостные ракетные двигатели, М., 1968; Алемасов В. Е., Дрегалин А. Ф., Тишин А. П., Теория ракетных двигателей, 2 изд., М., 1969; Петрович Г. В., Ракетные двигатели ГДЛ-ОКБ. 1929-1969, М., 1969; Волков Е. Б., Головков Л. Г., Сырицын Т. Л., Жидкостные ракетные двигатели, М., 1970; Rocket propulsion, Amst. - L. - N. Y., 1960.

Классификация, схемы и типы ЖРД

Тема 2. ЖИДКОСТНЫЕ РАКЕТНЫЕ ДВИГАТЕЛИ

Лекция №3

Вопросы к семинару.

1. Понятие и признаки страховых правоотношений.

2. Отличие страховых правоотношений от смежных отношений.

3. Объект страхового правоотношения.

4. Страховой интерес в страховании.

5. Субъекты страхового правоотношения.

Разработал начальник кафедры гражданского права, доктор юридических наук, профессор М.В.Рыбкина

Не претендуя на полноту и всесторонний учет современных ЖРД, классификация наиболее распространенных типов двигателей представлена на рисунке (см. Рис. 2.12.).

В основу предложенной схемы положен принцип деления всех схемно-технических решений на две крупные группы, отличающихся принципами обеспечения подачи компонентов топлива в камеру сгорания ЖРД. Это двигатели с насосной системой подачи и двигатели с вытеснительной системой подачи компонентов.

В первую группу входят, в основном, маршевые двигатели ракет-носителей, межконтинентальных баллистических ракет, многоразовых космических систем. Применение второй группы ЖРД, как правило, ограничено двигательными установками космических аппаратов, крупногабаритных модулей пилотируемых орбитальных комплексов и транспортных кораблей, а также двигательными установками средств межорбитальной транспортировки.

Рис. 2.12. Общая классификация ЖРД

Важным классификационным признаком ЖРД является также способ утилизации рабочего тела (продуктов сгорания топлива), получаемого на выходе из турбонасосного агрегата двигателя. По этому критерию, все двигатели принципиально делятся на двигатели «открытой» схемы и двигатели «закрытой» схемы. В ЖРД «открытой» схемы, генераторный газ после срабатывания на турбине сбрасывается либо без дополнительного использования, либо утилизируется в дополнительных устройствах. В ЖРД «закрытой» схемы, совершивший на турбине генераторный газ поступает в камеру сгорания и дожигается, за счет дополнительно поступающего одного или двух поступающих в камеру сгорания компонентов.

В зависимости от типа газогенератора ЖРД могут быть классифицированы на двигатели с газогенераторами на основных или вспомогательных компонентах топлива, а также иметь безгенераторную схему, когда необходимое для привода ТНА рабочее тело получают путем газификации одного из компонентов топлива в охлаждающем тракте камеры.

Для повышения эффективности и коэффициента полезного действия турбонасосного агрегата иногда применяются схемы с раздельными ТНА по линии горючего и окислителя, а также схемы, в которых турбонасосный агрегат содержит в своем составе и бустерные (подкачивающие) насосы, необходимые для создания необходимого давления на входе в двигатель, особенно при его запуске.



В зависимости от типа газогенератора, ЖРД могут быть классифицированы на двигатели с газогенераторами на основных или вспомогательных компонентах топлива, а также иметь безгенераторную схему, когда необходимое для привода ТНА рабочее тело получают путем газификации одного из компонентов топлива в охлаждающем тракте камеры.

Для повышения эффективности и коэффициента полезного действия турбонасосного агрегата иногда применяются схемы с раздельными ТНА горючего и окислителя, а также схемы, в которых турбонасосный агрегат содержит в своем составе и бустерные (подкачивающие) насосы, необходимые для создания необходимого давления на входе в двигатель, особенно при его запуске.

Сравнительно простые схемы характерны для ЖРД с вытеснительной системой подачи топлива.

В схеме с вытеснительной подачей топлива (см. рис. 2.13.), в баки с окислителем и горючим поступает газ из баллона со сжатым газом (например, с азотом), при этом его давление в баках компонентов топлива поддерживается постоянным с помощью редуктора. Давление в газовой подушке топливных баков обеспечивает вытеснение жидкофазных компонентов в камеру сгорания ЖРД. При этом совершенно очевидно, что давление в камере не может быть выше давления в баках. Отсечные клапана служат для обеспечения запуска и останова двигателя. Несомненным преимуществом представленной выше схемы является ее простота и, как следствие, надежность. Однако, при вытеснительной системе баллон со сжатым газом тяжел и существенно утяжеляются топливные баки. В общем случае:

(2.18.)

Давление газа в топливных баках;

Давление в камере сгорания ЖРД;

Потери давления в гидравлических трактах и элементах автоматики между баками и камерой двигателя.

Давление в газовой подушке топливных баков обеспечивает вытеснение жидких компонентов в камеру сгорания ЖРД. При этом совершенно очевидно, что давление в камере не может быть выше давления в баках. Отсечные клапана служат для обеспечения запуска и останова двигателя. Несомненным преимуществом представленной выше схемы является ее простота и надежность. Так как с повышением давления в камере, повышается экономичность двигателя, стремление повысить его, для данной схемы ЖРД сопряжено с ростом массы всех элементов системы подачи и, прежде всего, топливных баков. Подобные недостатки относятся и к вытеснительной системе подачи топлива с двухкомпонентными ЖГГ. Однако расхода газа, используемого для наддува баков горючего и окислителя, требуется меньше. В таком варианте схемы, поддув осуществляется продуктами сгорания, получаемыми в ЖГГ, а работоспособность «подогретого» газа значительно выше чем «холодного».

Эффект влияния на массовые характеристики двигательной установки с ЖРД может быть наглядно проиллюстрирован на следующем примере. Если бы была осуществлена замена двигательной установки второй ступени ракеты-носителя «Сатурн – 5» на установку с вытеснительной системой подачи при том же давлении в камере сгорания ЖРД, то прирост массы такой двигательной установки оказался бы равным массе космического корабля «Аполлон», что сделало бы невозможным реализацию лунной программы.

Для варианта вытеснительной схемы (см. Рис. 2.14.) можно ожидать некоторое снижение потерь, так как вытеснение компонентов будет осуществляться подогретыми продуктами сгорания, вырабатываемыми в ЖГГ.

Из пояснений следует, почему вытеснительная система подачи с баллонной системой подачи применяется исключительно в двигателях малой тяги с давлением в камере сгорания ЖРД не более 10-12 · 10 5 Па.

Практическое применение ЖРД малой тяги (ЖРДМТ) находят при создании объединенных двигательных установок (ОДУ) для искусственных спутников земли (ИСЗ), космических аппаратов (КА) и космических кораблей (КК). Находясь на орбите, когда за бортом летательного аппарата давление близко к нулю, удельный импульс может иметь достаточно высокое значение, даже при невысоком значении давления в камере. Следует вспомнить, о повышении удельного импульса от отношения давления в камере сгорания к давлению на срезе сопла (см. Рис. 2.10.).

Схемных решений ОДУ с использованием ЖРДМТ может быть рассмотрено достаточно много. В первую очередь, различие вариантов схем будут зависеть от требований, определяемых назначением ЛА. Это могут быть двигатели, как на однокомпонентных, так и на двухкомпонентных топливах. Схемы будут отличаться по принципам регулирования и стабилизации тяги. На определение схемного решения могут влиять и иные факторы. Однако, во всех вариантах схем, давление в аккумуляторах газа должно быть выше давлений в камерах, что определяет особенности вытеснительной системы подачи компонентов.

Представление всех или, хотя бы, большинства возможных схем двигательных установок с вытеснительными системами подачи, в данном учебном пособии, не входит в планы авторов. Поэтому, для иллюстрации возможных схемных вариантов, в качестве примера, приводится схема объединенной двигательной установки (ОДУ) для искусственного спутника земли (ИСЗ) на двух компонентном топливе (см. Рис. 2.15.).

Рис. 2.15. Схема ОДУ с двухкомпонентным ЖРДМТ для ИС.

1. Редуктор давления, 2. ЖРД маневрирования (Каждый с тягой 22 Н),

3. Апогейный ЖРД (тяга 490 Н)

Конструкции и принципиальные особенности функционирования ЖРДМТ весьма разнообразны. К числу наиболее важных проблем по созданию ЖРДМТ, можно отнести обеспечение работоспособности камер сгорания. Особенно, если учесть, что требуемые для ЖРДМТ ресурсы, значительно, превышают ресурсы для камер обычных ЖРД.

В перечень подобных можно включить: осуществление запуска, организацию рабочего процесса, выбор системы противодействия температурному воздействию на стенки камер и ряд других. Большая часть трудно решаемых проблем, связана, прежде всего, с чрезвычайно низкими значениями рабочих расходов компонентов. Так для некоторых камер расходы окислителя м горючего не превышают 0,5 и 0,3 г/с соответственно. Подобное обстоятельство, например, определяет невозможность использования регенеративного охлаждения стенок (как наиболее эффективного), а выбирать для изготовления стенок камер тугоплавкие металлы, применять термостойкие теплозащитные покрытия, значительно ниже оболочек

Для двигательных установок, одна из схем которых приведена на рисунке 2.15., используемых в составе транспортного космического корабля или иного ЛА и находящихся длительное время в полете, должны осуществляться дозаправки топливных баков. Варианты систем дозаправки, представлены на рисунке (см. Рис. 2.16.).

Рис. 2.16. Схемы топливных баков дозаправляемых в полете ЛА.

1. Стенки бака; 2. Патрубок наддува; 3. Поршень; 4. Заборник топлива; 5. Сильфон;

6. Эластичный мешок; 7. Штанга с отверстиями для наддува; 8. Пластичная диафрагма; 9. Пластичные смачиваемые перегородки; 10. Центральная труба для забора топлива.

А - с поршнем; Б - с сильфонным вытеснительным устройством (топливо вне сильфона); В - с сильфонным вытеснительным устройством (топливо внутри сильфона); Г- с вытеснительным мешком (топливо вне мешка); Д - с вытеснительным мешком (топливо внутри мешка); Е - с пластичной диафрагмой; Ж - с капиллярным заборным устройством.

С более полными сведениями по системам дозаправки, можно ознакомиться в учебном пособии, которое упоминается в списке литературы.

Для реализации ЖРД средних, больших и сверх больших тяг, требуется создание двигателей, с возможно большим повышением давлений в камере сгорания. В подобных вариантах двигателей используются схемы с турбонасосной системой подачи компонентов топлива.

На рисунке (см. Рис. 2.17.) представлена структурная схема ЖРД с насосной системой подачи компонентов. Характерной особенностью рассматриваемой схемы следует считать, что отработанный на турбине газ просто сбрасывается в окружающую атмосферу. Следует отметить, что продукты сгорания после турбины обладают еще значительной работоспособностью и не использование их, отрицательно сказываеся на эффективности двигателя. Тем не менее, подобные схемы могут реализовываться.

Рис. 2.17. Пневмогидравлическая схема ЖРД, с турбонасосной подачей компонентов в камеру сгорания.

Компонент унитарного ракетного топлива (например, перекись водорода – Н 2 О 2), из бака, подаются в жидкостный газогенератор. Газогенератор – агрегат, предназначенный для выработки высокотемпературного генераторного газа, используемого для привода турбины ТНА. Турбина обеспечивает крутящим моментом насосы горючего и окислителя. Основные компоненты топлива подаются насосами в камеру двигателя, причем горючее, как правило, используется для охлаждения камеры, для чего оно подается в зазор между ее стенками, обычно называемую, «рубашку» охлаждения. Окислитель подается непосредственно в форсуночную головку камеры, где смешивается с подогретым в охлаждающем тракте горючим. Процесс взаимодействия компонентов топлива происходит в камере сгорания. Образующиеся высокотемпературные продукты сгорания, проходят через критическое сечение камеры и расширяются в сопле до сверхзвуковых скоростей. Истечение продуктов сгорания является конечной фазой работы ЖРД и формирует тягу ракетного двигателя.

Схемы подобного типа, которые носят названия, «открытые схемы», могут быть более эффективными, если после срабатывания на турбине, генераторный газ может сбрасываться через дополнительные устройства, обеспечивающие утилизацию энергию сбрасываемого газа...

В общем случае величина тяги ЖРД «открытой» схемы, может складываться из величины равной сумме тяг, производимых основной камерой и дополнительным затурбинным устройством. Подобный же эффект может быть получен, при обеспечении отвода генераторного газа, во вспомогательное сопло; внедрения в закритеческую часть основного сопла, в разных вариантах конструктивного оформления основного сопла.

На рисунке (см. рис. 2.18) представлены схемы устройств, в которых генераторный газ после реализации части своей энергии на турбине, используется для создания дополнительной тяги.

Рис.2.18 Схемы устройств, утилизирующих затурбинный газ

В любом из представленных вариантов, дополнительная тяга, реализуемая в устройстве, должна быть учтена.

Т.е. имеет место соотношение:

где: - суммарная тяга ЖРД «открытой» схемы;

Тяга, производимая основной камерой ЖРД;

Тяга, производимая в вспомогательных устройствах.

