Какое уравнение задает параболу. Каноническое уравнение параболы

Парабола есть множество точек плоскости, равноудаленных от данной точки (фокуса ) и от данной прямой, не проходящей через данную точку (директрисы ), расположенных в той же плоскости (рис.5).

При этом система координат выбрана так, что ось
проходит перпендикулярно директрисе через фокус, положительное ее направление выбрано от директрисы в сторону фокуса. Ось ординат проходит параллельно директрисе, посередине между директрисой и фокусом, откуда уравнение директрисы
, координаты фокуса
. Начало координат является вершиной параболы, а ось абсцисс – ее осью симметрии. Эксцентриситет параболы
.

В ряде случаев рассматриваются параболы, заданные уравнениями

а)

б)
(для всех случаев
)

в)
.

В случае а) парабола симметрична относительно оси
и направлена в ее отрицательную сторону (рис.6).

В случаях б) и в) осью симметрии является ось
(рис.6). Координаты фокусов для этих случаев:

а)
б)
в)
.

Уравнение директрис:

а)
б)
в)
.

Пример 4. Парабола с вершиной в начале координат проходит через точку
и симметрична относительно оси
. Написать ее уравнение.

Решение:

Так как парабола симметрична относительно оси
и проходит через точкус положительной абсциссой, то она имеет вид, представленный на рис.5.

Подставляя координаты точки в уравнение такой параболы
, получим
, т.е.
.

Следовательно, искомое уравнение

,

фокус этой параболы
, уравнение директрисы
.

4. Преобразование уравнения линии второго порядка к каноническому виду.

Общее уравнение второй степени имеет вид

где коэффициенты
одновременно в нуль не обращаются.

Всякая определяемая уравнением (6) линия называется линией второго порядка. С помощью преобразования системы координат уравнение линии второго порядка может быть приведено к простейшему (каноническому) виду.

1. В уравнении (6)
. В данном случае уравнение (6) имеет вид

Оно преобразуется к простейшему виду с помощью параллельного переноса осей координат по формулам

(8)

где
– координаты нового начала
(в старой системе координат). Новые оси
и
параллельны старым. Точка
является центром эллипса или гиперболы и вершиной в случае параболы.

Приведение уравнения (7) к простейшему виду удобно делать методом выделения полных квадратов аналогично тому, как это делалось для окружности.

Пример 5. Уравнение линии второго порядка привести к простейшему виду. Определить вид и расположение этой линии. Найти координаты фокусов. Сделать чертеж.

Решение:

Группируем члены, содержащие только и только, вынося коэффициенты прииза скобку:

Дополняем выражения в скобках до полных квадратов:

Таким образом, данное уравнение преобразовано к виду

Обозначаем

или

Сравнивая с уравнениями (8), видим, что эти формулы определяют параллельный перенос осей координат в точку
. В новой системе координат уравнение запишется так:

Перенося свободный член вправо и разделив на него, получим:

.

Итак, данная линия второго порядка есть эллипс с полуосями
,
. Центр эллипса находится в новом начале координат
, а его фокальная ось есть ось
. Расстояние фокусов от центра, так что новые координаты правого фокуса
. Старые координаты этого же фокуса находятся из формул параллельного переноса:

Аналогично, новые координаты левого фокуса
,
. Его старые координаты:
,
.

Чтобы начертить данный эллипс, наносим на чертеж старые и новые координатные оси. По обе стороны от точки
откладываем по оси
отрезки длины
, а по оси
– длины
; получив таким образом вершины эллипса, чертим сам эллипс (рис. 7).

Замечание . Для уточнения чертежа полезно найти точки пересечения данной линии (7) со старыми координатными осями. Для этого надо в формуле (7) положить сначала
, а затем
и решить получающиеся уравнения.

Появления комплексных корней будет означать, что линия (7) соответствующую координатную ось не пересекает.

Например, для эллипса только что разобранной задачи получаются такие уравнения:

Второе из этих уравнений имеет комплексные корни, так что эллипс ось
не пересекает. Корни первого уравнения:

В точках
и
эллипс пересекает ось
(рис.7).