Используя ранее приведенные зависимости для определения удельного импульса (см. уравнения 2.11, 2.12. и 2.13), преобразуем выражение 2.19. к виду 2.20.

(2.20.)

где: - эффективный удельный импульс ЖРД «открытой» схемы;

Удельные импульсы, обеспечиваемые основной камерой и вспомогательной устройствами, соответственно;

Массовый расход топлива в газогенераторе и суммарный массовый расход топлива в ЖРД.

Анализ зависимости 2.20. показывает, что величина эффективного удельного импульса тем больше, чем меньше доля топлива расходуемого через газогенератор и чем более эффективно утилизируется генераторный газ после срабатывания на турбине. Существует вполне определенная зависимость, характеризующая влияние давления в камере ЖРД «открытой» схемы на величину удельного импульса. В отличие от монотонного возрастания величины . В рассмотренном выше общем случае, при увеличении давления в камерах ЖРД, работающих по схеме без дожигания генераторного газа, наблюдается явно выраженная область, отвечающая оптимальному значению (см. Рис.2.19.).

Рис.2.19. Зависимость удельного импульса от давления в камере

двигателя «открытой» схемы

Появление экстремума в зависимости объясняется необходимым увеличением расхода топлива через газогенератор при росте давления в камере сгорании. Увеличение расхода требуется для повышения мощности турбины, чтобы обеспечить возросшую потребность насосов, в большем крутящем моменте. Подобное положение приводит к возрастанию доли неэффективно используемого топлива и, как следствие, к снижению удельного импульса ЖРД.

Допустимо предусмотреть сброс газогенераторного газа осуществлять через специальные поворотные сопла, используемые для управления полетом ракеты

В целях максимального использования возможностей ракетного топлива усилиями российских ученых и инженеров была разработана схема организации рабочего процесса ЖРД, предусматривающая дожигание генераторного газа в камере сгорания после его срабатывания на турбине ТНА, так называемые, «схемы с дожиганием генераторного газа» (см. рис. 2.20.).

Рис. 2.20. Структурные схемы ЖРД с дожиганием генераторного газа

1. и 2. Баки с горючим и окислителем, 3. ЖГГ, 4. и 5. насосы горючего и окислителя, 7., 8. и 9. клапаны, 10. камера сгорания.

Основное особенность «закрытой» схемы, выполненной по варианту Рис. 2.20, заключается в следующем. Весь окислитель, необходимый для работы КС подается в газогенератор. Туда же подается минимально необходимое количество горючего. Соотношение компонентов топлива, подаваемых в газогенератор, диктуется исключительно необходимостью получения газа, с температурой, приемлемой для обеспечения термомеханических нагрузок турбины. После срабатывания генераторного газа на турбине, имеющего в рассматриваемом случае избыток окислительного компонента, газ подается в КС. Туда же поступает дополнительное количество горючего, необходимого для поддержания оптимального соотношения компонентов топлива. В этом варианте, ЖРД работает по схеме «газ (окислитель) – жидкость (горючее)». Возможен и вариант организации рабочего процесса, когда в газогенератор подается избыточное количество горючего при недостатке окислителя. В первом случае говорят об окислительном газогенераторе, во втором – восстановительном.

И тот, и другой способы имеют свои преимущества и недостатки. В случае восстановительного газогенератора существенно легче решаются вопросы обеспечения термической устойчивости, поскольку при высоких температурах рабочего процесса в газогенераторе гораздо легче защитить конструкционные материалы (в основном, металлы и их сплавы) от возгорания при наличии восстановительной среды. Вместе с тем, избыток горючего при недостаточном количестве окислителя чреват целым рядом негативных последствий, связанных с неполнотой сгорания горючего, что приводит в случае углеродсодержащих компонентов к выпадению твердой фазы углерода и, как следствие, к эрозионному износу лопаток турбины и других элементов ТНА.

Окислительная схема газогенерации лишена этих недостатков, но ей присущи свои особенности. Они заключаются в необходимости применения тугоплавких, устойчивых к возгоранию в окислительной среде конструкционных материалов, что приводит к повышению стоимости двигателей, потенциальному снижению их устойчивости при воздействии микрочастиц в окислительном газовом потоке, поступающем на лопатки турбины, что затрудняет создание высоконадежных ЖРД.

На практике восстановительная схема газогенерации применяется, чаще всего, в кислородно–водородных ЖРД, где горючее (жидкий водород) не содержит углерода и, следовательно, принципиально отсутствует опасность сажеобразования. В перспективе рассматривается возможность использования в качестве ракетного горючего первого члена гомологического ряда предельных углеводородов – метана (СН 4), содержание углерода в котором минимально, что делает принципиально возможным эффективное его использование в газогенераторах восстановительной схемы.

Представленная выше схема ЖРД осуществлена по схеме «газ–жидкость». По этому варианту схемы, предусматривается организация рабочего процесса с дожиганием генераторного газа.

В другом варианте, дожигание генераторного газа может быть построено по схеме «газ – газ». Основное отличие этой схемы состоит в наличии двух газогенераторов. Один газогенератор работает по окислительной схеме, второй – восстановительной. Предпочтительно, для восстановительного газогенератора использовать водород, или углеводородное горючее с минимальным массовым содержанием углерода (керосин и т.п.), а в качестве окислителя – жидкий кислород. Так введение жидкого водорода в состав ракетного горючего, позволяет в значительной степени снизить выделение конденсированной фазы углерода (сажи), тем самым обеспечить возможность более надежной работы восстановительного газогенератора.

Продукты газогенерации поступают на турбины окислительного и восстановительного газа, а затем, после прохождения турбин, в камеру сгорания, где и происходит их окончательное взаимодействие, с требуемым соотношением компонентов (см. Рис. 2.21.).

Рис. 2.21. Пневмогидравлическая схема ЖРД с дожиганием генераторных газов.

1. и 2. Баки с горючим и окислителем, 3. и 4. ЖГГ газа с избытком горючего и ЖГГ газа с избытком окислителя, 5. и 6. Насосы горючего и окислителя, 7. и 8. Турбины газа горючего и газа окислительного, 9. и 10. Клапаны, 11. Камера сгорания.

Подобная схема может быть в несколько ином исполнении, когда два газогенератора. ЖГГ с избытком горючего обеспечивает наддув бака горючего. Второй газогенератор вырабатывает окислительный высокотемпературный газ, одна часть которого поступает на турбину и после турбины в основную камеру сгорания. Вторая - меньшая часть в смесителе дополняется дополнительным количеством окислителя и используется для надува окислительного бака.

Для водородно-кислородного двигателя, обычно используется безгазогенераторная схема (см. рис. 2.22.).

Рис.2. 22. Безгазогенераторная схема ЖРД

1. Камера сгорания, 2. регулятор тяги, 3. Насос жидкого водорода. 4. Насос жидкого кислорода, 5. Редуктор оборотов, 6. турбина, 7. 8. и 9.пуско-отсечные клапаны, 10. клапан системы зажигания..

В пневмогидравлической безгазогенераторной схеме работа ЖРД предусматривается следующий порядок выполнение функционирования. Компоненты из ба­ков через входные клапаны поступают на вход насосов. ТНА двига­теля имеет двухвальную схему с параллельными валами и шестеренча­тым редуктором. Это важная особенность данного ТНА. Центробежный насос водорода установлен на одном валу с турбиной, имеет две ступени и осевой вход. Первая ступень насоса шнекоцентробежная. Шнекоцентробежпый насоскислорода выполнен одноступенчатым,. Турбина - осевая двухступенчатая, реактивная.

Жидкий кислород через блок клапанов, с электромеханическим регулятором соотношения компонентов, от насоса поступает в полость смесительной головки. В полете, посигналам системы опорожнения баков, соотношение компонентов может изменяться в пределах ± 10 %. Водород из насоса по трубопроводу подводится к входному коллектору охлажда­ющего тракта камеры.

Жидкий водород из насоса поступает в кол­лектор, расположенный в области критического сечения сопла. Из кол­лектора, по части трубок, водород направляется к срезу сопла, затем, по другой части трубок, движется к коллектору возле головки. Из этого коллектора газообразный водород, нагретый в охлаждающем тракте до температуры 200К, от регулятора тяги направляет­ся на турбину. Регулятор тяги работает на принципе перепуска части водо­рода на выход из турбины. Из турбины отработанный водород через пуско-отсечной клапан, поступает по газоводу в смесительную головку. Все основные клапаны управляются газообразным гелием с помощью управляющих клапанов.

В схеме показаны еще клапаны, которые обеспечивают работу системы захолаживания двигателя перед запуском. Подобная операция необходима для нормального осуществления запуска двигателя использующего криогенные компоненты. что необходимо для гидравлически систем. Наддув баков осуществляется газообразным гелием, запас которого находится в специальном баллоне.

Выше были рассмотрены ряд схем ЖРД, в которых для подачи компонентов в КС используются ТНА. При малых давлениях во входных патрубках могут возникать срывные режимы, характеризующиеся началом кавитации в межлопаточных полостях насосов. Во всех представленных пневмогидравлических схемах ЖРД оснащенных ТНА, в баки с компонентами от баллонов через редукторы подается газ, осуществляющий их наддув. В этом случае можно было бы рассчитывать на получение требуемого давления на входе в насосы. В тоже время давление в баках, необходимое для нормальной работы шнекоцентробежного насоса, часто недопустимо велико, что приводит к заметному уве­личению толщины стенок и массы баков. Отмеченного недостатка можно избежать, если на выходе из баков устанавливать дополнительного подкачивающего (бустерного) насосного агрегата (БНА). Установка БНА, обес­печивающего работу основного насоса ТНА, позволяет суще­ственно снизить величину наддува баков и, следовательно, их массу. Поэтому, конструкция современного ТНА немыслима без последовательного использования различных насосов скомпонованных по многоступенчатой схеме. Роль бустеров может осуществлять лопаточный осевой (шнек) или струйный насос (эжектор).

Подкачивающие бустерные насосные агрегаты (БНА), которые обычно называют преднасосы, располагают в непос­редственной близости от бака с компонентом, что исключает гидравлические потери при подаче компонента от бака до входа в насос БНА. На рисунке (см. рис. 2.30).

Рис. 2.30. Схемы бустерныых устройств

Вариант а). 1. Бак с компонентом, 2. центробежный преднасос, 3. жикостная турбина преднасосного агрегата, 4. турбина основного ТНА, 5. насос ТНА.

Вариант б). 1. Бак с компонентом, 2. преднасос, 3. газовая турбина преднасосного агрегата, 4. насос основного ТНА.

Вариант в). 1. Бак с компонентом, 2. струйный преднасос (эжектор), 3. сопло эжектора, 4. насосос основного ТНА., 5. Магистраль подачи компонента к соплу эжектора.

В схеме варианта «а», гидравлическая турбина БНА приводится в действие жидкостью высокого давления, отбираемой от насоса ТНА. После сра­батывания на турбине жидкость возвращается в напорную магистраль. В схеме варианта «б», газовая турбина работает на газе основного ЖГГ, а в варианте «в», струйный преднасос–эжектор, также как и варианте схемы «а», запитывается компонентом от насоса основного ТНА.

Как это следует из приведенного краткого анализа эффективности возможных вариантов схем ЖРД, повышение давления в камере не во всех случаях, приводит к увеличению удельного импульса. Разобранные особенности построения схем ЖРД, в большей степени относятся к схемам двигателей больших и сверхбольших тяг, а также, в определенной степени к двигателям средних тяг. На рисунке (см. Рис 2.31.) приводится качественная зависимость удельных импульсов камеры и ЖРД, выполненных по вытеснительной схеме, по «открытой» схеме и по «закрытым» схемам различных вариантов.

Рис. 2.31. Зависимость удельного импульса от давления в камере

Из анализа графика следует, что в двигателях выполняемых о схеме жидкость- жидкость, с увеличением давления удельный импульс камеры монотонно возрастает. Однако, в дальнейшем, из-за возрастания расхода газа на привод ТНА (см. Рис. 2.26.), удельный импульс двигателя увеличивается лишь до определенного предела. Увеличение удельных импульсов двигателей, построенных по замкнутым схемам, с ростом давления в камере увеличиваются, хотя инее очень существенно.

При выборе варианта ЖРД для вновь проектируемого ЛА, кроме использования данных полученных из анализа графика представленного на рисунке 2.18, следует рассмотреть зависимость, называемую высотной характеристикой (Рис. 2.32.).

Рис. 2.32. Высотная характеристика.

На рисунке. 2.32. представлены изменения основных параметров двигателя с изменением противодавления. Как видно из рисунка, протекание высотной характе­ристики ЖРД с изменением дав­ления окружающейсреды мож­но разделить на два участка: участок работы сопла без скач­ка уплотнения I и участок ра­боты сопла со скачком уплотне­ния П.

На участке c бесскачковым режимом работы сопла, тяга и удельная тяга линейно уменьшаются с ростом давления окружающей среды. В этом случае рабочий процесс в камере и ее сопле автономен от давления окружающей среды. При некотором давлении р к в сопло камеры входит скачок уплотнения - линейность изменения тяги и удельной тяги нарушается. Характер изменения тяги и удельной тяги на режиме работы сопла со скачком уплотне­ния определяется закономерностью движения скачка уплотнения в глубь сопла и восстановлением давления за скачком уплот­нения. На рисунке 2.33. показан пунктирными линиями характер из­менения основных параметров ЖРД, для случая, если бы скачок уп­лотнения не входил в сопло и при всех давлениях сопле проис­ходило обычное расширение газа. С момента же вхождения скачка уплотне­ния в сопло, давление за скачком увеличивается по мере проникновения скачка уплотнения в глубь сопла. По­добный режим работы наблюдается у ЖРД первой ступени межкон­тинентальных ракет, давление на срезе сопла которых выбирается достаточно малым из условия получения средней максимальной удельной тяги на активном участке траектории движения ракеты. или у ракет, У по­добного типа ракет параметры двигателя выбираются из условия получения средней максимальной удельной тяги на воздушном участке траектории движения. Поэтому для этих ракет давление на срезе сопла полу­чается довольно низким и атмосферного давления до­статочно, чтобы скачок уплотнения вошел в глубь сопла. На рисунке видно, что в указанных условиях ре­жим работы сопла со скачком уплотнения улучшает характери­стики ЖРД.

Для варианта ракеты, дл которой необходимо чтобы тяга в полете изменялась, ЖРД должен быть выполнен с дроссельной характеристикой (см.Рис.2.33.).

Рис. 2.33. Дроссельная характеристика ЖРД.

Как это следует из рисунка, для изменения величины тягового усилия, требуется изменение расходов компонентов. Однако следует помнить, что изменение расхода обеспечивается коррекцией перепада на форсунках в соответствии со следующим выражением.

, (2.21.)

где G - расход компонента через форсунку,

Коэффициент расхода форсунки,

F ф – площадь выходного сечения сопла форсунки,

Плотность компонента,

Перепад давления на форсунке.

Кроме представленных вариантов, иным направлением схемного совершенствования, являются трехкомпонентные ЖРД. В ЖРД подобного типа одновременно используется в качестве горючего какое либо углеводородное (например, керосин) и жидкий водород, а в качестве окислителя – жидкий кислород. Трехкомпонентные двигатели позволяют также в полной мере реализовать возможность эффективного использования различных ракетных топлив на борту одного и того же летательного аппарата. Баллистические и массовые расчеты эффективности применения различных топлив в двигательных установках ракет – носителей, баллистических ракет, многоразовых космических систем во многом определяется характеристиками применяемого ракетного топлива. Как уже показывалось ранее, топлива определяют значение удельного импульса ЖРД, который, особенно важен для двигателей верхних ступеней РН, в то время как первые ступени могут быть оснащены ЖРД с не столь высоким значением , но при этом плотность топлива должна быть максимальной.

Трехкомпонентные двигатели позволяют обеспечить работу первых ступеней при минимальном содержании водорода в ракетном горючем. Т.е., указывается на целесообразность применения топлива с большей плотностью. На последующих же этапах полета ракеты, водород, как горючее более энергоемкое и меньшей плотности, является более предпочтительным, так как его использование приведет к повышению удельного импульса ЖРД, а, следовательно, и эффективности всего летательного аппарата.

ЖРД может обеспечить требуемые параметры и характеристики, при условии включения в состав пневмогидравлической схемы (ПГС) агрегатов автоматики и управления двигателем. К числу наиболее важных функций, осуществляемых агрегатами ПГС можно отнести:

· стабилизацию соотношения компонентов подаваемых в камеру сгорания;

· поддержание требуемого уровня или регулирование тяги;

· обеспечение контроля и управления за работой двигателя и его основных агрегатов (камеры сгорания, ТНА, газогенератора и, возможно, некоторых других), определяющих его общую работоспособность.

Для конкретных типов двигателей, представленный перечень может быть расширен.

Как уже не раз отмечалось, для настоящего учебного пособия, соблюдая условия краткости представляемых материалов, изложить возможные варианты ПГС с описаниями схем, входящих в состав двигателей агрегатов автоматики и регулирования, нет возможности. Можно лишь указать в списке литературных источников, перечнень специальных учебных пособий по данному вопросу.

Однако схемы и конструктивные особенности основных агрегатов будут представлены.

Выделяя словом «основные» агрегаты, авторы имеют ввиду агрегаты, обеспечивающие наиболее важные функциональные параметры и характеристики ЖРД. К таковым можно отнести камеры сгорания, турбонасосные агрегаты, газогенераторы. Эти агрегаты определят тип ЖРД. Работы по их созданию требуют наибольших временных и финансовых затрат, В тоже время необходимо подчеркнуть, что степень важности в определении работоспособности ЖРД, а порой и надежности, не упомянутых в числе основных агрегаты (клапаны, регуляторы, и др.), требуют не меньшего внимания к их конструированию и отработке.

2.5.1. Камеры сгорания ЖРД

Камера сгорания разрабатывается в определенной последовательности. Первоначально, если в техническом задании специально не оговариваются, выбираются компоненты и оптимальное давление в КС Конструктивное оформление КС определяется после выполнения газодинамических расчетов. По результатам этих расчетов, устанавливаются геометрические размеры и газодинамический профиль КС (см. Рис. 2.34.).

Рис. 2.34. Газодинамический профиль камеры сгорания.

КС ЖРД испытывает чрезвычайно большие тепловые нагрузки. Для двигателей средних, больших и очень больших тяг, практически для всех типов компонентов, КС выполняется с наружным охлаждением. Для камер малых тяг, вопросы температурной стойкости, решаются с учетом ресурса, геометрически обводов камеры, тягового усилия и других специфичных особенностей каждого варианта камеры. Основные конструктивные элементы КС, выполненной с внешним охлаждением, представлены на рисунке (см. Рис.2.35.)

Рис. 2.35. Камера сгорания со связанными оболочками

1. Корпус камеры, 2. Смесительная головка, 3.Цилиндрическая часть камеры, 4.Сопло, 5. «Рубашка» камеры, 6. Силовой кронштейн.

а. Узел пояса завесы, б. Узел подвода охладителя (горючего), в. Кронштейны крепления камеры

На рисунке 2.35., ввод охлаждающего компонента в рубашку камеры осуществляется в сечении внешнего диаметра сопла. Это не единственное решение. Проектант обычно выбирает вариант установки коллектора ввода компонента, в зависимости от ряда причин (степень расширения сопла, стремления снизить сопротивление по тракту, прочности и т.п.).

На рисунке (см. рис. 2.36) приводятся варианты расположения сечений ввода.

Рис. 2.36. Варианты расположения сечений ввода охлаждающего компонента в межоболочечный зазор «рубашки» камеры.

а - на выходном сечении сопла. б .- на выходном сечении и в среднем сечении сопла, в – в среднее сечение сопла

В современных двигателях большой тяги, для повышения термической стойкости камеры применяется целый ряд конструктивных мер, направленных на снижение температуры наиболее теплонапряженных элементов камеры сгорания.

К числу таких мер следует отнести:

· организацию регенеративного охлаждения за счет прокачки относительно холодных компонентов топлива через «рубашку» охлаждения;

· использование, так называемых, «завес охлаждения», представляющих собой специальные зоны теплонапряженных областей камеры, снабженные устройствами для подвода дополнительного количества одного из компонентов топлива (как правило, горючего) в целях снижения локальных тепловых потоков;

· применение специальных мер в наиболее нагруженном в тепловом отношении - критическом сечении камеры (уменьшение межоболочечного зазора, вставок тугоплавких материалов в критической части сопла).

Для организации внешнего охлаждения, величина зазора регламентируется специальными проставками – связями. Они же и обеспечивают прочность камеры и устойчивость внутренней оболочки камеры, когда давление охлаждающего компонента в зазоре «рубашки» превышает давление в камере. На рисунке (см. Рис. 2.30.) приводятся виды проставок используемых в современных конструкциях КС. Проставки, внешняя и внутренняя оболочки соединяются пайкой, состав припоя стоек в компоненте и сохраняет при нагревании стенок прочностные характеристики.

Рис. 2.37. Типы связей оболочек КС.

а . гофрированная проставка, б . оребрение внутренней оболочки, в . трубчатая камера.

Существует и еще одно важное обстоятельство повышения работоспособности КС, обеспечиваемое за счет введения в конструкцию КС связей. Корпус камеры ЖРД испытывает значительное силовое нагружение. Процесс сгорания может проходить при давлениях продуктов в нескольких десятков МПа. При этом давление охлаждающего компонента в межоболочечном зазоре всегда должно быть больше чем давление в камере. В противном случае компонент не сможет поступить в КС. Следовательно, внутренняя оболочка камеры, находясь под внешним перепадом давлений, равным разнице давления подачи и давления в камере, может сложиться – потерять устойчивость. И если, при идущем процессе в камере, она прогрета, то механические характеристики материала оболочки, имеют пониженное значение. На первых образцах двигателей, оболочки внешняя и внутренняя, работали независимо одна от другой (см. Рис. 2.38.), что исключало возможность повышения давления в КС.

Рис. 2.38. Камера сгорания двигателя РД-1100

1. Форсуночный блок с системой зажигания, 2. независимо работающие (без связей) оболочки камеры. 3 сопловой блок.

В современных ЖРД, как это было отмечен ранее, КС выполнятся со связанными оболочками. При введении охлаждающего компонента в «межрубашечный» зазор на выходном срезе сопла (наиболее часто исполняемая схема) (см. Рис. 2.39.) определяется наибольший перепад давлений, действующий на внутреннюю оболочку. В этом сечении давление компонента максимальное, а давление в камере близкое к нулю. Оценка прочностной надежности оболочек камеры (прочности оболочек, устойчивости внутренней оболочки, прочности связей и других позиций) должна производиться с учетом этого обстоятельства.

Рис. 2.39. Распределение нагрузок по длине камеры

На графике использованы следующие обозначения: р г - давление в камере, р ж – давление охлаждающего компонента в «межоболочечном» зазоре, t г – температура газа в камере, t ср вн.о. – средняя, по толщине внутренней оболочки, температура, - перепад давлений на форсунке, m охл. – массовый расход охлаждающего компонента, L – длина камеры..

Следует отметить, что варианты связей, приведенные в настоящем пособии, как наиболее часто используемые в современных конструкциях КС, проверены большим числом опытов и хорошо зарекомендовали себя, при эксплуатации многочисленных образцов ЖДД различных размерностей.

Другим средством, способствующим снижению теплового воздействия на внутреннюю стенку камеры, является введение в конструкцию узлов завесы. На рисунке (см. рис. 2.40) изображены варианты конструкторских решений узлов завес, через которые вводится горючие обеспечивающее создание газо-жидкостной пленки на внутренней поверхности оболочки «рубашки».

Рис.2.40. Варианты узлов завесы камеры.

ас отверстиями, бс щелевым зазором

Для камер сгорания ЖРДМТ характерны два тип режимов работы (см. Рис. 3.7.). Для камеры с установившимся режимом работы, система охлаждения внутренней стенки может быть избрана по принципу камер только что разобранных. Вариант ЖРДМТ, работающий по импульсному режиму, может использовать камеру с «емкостной системой» защиты стенки камеры. Этот вариант предусматривает исполнение единой оболочки (без «рубашки охлаждения») увеличенной толщины и с дополнительными кольцами жесткости (см. Рис. 2.41.).

Рис. 2.41. Камера сгорания ЖРД малой тяги.

1. Блок клапанов горючего, 2. Камера сгорания, 3. Узел крепления соплового насадка, 4. Сопловой насадок, 5. Воспламенитель, 6. Блок клапанов горючего.

Подобное решение допустимо, так как в перерывах между функционированием камеры, стенка «отдыхает» от воздействия продуктов сгорания и прогрев ее снижается.

Особо важным узлом является головка КС. На днищах головки располагаются форсунки, через которые поступают компоненты в камеру. Типы форсунок значительно различаются по конструктивному оформлению. На рисунке (см. рис. 2.42). приведены некоторые варранты струйных, центробежных и двухкомпонентных форсунок, которые используются в двигателях схемы «жидкость-жидкость».

Рис. 2.42. Варианты жидкостных форсунок.

1. Переднее днище, 2. Среднее днище, 3. Двухкомпонентная струйно-струйная форсунка, 4. Однокомпонентная форсунка с завихрителем, 5. Однокомпонентная струйно-центробежная форсунка, 6. Двухкомпонентная центробежная форсунка с тангенциальными отверстиями, 7. Распорная втулка.

Для двигателей, выполняемых по схемам с дожиганием генераторного газа, головки камер оснащаются газожидкостными форсунками (Рис.2.43.).

Рис. 2 43. Варианты газо-жидкостных форсунок.

1. Переднее днище, 2. Среднее днище, 3. Струйно-струйная форсунка, 4. Струйно-центробежная форсунка, 5. Струйно-центробежная форсунка со шнековым завихрителем, 6. Двухкаскадная (комбинированная) форсунка: первоый каскад – газожидкостная струйно-струйная, второй каскад – жидкостная центробежная с тангенциальными отверстиями.

Вариант форсунок для смесительной головки выбирается проектантом на основании ранее полученного опыта отработки камеры двигателя – прототипа и выполнения расчетов. Расположение форсунок на днищах головки диктуется желанием проектанта получить наилучшую полноту сгорания компонентов и необходимостью создания эффективного пристеночного слоя из горючего. Последняя из упомянутых позиций, должна обеспечить допустимый режим прогрев внутренней стенки камеры (см. рис. 2.44).