Пример 6. Привести к простейшему виду уравнение линии второго порядка . Определить вид и расположении линии, найти координаты фокуса.

Решение:

Так как член с отсутствует, то надо выделить полный квадрат только по:

Выносим также за скобку коэффициент при

.

Обозначаем

или

Тем самым производится параллельный перенос системы координат в точку
. После переноса уравнение примет вид

.

Отсюда следует, что данная линия есть парабола (рис.8), точка
является ее вершиной. Парабола направлена в отрицательную сторону оси
и симметрична относительно этой оси. Величинадля нее равна.

Поэтому фокус имеет новые координаты

.

Его старые координаты

Если в данном уравнении положить
или
, то обнаружим, что парабола пересекает ось
в точке
, а ось
она не пересекает.

2. В уравнении (1)
. Общее уравнение (1) второй степени преобразуется к виду (2), т.е. к рассмотренному в п.1. случаю, с помощь поворота координатных осей на угол
по формулам

(9)

где
– новые координаты. Угол
находится из уравнения

Оси координат поворачиваются при этом так, чтобы новые оси
и
были параллельны осям симметрии линии второго порядка.

Зная
, можно найти
и
по формулам тригонометрии

,
.

Если угол поворота
условиться считать острым, то в этих формулах надо брать знак плюс, и для
надо взять также положительное решение уравнения (5).

В частности, при
систему координат нужно повернуть на угол
. Формулы поворота на уголимеют вид:

(11)

Пример 7. Уравнение линии второго порядка привести к простейшему виду. Установить вид и расположение этой линии.

Решение:

В данном случае
, 1
,
, поэтому угол поворота
находится из уравнения

.

Решение этого уравнения
и
. Ограничиваясь острым углом
, берем первое из них. Тогда

,

,
.

Подставляя эти значения ив данное уравнение

Раскрывая скобки и приводя подобные, получим

.

Наконец, разделив на свободный член, придем к уравнению эллипса

.

Отсюда следует, что
,
, причем большая ось эллипса направлена по оси
, а малая – по оси
.

Получится точка
, радиус которой
наклонен к оси
под углом
, для которого
. Следовательно, через эту точку
и пройдет новая ось абсцисс. Затем отмечаем на осях
и
вершины эллипса и чертим эллипс (рис.9).

Заметим, что данный эллипс пересекает старые координатные оси в точках, которые находятся из квадратных уравнений (если в данном уравнении положить
или
):

и
.

- (греч. parabole, от parabollo сближаю). 1) иносказание, притча. 2) кривая линия, происходящая от сечения конуса плоскостью, параллельною какой нибудь его производящей. 3) кривая линия, образующаяся при полете бомбы, ядра и т. п. Словарь… … Словарь иностранных слов русского языка

Иносказание, притча (Даль) См. пример … Словарь синонимов

- (греч. parabole) плоская кривая (2 го порядка). Парабола множество точек М, расстояния которых до данной точки F (фокуса) и до данной прямой D1D2 (директрисы) равны. В надлежащей системе координат уравнение параболы имеет вид: y2=2px, где р=2OF.… … Большой Энциклопедический словарь

ПАРАБОЛА, математическая кривая, КОНИЧЕСКОЕ СЕЧЕНИЕ, образуемое точкой, двигающейся таким образом, что ее расстояние до неподвижной точки, фокуса, равно ее расстоянию до неподвижной прямой, директрисы. Парабола образуется при разрезе конуса… … Научно-технический энциклопедический словарь

Жен., греч. иносказанье, притча. | мат. кривая черта, из числа конических сечений; разрез сахарной головы накось, опостен (параллельно) противной стороне. Парабольные вычисленья. Параболическое реченье, инословие, иноречие, переносное.… … Толковый словарь Даля

парабола - ы, ж. parabole f. <гр. parabole. 1. устар. Притча, иносказание. БАС 1. Француз, захотя посмеяться русаку, приезжему в Париж, спросил: Что такое значит парабол, фарибол и обол? Но тот вскоре ему отвечал: Парабол, есть то, что ты не разумеешь;… … Исторический словарь галлицизмов русского языка