Рис. 2.44. Схемы расположения форсунок на головках КС

а – Сотовое расположение форсунок.

1.Струйно-центробежнаые форсунки, 2. Центробежные форсунки.

б – Шахматное расположение форсунок

1. Форсунка окислителя 2. Форсунка горючего.

в – Расположение форсунок по концентрическим окружностям

1 Двухкомпонентная форсунка, 2. Однокомпонентная форсунка

Из рассмотрения рисунков следует, что вне зависимости от схемы расположения форсунок на днищах смесительной головки, необходимо сформировать расположение на внешнем диаметре надежную завесу из форсунок горючего.

КС ЖРД имеет еще большое число узлов, необходимых для нормального функционирования двигателя. Это коллекторы ввода и вывода компонентов, узлы поясов завес, узлы соединений частей камеры (смесительной головки, цилиндрической и сопловой секций), узлы запуска и останова, кронштейны, передающие тяговое усилие к ЛА и др.. Все перечисленные узлы, должны быть спроектированы, оценены расчетами, а также подвергнуты испытаниям, подтверждающих их работоспособность. Желание авторов осветить подобные особенности создания КС, не увязывается с необходимостью обеспечить краткость представляемого учебного пособия.

Оценка совершенства КС характеризуются коэффициентом полноты удельного импульса, определяемого по следующему выражению:

, (2.22.)

где: - коэффициент полноты удельного импульса,

I уд.п - экспериментально измеренный удельный импульс,

Теоретический удельный импульс,

Коэффициент совершенства процесса в камере,

Коэффициент совершенства процесса в сопле камеры,

Коэффициент при проектировании определяют, опираясь на статистические данные, полученные при испытаниях двигателей работающих на аналогичных компонентах. Обычно, величина этого коэффициента составляет 0,96…0,99.

Коэффициент же сопла () вычисляется с учетом потерь на трения () и потерь из-за неравномерности поля скоростей потока на срезе сопла (). Кроме того, учитываются дополнительные потери (), связанные с охлаждением потока в сопле, степень неравновесности и другие:

. (2.23.)

В общем случае, численные значения перечисленных коэффициентов укладываются следующие пределы: = 0, 975… 0, 999, = 0,98…0,99 и = 0,99…0,995. В таком случае, величина = 0,945…0, 975.

С учетом приведенных значений, величина полноты удельного импульса может находиться в пределах от 0, 9 до 0,965.

2.5.2. Жидкостные газогенераторы (ЖГГ).

Конструктивные решения и особенности внутрикамерных процессов в значительной степени зависят, устанавливаются ли ЖГГ на ЖРД «открытой» или «закрытой» схем. Для двигателей «открытой » схемы, ЖГГ выполняются с давлением, близким к давлениям основных КС. ЖГГ двигателей «закрытой» схемы обеспечивают рабочим телом (продуктами сгорания) турбины с давлением, значительно превышающим давление в основной КС. Однако, ЖГГ, как окислительного, так и восстановительного варианта, работают при коэффициентах соотношения компонентов много меньших значениях устанавливаемых для КС. Следовательно, температуры, при которых проходит процесс в камерах газогенераторов также сильно отличается от температур процесса в КС.

В ЖРД применяются двухкомпонентные и однокомпонентные ЖГГ. Наиболее широкое применение находят двухкомпонентные ЖГГ. Для двигателей с дожиганием генераторного газа, двухкомпонентные ЖГГ естественно используются как наиболее естественные. Можно отметить, что значительная часть вопросов, связанных с особенностями проектирования и отработки этого варианта ЖГГ, решаются по позициям принятым для КС. Смесительная головка форсунки и их расположение на днищах головки выполнятся по схемам, используемым, при выборе аналогичных решений для КС. В тоже время, учитывая относительно невысокий уровень температур в камере ЖГГ, обычно используется неохлаждаемый вариант стенки. На рисунке (см. рис. 2.45) представлена основная часть двухкомпонентного ЖГГ, одного из отечественных двигателей.

Рис. 2.45. Двухкомпонентный ЖГГ

Подобный вариант ЖГГ был применен в составе двигателя РД-111 Стрелками на рисунке, показаны штуцеры ввода компонентов.

Разработка однокомпонентных газогенераторов ведется по иным принципам. В недалеком прошлом, для подобных газогенераторов, в качестве компонента, использовалась перекись водорода (Н 2 О 2). В камере газогенератора располагалось специальное вещество (катализатор), взаимодействие с которым перекиси водорода приводило к получению паров воды и газообразного кислорода с высокой температурой (от 720 до 1030 К при концентрации 80% и 90%, соответственно). На рисунке (см. рис. 2.46) представлен ПГГ (так назывался газогенератор, вырабатывающий в качестве рабочего тела турбины пар), разработанный предприятием «Энергомаш» для ЖРД РД-107 и его модификаций.

Рис. 2.46. Однокомпонентный жидкостный газогенератор.

1. Штуцер входа компонента, 2. пакеты катализатора, 3 патрубки выхода пара

Компонент - перекись водорода - не единственный компонент, который может газифицироваться с целью получения рабочего тела для турбины. Особенно, если учесть, что перекись водорода повышенной концентрации не достаточно стабильна при хранении, целесообразно использовать другие компоненты. В качестве таких может применяться гидразин и несимметричный диметилгидразин (НДМГ), но для которых, также как и перекиси водорода, требуются специальные катализаторы.

2.5.3. Турбонасосный агрегат (ТНА),

ТНА во многом определяет энергетические характеристики ЖРД. Степень совершенства основных узлов ТНА, турбины и насосов, в процессе создания современных образцов, всегда находится под пристальным вниманием разработчиков двигателей. Для проектантов КС и ЖГГ, вопросы обеспечения полноты сгорания компонентов, обеспечения температуростойкости и прочности деталей и узлов, определяют успешность последующей эксплуатации создаваемого ЖРД. Для специалиста, работающего над созданием ТНА, главными вопросами являются: повышение коэффициентов полезного действия турбины и насосов, прочности их деталей (лопаток и диска турбины, крыльчаток насосов, корпусов, вала), надежности уплотнений и ряда других, определяющих надежность и совершенство ТНА. Успешное решение перечисленных позиций, увеличивает удельный импульс тяги, снижает удельную массу ТНА и двигателя. При дальнейшем рассмотрении параметров и характеристик ТНА, будет видно, что перечисленные выше позиции, впрямую зависят от такого параметра, как обороты ротора (система - «турбина, насосы, вал»).

Исходными данными для разработки ТНА принимаются типы компонентов, требования по расходам и давлениям, ресурс и другим данным, вытекающим из требований к ЖРД. Проектные проработки, позволяют сделать заключение о расходах и параметрах рабочего тела для создания требуемой мощности турбины, необходимой для привода насосов. При выполнении этих работ определяются: принципиальная компоновка ТНА, обороты ротора, системы уплотнений и, в конечном счете, его массовые характеристики.

В работах над созданием ТНА разработчик учитывает обязательные требования, которыми он руководствуется:

· обеспечение основных параметров (габаритов, массы и деталей креплений ТНА, вытекающих из требований по компоновки двигателя) и характеристик в течение заданного ресурса;

· обеспечение требуемых расходов и давлений компонентов, установленных для использования в двигателе;

· выявления позиций, предусматривающих обеспечения примерной стоимости разрабатываемого образца.

При дальнейших работах над созданием ЖРД могут устанавливаться дополнительны требования.

Среди основных позиций, определяющих конструктивный облик и параметры ТНА, следует считать компоновочные схемы ТНА. Возможные варианты схем представлены на рисунке (см. рис. 2.47) .

Рис. 2.47. Компоновочные схемы ТНА

а, б и в - однороторные ТНА, г . – многороторные ТНА

Принятые обозначения: НО – насосы окислителя, НГ – насосы горючего.

Как следует из рассмотрения рисунка, варианты компоновочных схем отличатся, выбирается ли дальнейшей проработке безредукторная схема или схема с редуктором. При безредукторной схеме, часто не удается выбрать единые оптимальные обороты для турбины и каждого из насосов. Однако ТНА с редукторной схемой будет всегда иметь худшие массовые характеристики. Современные ЖРД средних, больших и очень больших,случае, приблизительная масса ТНА может быть вычислена с использованием следующего выражения:

На рисунке (см. рис. 2.48) даны структурные схемы ТНА, с двухсторонним расположением насосов и односторонним. На схемах показаны узлы, о которых упоминалось выше.

Рис. 2.48. Структурные схемы ТНА

1. Насосы горючего, 2. Турбины, 3. и 4. Внутренние уплотнения насоса и турбины, 5. Насос окислителя, 6. Гидродинамическое уплотнение, 7. Промежуточное уплотнение.

В ЖРД средних, больших и очень больших тяг используются газовые турбины с приводом центробежных насосов. Варианты компоновок зависят от особенностей вариантов ЖРД, таких как тип компонентов, система запуска ТНА, характеристики продукта поступающего на турбину и другие. Конструктивный облик ТНА будет отличаться и от частных решений, определяемых проектантом по своему усмотрению, На рисунках (см. рис. 2.48 и 2.49) представлены виды ТНА, в которых подвод компонентов осуществляется односторонним и двухсторонним входами.

Рис. 2.42. ТНА с насосами, с односторонними входами компонентов

1.Фланец выхлопного коллектора, 2. Турбина, 3. Входной патрубок с шнеком, 4. Входной патрубок насоса горючего, 5. Рессора, 6. Выходной фланец выходного патрубка насоса горючего, 7. Корпус насоса окислителя со шнеком, 8. Фланец входного патрубка насоса горючего.

В ТНА корпуса насосов выполнены с преднасосами (шнеками), обеспечивающими повышение давление на входе перед основными, односторонними крыльчатками. Подобный вариант бустерного устройства, исключает возникновение кавитационного режима при работе насоса.

Рис. 2.50. ТНА с насосами, с двухсторонними входами компонентов

1. Фланец входного патрубка насоса горючего, 2. Входной патрубок насоса окислителя, 3. Пиростарер, 4. Фланец подвода рабочего тела к турбине, 5. Турбина, 6. Выхлопной коллектор турбины.

Представленный вид ТНА, выполнен с газовой двухступенчатой турбиной и двумя центробежным насосами. Насосы имеют двухсторонние входы компонентов. Конструкция ТНА спроектирована с двумя валами, соединенными рессорой. На одном валу, со своими двумя подшипниками и уплотнениями, смонтирована турбина и центробежный насос окислителя. На втором валу, также со своими подшипниками и уплотнениями - насос горючего. Работоспособность подшипников поддерживается консистентной смазкой, заправляемой в подшипниковые полости при сборке ТНА. Одна и вторая части ротора устанавливаются в отдельные корпуса, соединенные между собой шпильками.

В ТНА ЖРД обычно используются центробежные насосы, Для насосов ТНА очень важны антикавитационные свойства, от которых зависит эрозионное воздействие на проточную часть насоса, но и, что особенно важно, возможность срыва всех параметров, стабильность которых определяет выполнение требуемых задач всего ЖРД. Повышение антикавитационных свойств насоса обеспечивается применением специальных устройств, некоторые схемы которых были ранее представлены на рисунке 2.23. Но наиболее широко, в практике создания ТНА, применяются шнекоцентробежные насосы.

Для примера на рисунке (см. рис. 2.51) приводится конструкция кислородного шнекоцентробежного насоса.

Рис.2.51. Шнекоцентробежный насос.

1. Крышка корпуса, 2. Подшипник, 3. Крыльчатка насоса, 4. Корпус насоса. 5. Шнек, 6. Подшипник.

Эффективность насоса зависит от снижения потерь, среди которых основными являются:

· перетекание компонента из полости высокого давления (вход из крыльчатки), во входную полость;

· трения компонента о стенки внутренних полостей насоса;

· трения в уплотнениях, подшипниках.

Оцениваются перечисленные потери КПД насоса - :

Плотность компонента,

Объемный расход компонента,

Н – напор, развиваемый насосом,

N н - фактическая мощность потребляемая насосом.

Обычно КПД насосов ЖРД колеблется в пределах 0,5…0,8,

Дополнительно к отмеченным положениям, на рисунках (см. Рис. 2.52.) показаны конструкции других бустерных устройств – струнных преднасосов (эжекторов).

Рис.2.52. Конструкция струйного устройства (эжектора).

а – эжектор с рядом отверстий. 1. Корпус эжектора, 2. Отверстия подвода компонента, равнорасположенные по окружности, 3. Патрубок подвода компонента. б – эжектор с набором сопел. 1. Патрубок подвода компонента, 2. Сопла, 3. Корпус эжектора.

Струйные насосы из-за низкого КПД целесообразно применять в дви­гателях с дожиганием, так как увеличение мощности турбины при подаче активной жидкости высокого давления на эжектор практически не снижает энергетических характеристик ЖРД. На рисунке. 2.52, а приведена конструкция эжектора с двенадцатью соплами, расположенными по окружности камеры смешения с углом выхода в 18°. При соотношении расхода активной жидкости к эжектируемой до 25%, напор основного потока значительно возрастает. Однако КПД такого устройства на оптимальном режиме достига­ет не более 0,15. Малая напорная способность эжекторов при КПД от 0,08 до 0,2 ограничивает их применение в современных ТНА ЖРД.

ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ (ЖРД) - ракетный двигатель , работающий на жидком ракетном топливе . Превращение топлива в реактивную газовую струю, создающую тягу, происходит в камере . В современных ЖРД используются как двухкомпонентные ракетные топлива , состоящие из окислителя и горючего, которые хранятся в отдельных баках, так и однокомпонентные ракетные топлива , являющиеся жидкостями, способными к каталитическому разложению. По роду используемого окислителя ЖРД бывают азотнокислотные, азоттетроксидные (окислитель - четырёхокись азота), кислородные, перекисьводородные, фторные и др. В зависимости от значения тяги различают ЖРД малой, средней и большой тяги. Условными границами между ними являются 10 кН и 250 кН (на ЛА устанавливались ЖРД с тягой от десятых долей Н до 8 МН). ЖРД характеризуются также удельным импульсом тяги , режимом работы, габаритами, удельной массой , давлением в камере сгорания, общим устройством и конструкцией основных агрегатов. ЖРД является основным типом космических двигателей и широко применяется также в высотных исследовательских ракетах, боевых баллистических ракетах дальнего действия, зенитных управляемых ракетах; ограниченно - в боевых ракетах других классов, на экспериментальных самолётах и т. д.

Основные проблемы при создании ЖРД : рациональный выбор топлива, удовлетворяющего энергетическим требованиям и условиям эксплуатации; организация рабочего процесса для достижения расчётного удельного импульса; обеспечение устойчивой работы на заданных режимах, без развитых низкочастотных и высокочастотных колебаний давления, вызывающих разрушительные вибрации двигателя; охлаждение ракетного двигателя, подверженного воздействию агрессивных продуктов сгорания при весьма высоких температурах (до 5000 К) и давлениях до многих десятков МПа (это воздействие усугубляется в некоторых случаях присутствием конденсированной фазы в сопле); подача топлива (криогенного, агрессивного и др.) при давлениях, доходящих для мощных двигателей до многих десятков МПа, и расходах до нескольких т/с; обеспечение минимальной массы агрегатов и двигателя в целом, работающих в весьма напряжённых режимах; достижение высокой надёжности.

ЖРД был предложен К. Э. Циолковским в 1903 году как двигатель для полёта в космос. Учёный разработал принципиальную схему ЖРД , указал наиболее выгодные ракетные топлива, исследовал вопросы устройства основных агрегатов. Практические работы по созданию ЖРД были начаты в 1921 году в США Р. Годдардом (R. Goddard). В 1922 году он впервые зарегистрировал тягу при испытании экспериментального ЖРД , а в 1926 году осуществил пуск небольшой жидкостной ракеты. В конце 20-х – начале 30-х гг. к разработке ЖРД приступили в Германии, СССР и других странах. В 1931 году были испытаны первые советские ЖРД ОРМ и ОРМ-1, созданные В. П. Глушко в Газодинамической лаборатории. В 1933 году испытана двигательная установка ОР-2 конструкции Ф. А. Цандера, а двигатель 10, созданный Группой изучения реактивного движения, обеспечил полёт жидкостной ракеты.

До начала 2-й мировой войны 1939-45 гг. в СССР и США появились опытные образцы ЖРД с тягой до нескольких кН, предназначенные для экспериментальных летательных аппаратов. Интенсивные работы в области ракетной техники, проводившиеся в Германии во время войны, вызвали появление разнообразных типов ЖРД боевого назначения, многие из которых производились серийно. Лучшими были ЖРД конструкции X. Вальтера (H. Walter) (в т.ч. ХВК 109-509А (HWK 109-509A)) и X. Зборовского (H. Zborowski), ЖРД зенитной управляемой ракеты «Вассерфаль» (Wasserfall) и баллистической ракеты Фау-2 (V-2). До 2-й половины 40-х гг. самыми крупными советскими ЖРД были Д-1-А-1100 и РД-1, разработанные Реактивным научно-исследовательским институтом. Первыми серийными советскими ЖРД стали двигатели РД-1 и РД-1ХЗ, созданные к концу войны в ГДЛ–ОКБ. Там же в 1947-53 гг. были разработаны первые в СССР мощные ЖРД : РД-100, РД-101, РД-103. В этот же период в США изготовлялся ЖРД с тягой ~ 350 кН для баллистической ракеты «Редстоун» (Redstone).

Дальнейшее развитие ЖРД и современное их состояние определила начатая в середине 50-х гг. в СССР и США разработка МБР и РН. Для их реализации потребовалось создать мощные, экономичные и компактные ЖРД . Первыми среди них были РД-107 и РД-108, с появлением которых тяга ЖРД увеличилась вдвое, тяга ДУ – в 10 раз. Удельный импульс ЖРД возрос почти на 30%, удельная масса снизилась более чем в 1,5 раза. Эти результаты стали возможны благодаря разработке принципиально новой конструкции ЖРД , позволившей перейти с топлива кислород - этиловый спирт на кислородно-керосиновое при одновременном увеличении давления в камере сгорания в 2–2,5 раза.

С начала 60-х гг. на ракеты-носители (РН) начали также применяться ЖРД , работающие на высококипящих топливах. Первым из них был РД-214. Большое значение для развития космонавтики имело создание в середине 60-х гг. кислородно-водородных ЖРД (предназначены для верхних ступеней РН), которые по удельному импульсу превосходят кислородно-керосиновые на 30%. Т.к. кислородно-водородное топливо по сравнению с кислородно-керосиновым требует при той же массе втрое большего объёма для своего размещения, а баки водорода приходится снабжать теплоизоляцией, то число Циолковского получается для кислородно-водородного топлива на 40% большим. Этот недостаток с избытком компенсируется высокой экономичностью кислородно-водородных ЖРД . При равной стартовой массе РН они способны вывести на околоземную орбиту втрое больший полезный груз, чем кислородно-керосиновые ЖРД .

Осваивая всё более эффективные топлива, конструкторы ЖРД стремились одновременно к тому, чтобы преобразовать химическую энергию топлив в кинетическую энергию реактивной струи с возможно большим КПД . С этой целью была разработана схема ЖРД с дожиганием генераторного газа в камере. Для реализации этой схемы потребовалось создать камеры, работающие в условиях высоких механических и тепловых нагрузок, а также компактные агрегаты питания большой мощности. ЖРД с дожиганием с середины 60-х гг. широко применяются на РН, в частности используются на всех ступенях РН «Протон».

Наряду с мощными космическими ЖРД созданы многочисленные ЖРД средней и малой тяги. Безотказная работа двигателей космических аппаратов (КА) обеспечивается в большой степени использованием высококипящих однокомпонентных и самовоспламеняющихся ракетных топлив , хранение которых на борту КА не вызывает трудностей. ДУ с ЖРД на однокомпонентном топливе проще по устройству, но имеют существенно меньший удельный импульс. К середине 60-хчислогг. во вспомогательных ЖРД получила наибольшее применение перекись водорода, которая затем начала вытесняться гидразином и двухкомпонентными топливами. Использование гидразина позволило повысить удельный импульс ЖРД на однокомпонентном топливе примерно на 40%.

Большинство советских космических ЖРД создано в ГДЛ-ОКБ В. П. Глушко, ОКБ А. М. Исаева и ОКБ С. А. Косберга. Двигатели РД-107, РД-108, РД-214, РД-216, РД-253 и другие конструкции ГДЛ-ОКБ обеспечили старт всех советских РН; на вторых ступенях ряда РН также установлены ЖРД конструкции ГДЛ-ОКБ: РД-119, РД-219 и др. Двигатели ОКБ Косберга установлены на верхних ступенях РН «Восток», «Восход» («Союз») и «Протон». Двигатели ОКБ Исаева используются в основном на искусственных спутниках Земли (ИСЗ), межпланетных КА и космических кораблях (КК) (КРД-61, КДУ-414, ТДУ-1, КТДУ-5А и др.).

Крупнейшие из зарубежных организаций, занятых разработкой ЖРД , находятся в США. Ведущей является фирма «Рокетдайн» (Rocketdyne), которой созданы ЖРД Джей-2 (J-2), ЛР-79-НА (LR-79-NA), ЛР-89-НА (LR-89-NA), ЛР-105-НА (LR-105-NA), РС-2701 (RS-2701), Эйч-1 (H-1), Ф-1 (F-1), ССМЭ (SSME), многочисленные ЖРД средней и малой тяги на высококипящем двухкомпонентном топливе. Большинство упомянутых мощных ЖРД создано под руководством С. Гофмана (S. Hoffman). Фирмой «Аэроджет Дженерал Корпорейшн» (Aerojet General Corporation) создан ряд ЖРД на высококипящем двухкомпонентном топливе, в т.ч. ЖРД ЛР-87-АДжей-5 (LR-87-AJ-5) и ЛР-91-АДжей-5 (LR-91-AJ-5), серия ЖРД средней тяги АДжей-10 (AJ-10), включающая АДжей-10-137 (AJ-10-137) и АДжей-10-138 (AJ-10-138). Фирма «Пратт энд Уитни» (Pratt & Whitney) создала первый в мире кислородно-водородный ЖРД РЛ-10 (RL-10), фирма «Белл Aэроспейс Tекстрон» (Bell Aerospace Textron) - многочисленные вспомогательные ЖРД , а также ЖРД средней тяги ЛР-81-БА-9 (LR-81-BA-9), фирма «ТРВ» - ЖРД средней тяги ЛМДЭ (LMDE), фирма «Марквардт» (Marquardt)- ряд ЖРД на высококипящем двухкомпонентном топливе для КК и межпланетных КА. В США создано несколько десятков типов гидразиновых ЖРД (в полёте испытаны ЖРД с тягой от 0,4 Н до 2,7 кН). В числе разработчиков ЖРД для межпланетных КА - фирма «Риэкшен моторс» (Reaction Motors), создавшая также мощный ЖРД ЛР-99-РМ-1 (LR-99-RM-1). Наиболее известные из западноевропейских ЖРД - АшМ-7 (HM-7), «Валуа» (Valois), «Вексен» (Vexen), «Викинг» (Viking, Франция), «Гамма-2» (Gamma), «Гамма-8», РЗет-2 (RZ-2, Великобритания). В Западной Европе также разрабатываются ЖРД малой тяги на двух- и однокомпонентном топливах для ИСЗ. Япония производит по лицензии американские ЖРД ЛР-79-НА для собственного варианта РН «Дельта» (Delta). Для одной из ступеней этой РН фирмой «Мицубиси» (Mitsubishi) разработан ЖРД на высококипящем топливе тягой 53 кН с вытеснительной подачей. На стендах испытаны кислородно-водородные ЖРД тягой до 0,1 МН с насосной подачей. В китайских РН используются ЖРД тягой 0,7 МН с насосной подачей высококипящего топлива.

Космические ЖРД разнообразны по устройству и характеристикам. Наибольшее различие существует между мощными ЖРД , обеспечивающими разгон РН, и ЖРД реактивных систем управления КА. Первые работают на двухкомпонентном топливе. Тяга этих ЖРД достигает 8 МН (при суммарной тяге ДУ до 40 МН), размеры - несколько метров, а масса - несколько тонн. Они рассчитаны обычно на однократное включение (кроме некоторых ЖРД верхних ступеней РН) и работу в течение 2-10 мин при изменении параметров в узких пределах. К этим ЖРД предъявляется требование обеспечивать высокий удельный импульс при малых габаритах и массе. Поэтому в них применяется насосная подача топлива в камеру (исключение составляют ЖРД «Вексен» и «Валуа»). С этой целью в ЖРД предусматривается турбонасосный агрегат (ТНА) и газогенератор (ГГ). ТНА содержит высоконапорные топливные насосы (обычно осецентробежные) и приводящую их в действие турбину, которая вращается газом, получаемым в ГГ. В ЖРД без дожигания отработанный в турбине генераторный газ сбрасывается в выхлопной патрубок, рулевое сопло или сопло камеры. В ЖРД с дожиганием этот газ поступает в камеру для дожигания с остальной частью топлива.

В ЖРД без дожигания через ГГ может расходоваться 2-3% всего топлива, и целесообразный предел давления в камере сгорания ограничен значением ~ 10 МПа, что связано с потерями удельного импульса на привод ТНА: для ЖРД в целом этот параметр ниже, чем для камеры, т.к. дополнительная тяга, создаваемая истечением отработанного генераторного газа, невелика. Причиной тому являются малые значения давления и температуры этого газа. Для ЖРД РД-216 они составляют, например, 0,12 МПа и 870 К соответственно; при этом потери удельного импульса достигают 1,5% (свыше 40 м/с). С повышением давления в камере сгорания наблюдается увеличение её удельного импульса, но для этого приходится увеличивать расход генераторного газа (для обеспечения потребной мощности топливных насосов). С некоторого момента всё возрастающие потери удельного импульса на привод ТНА уравновешивают, а затем превышают прирост удельного импульса камеры. В ЖРД с дожиганием через ГГ расходуется значит, часть всего топлива (20-80%), однако привод ТНА осуществляется без ухудшения экономичности ЖРД (значения удельного импульса камеры и ЖРД совпадают). В камерах сгорания этих ЖРД удаётся реализовать давление 15-25 МПа (давление в ГГ приблизительно вдвое больше). Для мощных ЖРД с насосной подачей топлива удельный импульс достигает 3430 м/с при использовании кислородно-керосинового топлива и 4500 м/с при использовании кислородно-водородного; удельная масса ЖРД может составлять всего 0,75-0,85 г/Н.