ПАРАБОЛА - (1) незамкнутая кривая линия 2 го порядка на плоскости, являющаяся графиком функции у2 = 2рх, где р параметр. Параболу получают при пересечении кругового (см.) плоскостью, не проходящей через его вершину и параллельной одной из его образующих.… … Большая политехническая энциклопедия

- (от греческого parabole), плоская кривая, расстояния любой точки M которой до данной точки F (фокуса) и до данной прямой D 1D1 (директрисы) равны (MD=MF) … Современная энциклопедия

ПАРАБОЛА, параболы, жен. (греч. parabole). 1. Кривая второго порядка, представляющая коническое сечение прямого кругового конуса плоскостью, параллельною одной из образующих (мат.). || Путь, описываемый тяжелым телом (напр. пулей), брошенным под… … Толковый словарь Ушакова

ПАРАБОЛА, ы, жен. В математике: состоящая из одной ветви незамкнутая кривая, образующаяся при пересечении конической поверхности плоскостью. | прил. параболический, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

- «ПАРАБОЛА», Россия, 1992, цв., 30 мин. Документальное эссе. Попытка понять мистическую суть сказаний удмуртов маленького народа в Поволжье. Режиссер: Светлана Стасенко (см. СТАСЕНКО Светлана). Автор сценария: Светлана Стасенко (см. СТАСЕНКО… … Энциклопедия кино

Книги

  • Парабола замысла поиска работы мечты. Архетипы HR-менеджеров... , Марина Зорина. Книга Марины Зориной "Парабола замысла поиска работы мечты" основана на реальном опыте автора и наполнена полезной информацией, касающейся закономерностей процесса внутреннего рекрутмента.…
  • Парабола моей жизни , Титта Руффо. Автор книги - известнейший итальянский певец, солист ведущих оперных театров мира. Воспоминания Титта Руффо, написанные живо и непосредственно, содержат зарисовкитеатральной жизни первой…

Рассмотрим на плоскости прямую и точку, не лежащую на этой прямой. И эллипс , и гипербола могут быть определены единым образом как геометрическое место точек, для которых отношение расстояния до данной точки к расстоянию до данной прямой есть постоянная вели-

чина ε. При 0 1 - гипербола. Параметр ε является эксцентриситетом как эллипса, так и гиперболы . Из возможных положительных значений параметра ε одно, а именно ε = 1, оказывается незадействованным. Этому значению соответствует геометрическое место точек, равноудаленных от данной точки и от данной прямой.

Определение 8.1. Геометрическое место точек плоскости, равноудаленных от фиксированной точки и от фиксированной прямой, называют параболой.

Фиксированную точку называют фокусом параболы , а прямую - директрисой параболы . При этом полагают, что эксцентриситет параболы равен единице.

Из геометрических соображений вытекает, что парабола симметрична относительно прямой, перпендикулярной директрисе и проходящей через фокус параболы. Эту прямую называют осью симметрии параболы или просто осью параболы . Парабола пересекается со своей осью симметрии в единственной точке. Эту точку называют вершиной параболы . Она расположена в середине отрезка, соединяющего фокус параболы с точкой пересечения ее оси с директрисой (рис. 8.3).

Уравнение параболы. Для вывода уравнения параболы выберем на плоскости начало координат в вершине параболы, в качестве оси абсцисс - ось параболы, положительное направление на которой задается положением фокуса (см. рис. 8.3). Эту систему координат называют канонической для рассматриваемой параболы, а соответствующие переменные - каноническими .

Обозначим расстояние от фокуса до директрисы через p. Его называют фокальным параметром параболы .

Тогда фокус имеет координаты F(p/2; 0), а директриса d описывается уравнением x = - p/2. Геометрическое место точек M(x; y), равноудаленных от точки F и от прямой d, задается уравнением

Возведем уравнение (8.2) в квадрат и приведем подобные. Получим уравнение

которое называют каноническим уравнением параболы .