Кроме камеры, ТНА и ГГ, мощные ЖРД содержат топливные трубопроводы с сильфонными шлангами и компенсаторами угловых и линейных перемещений, облегчающими сборку и установку ЖРД , а также обеспечивающими разгрузку от термических напряжений и позволяющими производить отклонение камеры с целью управления движением РН; трубопроводы генераторного газа и дренажа топлива; устройства и системы запуска ракетного двигателя ; агрегаты автоматики с электроприводами, пневмо-, пиро- и гидросистемами и устройствами для управления работой ЖРД (в т.ч. для его дросселирования ); агрегаты системы аварийной защиты; датчики системы телеметрических измерений; электрические кабельные стволы для подачи сигналов на агрегаты автоматики и приёма сигналов от телеметрических датчиков; теплоизоляционные чехлы и экраны, обеспечивающие надлежащую температуру в двигательном отсеке и исключающие перегрев либо переохлаждение отдельных элементов; элементы системы наддува баков (теплообменники, смесители и т. п.); шарнирный подвес или раму для крепления ЖРД к РН (рама, воспринимающая тягу, является одновременно элементом, на котором собирается двигатель); нередко - рулевые камеры и сопла с системами, обеспечивающими их работу; элементы общей сборки (кронштейны, крепёжные детали, уплотнения). По устройству различают блочные жидкостные ракетные двигатели , одно- и многокамерные (с питанием нескольких камер от одного ТНА).

ЖРД реактивных систем управления относятся к двигателям малой тяги, их масса обычно не достигает 10 кг, а высота 0,5 м; масса многих ЖРД не превышает 0,5 кг, и они умещаются на ладони. Характерной особенностью указанных ЖРД является работа в импульсном режиме (за несколько лет функционирования КА суммарное число включений ЖРД может достичь нескольких сотен тысяч, а наработка нескольких часов). Эти ЖРД представляют собой одностенные камеры, снабжённые пуско-отсечными топливными клапанами, и рассчитаны на вытеснительную подачу высококипящего топлива (двухкомпонентного самовоспламеняющегося или однокомпонентного). Давление в камерах сгорания указанных ЖРД , определяемое главным образом давлением наддува баков ДУ и гидравлическим сопротивлением питающих магистралей, находится в диапазоне 0,7-2,3 МПа. В том случае, когда газ для наддува топливных баков размещён в самих баках, его давление по мере расходования топлива снижается, что приводит к ухудшению характеристик ЖРД . Сравнительно высокий удельный импульс ЖРД (до 3050 м/с для двухкомпонентного топлива и до 2350 м/с для гидразина) достигается за счёт относительно больших размеров реактивного сопла, что обеспечивает расширение продуктов сгорания до очень малого давления. Несмотря на небольшую абсолютную массу ЖРД реактивных систем управления, их удельная масса велика (при уменьшении тяги от 500 до 1 Н возрастает приблизительно с 5 до 150 г/Н).

ЖРД космических аппаратов занимают по своим характеристикам промежуточное положение между мощными ЖРД ракет-носителей и ЖРД реактивных систем управления. Их тяга охватывает диапазон от сотен Н до десятков кН и может быть как нерегулируемой, так и регулируемой; они могут непрерывно работать десятые доли секунд и несколько тысяч секунд при числе включений от 1 до нескольких десятков. В указанных ЖРД применяются те же типы топлив, что и в ЖРД реактивных систем управления (однокомпонентное топливо используется только в ЖРД малой тяги).

В планах дальнейшего освоения космоса ЖРД отводится большая роль. Мощные ЖРД , рассчитанные на экономичное использование эффективных топлив, по-прежнему находятся в центре внимания. К 1981 году создан кислородно-водородный ЖРД с тягой свыше 2 МН, предназначенный для разгона ЛА от старта до вывода на околоземную орбиту. Благодаря достижениям в области криогенной техники и теплоизоляционных материалов становится целесообразным создание ЖРД на низкокипящих топливах, развивающих высокий удельный импульс, для использования в КА, функционирующих в космосе. Прогресс в разработке ЖРД с тягой до нескольких десятков кН, работающих на топливах, содержащих фтор и его производные (см., например, РД-301), делает реальным применение фторных ЖРД в разгонных блоках РН и в автоматических КА, которые будут совершать полёты к планетам. При стендовых испытаниях в 1977 году экспериментального кислородно-водородного ЖРД (тяга 0,1 МН), разрабатываемого для этих целей, достигнут удельный импульс 4690 м/с. Проводятся экспериментальные исследования различных проблем создания ЖРД на металлсодержащем топливе .

Наряду с освоением для ЖРД новых топлив ведутся поиски технических принципов, обеспечивающих дальнейшее увеличение КПД и уменьшение габаритов и массы ЖРД . Улучшение параметров, достигаемое путём увеличения давления в камере, с ростом давления становится всё менее ощутимым, а трудности создания ЖРД всё более возрастают. Увеличение указанного параметра свыше 25-30 МПа является малоэффективным и трудно реализуемым. Проявляется интерес к ЖРД , снабжённым соплами с центральным телом . С целью снижения стоимости запуска полезных грузов разработаны ЖРД (для КА многократного использования), рассчитанные на несколько десятков полётов и ресурс в несколько часов при малом объёме межполётных регламентных работ.

Как устроен и работает жидкостно-реактивный двигатель

Жидкостно-реактивные двигатели применяются в настоящее время в качестве двигателей для тяжелых ракетных снарядов противовоздушной обороны, дальних и стратосферных ракет, ракетных самолетов, ракетных авиабомб, воздушных торпед и т. д. Иногда ЖРД применяются и в качестве стартовых двигателей для облегчения взлета самолетов.

Имея в виду основное назначение ЖРД, мы ознакомимся с их устройством и работой на примерах двух двигателей: одного - для дальней или стратосферной ракеты, другого - для ракетного самолета. Эти конкретные двигатели далеко не во всем являются типичными и, конечно, уступают по своим данным новейшим двигателям этого типа, но все же являются во многом характерными и дают довольно ясное представление о современном жидкостно-реактивном двигателе.

ЖРД для дальней или стратосферной ракеты

Ракеты этого типа применялись либо в качестве дальнобойного сверхтяжелого снаряда, либо для исследования стратосферы. Для военных целей они были применены немцами для бомбардировки Лондона в 1944 г. Эти ракеты имели около тонны взрывчатого вещества и дальность полета около 300 км . При исследовании стратосферы головка ракеты вместо взрывчатки несет в себе различную исследовательскую аппаратуру и обычно имеет приспособление для отделения от ракеты и спуска на парашюте. Высота подъема ракеты 150–180 км .

Внешний вид такой ракеты представлен на фиг. 26, а ее разрез на фиг. 27. Фигуры людей, стоящих рядом с ракетой, дают представление о внушительных размерах ракеты: ее общая длина равна 14 м , диаметр около 1,7 м , а по оперению около 3,6 м , вес снаряженной ракеты со взрывчаткой - 12,5 тонны.

Фиг. 26. Подготовка к запуску стратосферной ракеты.

Ракета движется с помощью жидкостно-реактивного двигателя, расположенного в ее задней части. Общий вид двигателя показан на фиг. 28. Двигатель работает на двухкомпонентном топливе - обычном винном (этиловом) спирте 75 %-ной крепости и жидком кислороде, которые хранятся в двух отдельных больших баках, как это показано на фиг. 27. Запас топлива на ракете - около 9 тонн, что составляет почти 3/4 общего веса ракеты, да и по объему топливные баки составляют большую часть всего объема ракеты. Несмотря на такое огромное количество топлива его хватает всего только на 1 минуту работы двигателя, так как двигатель расходует больше 125 кг топлива в секунду.

Фиг. 27. Разрез ракеты дальнего действия.

Количество обоих компонентов топлива, спирта и кислорода, рассчитывается так, чтобы они выгорали одновременно. Так как для сгорания 1 кг спирта в данном случае расходуется около 1,3 кг кислорода, то бак для горючего вмещает примерно 3,8 тонны спирта, а бак для окислителя - около 5 тонн жидкого кислорода. Таким образом даже в случае применения спирта, который требует для сгорания значительно меньше кислорода, чем бензин или керосин, заполнение обоих баков одним только горючим (спиртом) при использовании атмосферного кислорода увеличило бы продолжительность работы двигателя в два-три раза. Вот к чему приводит необходимость иметь окислитель на борту ракеты.

Фиг. 28. Двигатель ракеты.

Невольно возникает вопрос: как же ракета покрывает расстояние в 300 км, если двигатель работает всего только 1 минуту? Объяснение этому дает фиг. 33, на которой представлена траектория полета ракеты, а также указано изменение скорости вдоль траектории.

Запуск ракеты осуществляется после установки ее в вертикальное положение с помощью легкого пускового устройства, как это видно на фиг. 26. После запуска ракета вначале поднимается почти вертикально, а по истечении 10–12 секунд полета начинает отклоняться от вертикали и под действием рулей, управляемых гироскопами, движется по траектории, близкой к дуге окружности. Такой полет длится все время, пока работает двигатель, т. е. примерно в течение 60 сек.

Когда скорость достигает расчетной величины, приборы управления выключают двигатель; к этому моменту в баках ракеты почти не остается топлива. Высота ракеты к моменту окончания работы двигателя равняется 35–37 км , а ось ракеты составляет с горизонтом угол в 45° (этому положению ракеты соответствует точка А на фиг. 29).

Фиг. 29. Траектория полета дальней ракеты.

Такой угол возвышения обеспечивает максимальную дальность в последующем полете, когда ракета движется по инерции, подобно артиллерийскому снаряду, который вылетел бы из орудия, обрез ствола которого находится на высоте 35–37 км . Траектория дальнейшего полета близка к параболе, а общее время полета равно приблизительно 5 мин. Максимальная высота, которой достигает при этом ракета, составляет 95-100 км , стратосферные же ракеты достигают значительно больших высот, более 150 км . На фотографиях, сделанных с этой высоты аппаратом, установленным на ракете, уже отчетливо видна шарообразность земли.

Интересно проследить, как изменяется скорость полета по траектории. К моменту выключения двигателя, т. е. после 60 секунд полета, скорость полета достигает наибольшего значения и равна примерно 5500 км/час , т. е. 1525 м/сек . Именно в этот момент мощность двигателя становится также наибольшей, достигая для некоторых ракет почти 600.000 л. с .! Дальше под воздействием силы тяжести скорость ракеты уменьшается, а после достижения наивысшей точки траектории по той же причине снова начинает расти до тех пор, пока ракета не войдет в плотные слои атмосферы. В течение всего полета, кроме самого начального участка - разгона, - скорость ракеты значительно превышает скорость звука, средняя скорость по всей траектории составляет примерно 3500 км/час и даже на землю ракета падает со скоростью, в два с половиной раза превышающей скорость звука и равной 3000 км/час . Это значит, что мощный звук от полета ракеты доносится лишь после ее падения. Здесь уже не удастся уловить приближение ракеты с помощью звукоулавливателей, обычно применяющихся в авиации или морском флоте, для этого потребуются совсем другие методы. Такие методы основаны на применении вместо звука радиоволн. Ведь радиоволна распространяется со скоростью света - наибольшей скоростью, возможной на земле. Эта скорость, равная 300 000 км/сек, конечно, более чем достаточна, чтобы отметить приближение самой быстролетящей ракеты.

С большой скоростью полета ракет связана еще одна проблема. Дело в том, что при больших скоростях полета в атмосфере, вследствие торможения и сжатия воздуха, набегающего на ракету, температура ее корпуса сильно повышается. Расчет показывает, что температура стенок описанной выше ракеты должна достигать 1000–1100 °C. Испытания показали, правда, что в действительности эта температура значительно меньше из-за охлаждения стенок путем теплопроводности и излучения, но все же она достигает 600–700 °C, т. е. ракета нагревается до красного каления. С увеличением скорости полета ракеты температура ее стенок будет быстро расти и может стать серьезным препятствием для дальнейшего роста скорости полета. Вспомним, что метеориты (небесные камни), врывающиеся с огромной скоростью, до 100 км/сек , в пределы земной атмосферы, как правило, «сгорают», и то, что мы принимаем за падающий метеорит («падающую звезду») есть в действительности только сгусток раскаленных газов и воздуха, образующийся в результате движения метеорита с большой скоростью в атмосфере. Поэтому полеты с весьма большими скоростями возможны лишь в верхних слоях атмосферы, где воздух разрежен, или за ее пределами. Чем ближе к земле, тем меньше допустимые скорости полета.

Фиг. 30. Схема устройства двигателя ракеты.

Схема двигателя ракеты представлена на фиг. 30. Обращает на себя внимание относительная простота этой схемы по сравнению с обычными поршневыми авиационными двигателями; в особенности характерно для ЖРД почти полное отсутствие в силовой схеме двигателя движущихся частей. Основными элементами двигателя являются камера сгорания, реактивное сопло, парогазогенератор и турбонасосный агрегат для подачи топлива и система управления.

В камере сгорания происходит сгорание топлива, т. е. преобразование химической энергии топлива в тепловую, а в сопле - преобразование тепловой энергии продуктов сгорания в скоростную энергию струи газов, вытекающих из двигателя в атмосферу. Как изменяется состояние газов при течении их в двигателе показано на фиг. 31.

Давление в камере сгорания равно 20–21 ата , а температура достигает 2 700 °C. Характерным для камеры сгорания является огромное количество тепла, которое выделяется в ней при сгорании в единицу времени или, как говорят, теплонапряженность камеры. В этом отношении камера сгорания ЖРД значительно превосходит все другие известные в технике топочные устройства (топки котлов, цилиндры двигателей внутреннего сгорания и другие). В данном случае в камере сгорания двигателя в секунду выделяется такое количество тепла, которое достаточно для того, чтобы вскипятить более 1,5 тонны ледяной воды! Чтобы камера сгорания при таком огромном количестве выделяющегося в ней тепла не вышла из строя, необходимо интенсивно охлаждать ее стенки, как, впрочем, и стенки сопла. Для этой цели, как это видно на фиг. 30, камера сгорания и сопло охлаждаются горючим - спиртом, который сначала омывает их стенки, а уже затем, подогретый, поступает в камеру сгорания. Эта система охлаждения, предложенная еще Циолковским, выгодна также и потому, что тепло, отведенное от стенок, не теряется и снова возвращается в камеру (такую систему охлаждения называют поэтому иногда регенеративной). Однако одного только наружного охлаждения стенок двигателя оказывается недостаточно, и для понижения температуры стенок одновременно применяется охлаждение их внутренней поверхности. Для этой цели стенки в ряде мест имеют небольшие сверления, расположенные в нескольких кольцевых поясах, так что через эти отверстия внутрь камеры и сопла поступает спирт (около 1/10 от общего его расхода). Холодная пленка этого спирта, текущего и испаряющегося на стенках, предохраняет их от непосредственного соприкосновения с пламенем факела и тем снижает температуру стенок. Несмотря на то, что температура газов, омывающих изнутри стенки, превышает 2500 °C, температура внутренней поверхности стенок, как показали испытания, не превышает 1 000 °C.

Фиг. 31. Изменение состояния газов в двигателе.

Топливо подается в камеру сгорания через 18 горелок-форкамер, расположенных на ее торцевой стенке. Кислород поступает внутрь форкамер через центральные форсунки, а спирт, выходящий из рубашки охлаждения, - через кольцо маленьких форсунок вокруг каждой форкамеры. Таким образом обеспечивается достаточно хорошее перемешивание топлива, необходимое для осуществления полного сгорания за то очень короткое время пока топливо находится в камере сгорания (сотые доли секунды).

Реактивное сопло двигателя изготовлено из стали. Его форма, как это хорошо видно на фиг. 30 и 31, представляет собой сначала сужающуюся, а потом расширяющуюся трубу (так называемое сопло Лаваля). Как указывалось ранее, такую же форму имеют сопла и пороховых ракетных двигателей. Чем объясняется такая форма сопла? Как известно, задачей сопла является обеспечение полного расширения газа с целью получения наибольшей скорости истечения. Для увеличения скорости течения газа по трубе ее сечение должно вначале постепенно уменьшаться, что имеет место и при течении жидкостей (например, воды). Скорость движения газа будет увеличиваться, однако, только до тех пор, пока она не станет равной скорости распространения звука в газе. Дальнейшее увеличение скорости в отличие от жидкости станет возможным только при расширении трубы; это отличие течения газа от течения жидкости связано с тем, что жидкость несжимаема, а объем газа при расширении сильно увеличивается. В горловине сопла, т. е. в наиболее узкой его части, скорость течения газа всегда равна скорости звука в газе, в нашем случае около 1000 м/сек . Скорость же истечения, т. е. скорость в выходном сечении сопла, равна 2100–2200 м/сек (таким образом удельная тяга составляет примерно, 220 кг сек/кг ).

Подача топлива из баков в камеру сгорания двигателя осуществляется под давлением с помощью насосов, имеющих привод от турбины и скомпонованных вместе с нею в единый турбонасосный агрегат, как это видно на фиг. 30. В некоторых двигателях подача топлива осуществляется под давлением, которое создается в герметических топливных баках с помощью какого-либо инертного газа - например, азота, хранящегося под большим давлением в специальных баллонах. Такая система подачи проще насосной, но, при достаточно большой мощности двигателя, получается более тяжелой. Однако и при насосной подаче топлива в описываемом нами двигателе баки, как кислородный, так и спиртовой, находятся под некоторым избыточным давлением изнутри для облегчения работы насосов и предохранения баков от смятия. Это давление (1,2–1,5 ата ) создается в спиртовом баке воздухом или азотом, в кислородном - парами испаряющегося кислорода.

Оба насоса - центробежного типа. Турбина, приводящая насосы, работает на парогазовой смеси, получающейся в результате разложения перекиси водорода в специальном парогазогенераторе. В этот парогазогенератор из особого бачка подается перманганат натрия, который является катализатором, ускоряющим разложение перекиси водорода. При запуске ракеты перекись водорода под давлением азота поступает в парогазогенератор, в котором начинается бурная реакция разложения перекиси с выделением паров воды и газообразного кислорода (это так называемая «холодная реакция», применяющаяся иногда и для создания тяги, в частности, в стартовых ЖРД). Парогазовая смесь, имеющая температуру около 400 °C и давление свыше 20 ата , поступает на колесо турбины и затем выбрасывается в атмосферу. Мощность турбины затрачивается полностью на привод обоих топливных насосов. Эта мощность не так уже мала - при 4000 об/мин колеса турбины она достигает почти 500 л. с .

Так как смесь кислорода со спиртом не является самореагирующим топливом, то для начала горения необходимо предусмотреть какую-либо систему зажигания. В двигателе воспламенение осуществляется с помощью специального запала, образующего факел пламени. Для этой цели применялся обычно пиротехнический запал (твердый воспламенитель типа пороха), реже использовался жидкий воспламенитель.

Запуск ракеты осуществляется следующим образом. Когда запальный факел поджигается, то открывают главные клапаны, через которые в камеру сгорания поступают самотеком из баков спирт и кислород. Управление всеми клапанами в двигателе осуществляется с помощью сжатого азота, хранящегося на ракете в батарее баллонов высокого давления. Когда начинается горение топлива, то находящийся на расстоянии наблюдатель с помощью электрического контакта включает подачу перекиси водорода в парогазогенератор. Начинает работать турбина, которая приводит насосы, подающие спирт и кислород в камеру сгорания. Тяга растет и когда она становится больше веса ракеты (12–13 тонн), то ракета взлетает. От момента зажигания запального факела до того, как двигатель разовьет полную тягу, проходит всего 7-10 секунд.

При запуске очень важно обеспечить строгий порядок поступления в камеру сгорания обоих компонентов топлива. В этом заключается одна из важных задач системы управления и регулирования двигателя. Если в камере сгорания накапливается один из компонентов (поскольку задерживается поступление другого), то обычно вслед за этим происходит взрыв, при котором двигатель часто выходит из строя. Это, наряду со случайными перерывами в горении, является одной из наиболее частых причин катастроф при испытаниях ЖРД.

Обращает на себя внимание ничтожный вес двигателя по сравнению с развиваемой им тягой. При весе двигателя меньше 1000 кг тяга составляет 25 тонн, так что удельный вес двигателя, т. е. вес, приходящийся на единицу тяги, равен всего только

Для сравнения укажем, что обычный поршневой авиационный двигатель, работающий на винт, имеет удельный вес 1–2 кг/кг , т. е. в несколько десятков раз больше. Важно также то, что удельный вес ЖРД не изменяется при изменении скорости полета, тогда как удельный вес поршневого двигателя быстро растет с ростом скорости.

ЖРД для ракетного самолета

Фиг. 32. Проект ЖРД с регулируемой тягой.

1 - передвижная игла; 2 - механизм передвижения иглы; 3 - подача горючего; 4 - подача окислителя.

Основное требование, предъявляемое к авиационному жидкостно-реактивному двигателю - возможность изменять развиваемую им тягу в соответствии с режимами полета самолета, вплоть до остановки и повторного запуска двигателя в полете. Наиболее простой и распространенный способ изменения тяги двигателя заключается в регулировании подачи топлива в камеру сгорания, вследствие чего изменяется давление в камере и тяга. Однако этот способ невыгоден, так как при уменьшении давления в камере сгорания, понижаемого в целях уменьшения тяги, уменьшается доля тепловой энергии топлива, переходящая в скоростную энергию струи. Это приводит к увеличению расхода топлива на 1 кг тяги, а следовательно, и на 1 л. с . мощности, т. е. двигатель при этом начинает работать менее экономично. Для уменьшения этого недостатка авиационные ЖРД часто имеют вместо одной от двух до четырех камер сгорания, что позволяет при работе на пониженной мощности выключать одну или несколько камер. Регулирование тяги изменением давления в камере, т. е. подачей топлива, сохраняется и в этом случае, но используется лишь в небольшом диапазоне до половины тяги отключаемой камеры. Наиболее выгодным способом регулирования тяги ЖРД было бы изменение проходного сечения его сопла при одновременном уменьшении подачи топлива, так как при этом уменьшение секундного количества вытекающих газов достигалось бы при сохранении неизменным давления в камере сгорания, а, значит, и скорости истечения. Такое регулирование проходного сечения сопла можно было бы осуществить, например, с помощью передвижной иглы специального профиля, как это показано на фиг. 32, изображающей проект ЖРД с регулируемой таким способом тягой.

На фиг. 33 представлен однокамерный авиационный ЖРД, а на фиг. 34 - такой же ЖРД, но с добавочной небольшой камерой, которая используется на крейсерском режиме полета, когда требуется небольшая тяга; основная камера при этом отключается совсем. На максимальном режиме работают обе камеры, причем большая развивает тягу в 1700 кг, а малая - 300 кг , так что общая тяга составляет 2000 кг . В остальном двигатели по конструкции аналогичны.

Двигатели, изображенные на фиг. 33 и 34, работают на самовоспламеняющемся топливе. Это топливо состоит из перекиси водорода в качестве окислителя и гидразин-гидрата в качестве горючего, в весовом соотношении 3:1. Точнее, горючее представляет собой сложный состав, состоящий из гидразин-гидрата, метилового спирта и солей меди в качестве катализатора, обеспечивающего быстрое протекание реакции (применяются и другие катализаторы). Недостатком этого топлива является то, что оно вызывает коррозию частей двигателя.

Вес однокамерного двигателя составляет 160 кг , удельный вес равен

На килограмм тяги. Длина двигателя - 2,2 м . Давление в камере сгорания - около 20 ата . При работе на минимальной подаче топлива для получения наименьшей тяги, которая равна 100 кг , давление в камере сгорания уменьшается до 3 ата . Температура в камере сгорания достигает 2500 °C, скорость истечения газов около 2100 м/сек . Расход топлива равен 8 кг/сек , а удельный расход топлива составляет 15,3 кг топлива на 1 кг тяги в час.

Фиг. 33. Однокамерный ЖРД для ракетного самолета

Фиг. 34. Двухкамерный авиационный ЖРД.

Фиг. 35. Схема подачи топлива в авиационном ЖРД.

Схема подачи топлива в двигатель представлена на фиг. 35. Как и в двигателе ракеты, подача горючего и окислителя, хранящихся в отдельных баках, производится под давлением около 40 ата насосами, имеющими привод от турбинки. Общий вид турбонасосного агрегата показан на фиг. 36. Турбинка работает на паро-газовой смеси, которая, как и раньше, получается в результате разложения перекиси водорода в парогазогенераторе, который в этом случае наполнен твердым катализатором. Горючее до поступления в камеру сгорания охлаждает стенки сопла и камеры сгорания, циркулируя, в специальной охлаждающей рубашке. Изменение подачи топлива, необходимое для регулирования тяги двигателя в процессе полета, достигается изменением подачи перекиси водорода в парогазогенератор, что вызывает изменение оборотов турбинки. Максимальное число оборотов турбинки равно 17 200 об/мин. Запуск двигателя осуществляется с помощью электромотора, приводящего во вращение турбонасосный агрегат.

Фиг. 36. Турбонасосный агрегат авиационного ЖРД.

1 - шестерня привода от пускового электромотора; 2 - насос для окислителя; 3 - турбина; 4 - насос для горючего; 5 - выхлопной патрубок турбины.

На фиг. 37 показана схема установки однокамерного ЖРД в хвостовой части фюзеляжа одного из опытных ракетных самолетов.

Назначение самолетов с жидкостно-реактивными двигателями определяется свойствами ЖРД - большой тягой и, соответственно, большой мощностью на больших скоростях полета и больших высотах и малой экономичностью, т. е. большим расходом топлива. Поэтому ЖРД обычно устанавливаются на военных самолетах - истребителях-перехватчиках. Задача такого самолета - при получении сигнала о приближении самолетов противника быстро взлететь и набрать большую высоту, на которой обычно летят эти самолеты, а затем, используя свое преимущество в скорости полета, навязать противнику воздушный бой. Общая продолжительность полета самолета с жидкостно-реактивным двигателем определяется запасом топлива на самолете и составляет 10–15 минут, поэтому эти самолеты обычно могут совершать боевые операции лишь в районе своего аэродрома.

Фиг. 37. Схема установки ЖРД на самолете.

Фиг. 38. Ракетный истребитель (вид в трех проекциях)

На фиг. 38 показан истребитель-перехватчик с описанным выше ЖРД. Размеры этого самолета, как и других самолетов этого типа, обычно невелики. Полный вес самолета с топливом составляет 5100 кг ; запаса топлива (свыше 2,5 тонны) хватает только на 4,5 минуты работы двигателя на полной мощности. Максимальная скорость полета - свыше 950 км/час ; потолок самолета, т. е. максимальная высота, которой он может достигнуть, - 16 000 м . Скороподъемность самолета характеризуется тем, что за 1 минуту он может подняться с 6 до 12 км .

Фиг. 39. Устройство ракетного самолета.

На фиг. 39 показано устройство другого самолета с ЖРД; это - опытный самолет, построенный для достижения скорости полета, превышающей скорость звука (т. е. 1200 км/час у земли). На самолете, в задней части фюзеляжа, установлен ЖРД, имеющий четыре одинаковых камеры с общей тягой 2720 кг . Длина двигателя 1400 мм , максимальный диаметр 480 мм , вес 100 кг . Запас топлива на самолете, в качестве которого используются спирт и жидкий кислород, составляет 2360 л .

Фиг. 40. Четырехкамерный авиационный ЖРД.

Внешний вид этого двигателя показан на фиг. 40.

Другие области применения ЖРД

Наряду с основным применением ЖРД в качестве двигателей для дальних ракет и ракетных самолетов они применяются в настоящее время и в ряде других случаев.

Довольно широкое применение получили ЖРД в качестве двигателей тяжелых ракетных снарядов, подобных представленному на фиг. 41. Двигатель этого снаряда может служить примером простейшего ЖРД. Подача топлива (бензин и жидкий кислород) в камеру сгорания этого двигателя производится под давлением нейтрального газа (азота). На фиг. 42 показана схема тяжелой ракеты, применявшейся в качестве мощного зенитного снаряда; на схеме приведены габаритные размеры ракеты.

Применяются ЖРД и в качестве стартовых авиационных двигателей. В этом случае иногда используется низкотемпературная реакция разложения перекиси водорода, отчего такие двигатели называют «холодными».

Имеются случаи применения ЖРД в качестве ускорителей для самолетов, в частности, самолетов с турбореактивными двигателями. Насосы подачи топлива з этом случае приводятся иногда от вала турбореактивного двигателя.

ЖРД применяются наряду с пороховыми двигателями также для старта и разгона летающих аппаратов (или их моделей) с прямоточными воздушно-реактивными двигателями. Как известно, эти двигатели развивают очень большую тягу при высоких скоростях полета, больших скорости звука, но вовсе не развивают тяги при взлете.

Наконец, следует упомянуть еще об одном применении ЖРД, имеющем место в последнее время. Для изучения поведения самолета при большой скорости полета, приближающейся к скорости звука и превышающей ее, требуется проведение серьезной и дорогостоящей исследовательской работы. В частности, требуется определение сопротивления крыльев самолета (профилей), которое обычно производится в специальных аэродинамических трубах. Для создания в таких трубах условий, соответствующих полету самолета на большой скорости, приходится иметь силовые установки очень большой мощности для привода вентиляторов, создающих поток в трубе. Вследствие этого сооружение и эксплоатация труб для проведения испытания при сверхзвуковых скоростях требуют огромных затрат.

В последнее время, наряду со строительством сверхзвуковых труб, задача исследования различных профилей крыльев скоростных самолетов, как, кстати сказать, и испытания прямоточных ВРД, решается также с помощью жидкостно-реактивных

Фиг. 41. Ракетный снаряд с ЖРД.

двигателей. По одному из этих способов исследуемый профиль устанавливается на дальней ракете с ЖРД, подобной описанной выше, и все показания приборов, измеряющих сопротивление профиля в полете, передаются на землю с помощью радио-телеметрических устройств.

Фиг. 42. Схема устройства мощного зенитного снаряда с ЖРД.

7 - боевая головка; 2 - баллон со сжатым азотом; 3 - бак с окислителем; 4 - бак с горючим; 5 - жидкостно-реактивный двигатель.

По другому способу сооружается специальная ракетная тележка, передвигающаяся по рельсам с помощью ЖРД. Результаты испытания профиля, установленного на такой тележке в особом весовом механизме, записываются специальными автоматическими приборами, расположенными также на тележке. Такая ракетная тележка показана на фиг. 43. Длина рельсового пути может достигать 2–3 км .

Фиг. 43. Ракетная тележка для испытания профилей крыльев самолета.

Из книги Определение и устранение неисправностей своими силами в автомобиле автора Золотницкий Владимир

Двигатель работает неустойчиво на всех режимах Неисправности системы зажигания Износ и повреждения контактного уголька, зависание его в крышке распределителя зажигания. Утечка тока на «массу» через нагар или влагу на внутренней поверхности крышки. Заменить контактный

Из книги Броненосец " ПЕТР ВЕЛИКИЙ" автора

Двигатель работает неустойчиво при малой частоте вращения коленчатого вала или глохнет на холостом ходу Неисправности карбюратора Низкий или высокий уровень топлива в поплавковой камере. Низкий уровень – хлопки в карбюраторе, высокий – хлопки в глушителе. На выхлопе

Из книги Броненосец "Наварин" автора Арбузов Владимир Васильевич

Двигатель работает нормально на холостом ходу, но автомобиль разгоняется медленно и с «провалами»; плохая приемистость двигателя Неисправности системы зажигания Не отрегулирован зазор между контактами прерывателя. Отрегулировать угол замкнутого состояния контактов

Из книги Самолеты мира 2000 02 автора Автор неизвестен

Двигатель «троит» – не работает один или два цилиндра Неисправности системы зажигания Неустойчивая работа двигателя на малых и средних оборотах. Повышенный расход топлива. Выхлоп дыма синий. Несколько приглушены периодически издаваемые звуки, которые особенно хорошо

Из книги Мир Авиации 1996 02 автора Автор неизвестен

При резком открывании дроссельных заслонок двигатель работает с перебоями Неисправности механизма газораспределения Не отрегулированы зазоры в клапанах. Через каждые 10 тыс. км пробега (для ВАЗ-2108, -2109 через 30 тыс. км) отрегулировать зазоры клапанов. При уменьшенном

Из книги Обслуживаем и ремонтируем Волга ГАЗ-3110 автора Золотницкий Владимир Алексеевич

Двигатель неравномерно и неустойчиво работает на средних и больших частотах вращения коленчатого вала Неисправности системы зажигания Разрегулировок зазор контактов прерывателя. Для точной регулировки зазора между контактами измерять не сам зазор, да еще дедовским

Из книги Ракетные двигатели автора Гильзин Карл Александрович

Приложения КАК БЫЛ УСТРОЕН "ПЕТР ВЕЛИКИЙ" 1 . Мореходные и маневренные качестваВесь комплекс проведенных в 1876 году испытаний выявил следующие мореходные качества. Безопасность океанского плавания "Петра Великого" не внушала опасений, а его причисление к классу мониторов

Из книги Воздушно-реактивные двигатели автора Гильзин Карл Александрович

Как был устроен броненосец "Наварин" Корпус броненосца имел наибольшую длину 107 м (длина между перпендикулярами 105,9 м). ширину 20,42, проектную осадку 7,62 м носом и 8,4 кормой и набирался из 93 шпангоутов (шпация 1,2 метра). Шпангоуты обеспечивали продольную прочность и полные

Из книги История электротехники автора Коллектив авторов

Су-10 – первый реактивный бомбардировщик ОКБ П.О. Сухого Николай ГОРДЮКОВПосле второй мировой войны началась эпоха реактивной авиации. Очень быстро проходило переоснащение советских и зарубежных ВВС на истребители с турбореактивными двигателями. Однако создание

Из книги автора

Из книги автора

Двигатель работает неустойчиво при малой частоте вращения коленчатого вала или глохнет на холостом ходу Рис. 9. Регулировочные винты карбюратора: 1 – винт эксплуатационной регулировки (винт количества); 2 – винт состава смеси, (винт качества) с ограничительным

Из книги автора

Двигатель работает неустойчиво на всех режимах

Из книги автора

Как устроен и работает пороховой ракетный двигатель Основными конструктивными элементами порохового, как и любого другого ракетного двигателя, являются камера сгорания и сопло (фиг. 16).Благодаря тому, что подача пороха, как и вообще всякого твердого топлива, в камеру

Из книги автора

Топливо для жидкостно-реактивного двигателя Важнейшие свойства и характеристики жидкостно-реактивного двигателя, да и сама конструкция его, прежде всего зависят от топлива, которое применяется в двигателе.Основным требованием, которое предъявляется к топливу для ЖРД,

Из книги автора

Глава пятая Пульсирующий воздушно-реактивный двигатель На первый взгляд возможность значительного упрощения двигателя при переходе к большим скоростям полета кажется странной, пожалуй, даже невероятной. Вся история авиации до сих пор говорит о противоположном: борьба

Из книги автора

6.6.7. ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ В ЭЛЕКТРОПРИВОДЕ. СИСТЕМЫ ТИРИСТОРНЫЙ ПРЕОБРАЗОВАТЕЛЬ - ДВИГАТЕЛЬ (ТП - Д) И ИСТОЧНИК ТОКА - ДВИГАТЕЛЬ (ИТ - Д) В послевоенные годы в ведущих лабораториях мира произошел прорыв в области силовой электроники, кардинально изменивший многие

Ракеты как тип вооружения существуют с очень давних пор. Пионерами в этом деле были китайцы, о чем упоминается в гимне Поднебесной начала XIX века. «Красные блики ракет» - вот так в нем поется. Заряжали их порохом, изобретенным, как известно, в том же Китае. Но, чтобы «красные блики» заблистали, а на головы врагов обрушились огненные стрелы, нужны были ракетные двигатели, пусть и простейшие. Всем известно, что порох взрывается, а для полета необходимо интенсивное горение с направленным газовыделением. Так что состав горючего пришлось менять. Если в обычной взрывчатке соотношение ингредиентов составляет 75% нитратов, 15% углерода и 10% серы, то ракетные двигатели содержали 72% нитратов, 24% углерода и 4% серы.

В современных твердотопливных ракетах и ускорителях в качестве топлива используются более сложные смеси, но принцип остался все тот же, древнекитайский. Его достоинства несомненны. надежность, высокая быстрота инициации, относительная дешевизна и удобство эксплуатации. Для того чтобы снаряд стартовал, достаточно воспламенить твердую горючую смесь, обеспечить приток воздуха - и все, он полетел.

Однако есть у такой проверенной и надежной технологии свои недостатки. Во-первых, инициировав горение топлива, его уже невозможно остановить, как и поменять режим горения. Во-вторых, необходим кислород, а в условиях разреженного или безвоздушного пространства его нет. В-третьих, горение все равно проистекает слишком быстро.

Выход, который искали в течение долгих лет ученые во многих странах, наконец, нашелся. Д-р Роберт Годдард в 1926 году испытал первый жидкостный ракетный двигатель. В качестве горючего он использовал бензин, смешиваемый с жидким кислородом. Для того чтобы система работала устойчиво в течение хотя бы двух с половиной секунд, Годдарду пришлось решить ряд технических проблем, связанных с насосным нагнетанием реагентов, системой охлаждения и

Принцип, по которому построены все жидкостные ракетные двигатели, крайне прост. Внутри корпуса расположены два бака. Из одного из них через смесительную головку окислитель подается в камеру разложения, где в присутствии катализатора топливо, поступающее из второго бака, переходит в газообразное состояние. Происходит раскаленный газ проходит сначала сужающуюся дозвуковую зону сопла, а затем расширяющуюся сверхзвуковую, куда также подается горючее. В реальности все намного сложнее, дюза требует охлаждения, а режимы подачи - высокой степени стабильности. Современные ракетные двигатели в качестве топлива могут питаться водородом, окислителем является кислород. Эта смесь крайне взрывоопасна, и малейшее нарушение режима работы любой системы приводит к аварии или катастрофе. Компонентами горючего также могут быть и другие вещества, не менее опасные:

Керосин и - они использовались на первом этапе программы носителей "Сатурн V" в программе " Аполлон";

Спирт и жидкий кислород - были задействованы в немецких ракетах V2 и советских носителях «Восток»;

Азотный тетраоксид - монометил - гидразин - использовались в двигателях «Кассини».

Несмотря на сложность конструкции, жидкостные ракетные двигатели являются основным средством доставки космических грузов. Они используются и в межконтинентальных Режимы их работы поддаются точному регулированию, современные технологии позволяют автоматизировать процессы, протекающие в их агрегатах и узлах.

Однако ракетные двигатели на твердом топливе также не утратили своего значения. Они применяются в космической технике как вспомогательные. Велико их значение в модулях торможения и спасения.