Отметим, что возведение в квадрат в данном случае - эквивалентное преобразование урав-нения (8.2), так как обе части уравнения неотрицательны, как и выражение под радикалом.

Вид параболы. Если параболу у 2 = x, вид которой считаем известным, сжать с коэффициентом 1/(2р) вдоль оси абсцисс, то получится парабола общего вида, которая описывается уравнением (8.3).

Пример 8.2. Найдем координаты фокуса и уравнение директрисы параболы, если она проходит через точку, канонические координаты которой (25; 10).

В канонических координатах уравнение параболы имеет вид у 2 = 2px. Поскольку точка (25; 10) находится на параболе, то 100 = 50p и поэтому p = 2. Следовательно, у 2 = 4x является каноническим уравнением параболы, x = - 1 - уравнением ее директрисы, а фокус находится в точке (1; 0).

Оптическое свойство параболы. Парабола имеет следующее оптическое свойство . Если в фокус параболы поместить источник света, то все световые лучи после отражения от параболы будут параллельны оси параболы (рис. 8.4). Оптическое свойство означает, что в любой точке M параболы нормальный вектор касательной составляет с фокальным радиусом MF и осью абсцисс одинаковые углы.

Что такое парабола знают, пожалуй, все. А вот как ее правильно, грамотно использовать при решении различных практических задач, разберемся ниже.

Сначала обозначим основные понятия, которые дает этому термину алгебра и геометрия. Рассмотрим все возможные виды этого графика.

Узнаем все основные характеристики этой функции. Поймем основы построения кривой (геометрия). Научимся находить вершину, другие основные величины графика данного типа.

Узнаем: как правильно строится искомая кривая по уравнению, на что надо обратить внимание. Посмотрим основное практическое применение этой уникальной величины в жизни человека.

Что такое парабола и как она выглядит

Алгебра: под этим термином понимается график квадратичной функции.

Геометрия: это кривая второго порядка, имеющая ряд определенных особенностей:

Каноническое уравнение параболы

На рисунке изображена прямоугольная система координат (XOY), экстремум, направление ветвей чертежа функции вдоль оси абсцисс.

Каноническое уравнение имеет вид:

y 2 = 2 * p * x,

где коэффициент p – фокальный параметр параболы (AF).

В алгебре оно запишется иначе:

y = a x 2 + b x + c (узнаваемый шаблон: y = x 2).

Свойства и график квадратичной функции

Функция обладает осью симметрии и центром (экстремум). Область определения – все значения оси абсцисс.

Область значений функции – (-∞, М) или (М, +∞) зависит от направления ветвей кривой. Параметр М тут означает величину функции в вершине линии.

Как определить, куда направлены ветви параболы

Чтобы найти направление кривой такого типа из выражения, нужно определить знак перед первым параметром алгебраического выражения. Если а ˃ 0, то они направлены вверх. Если наоборот – вниз.

Как найти вершину параболы по формуле

Нахождение экстремума является основным этапом при решении множества практических задач. Конечно, можно открыть специальные онлайн калькуляторы, но лучше это уметь делать самому.

Как же ее определить? Есть специальная формула. Когда b не равно 0, надо искать координаты этой точки.

Формулы нахождения вершины:

  • x 0 = -b / (2 * a);
  • y 0 = y (x 0).

Пример.

Имеется функция у = 4 * x 2 + 16 * x – 25. Найдём вершины этой функции.

Для такой линии:

  • х = -16 / (2 * 4) = -2;
  • y = 4 * 4 - 16 * 2 - 25 = 16 - 32 - 25 = -41.

Получаем координаты вершины (-2, -41).

Смещение параболы

Классический случай, когда в квадратичной функции y = a x 2 + b x + c, второй и третий параметры равны 0, а = 1 – вершина находится в точке (0; 0).

Движение по осям абсцисс или ординат обусловлено изменением параметров b и c соответственно. Сдвиг линии на плоскости будет осуществляться ровно на то количество единиц, чему равно значение параметра.

Пример.

Имеем: b = 2, c = 3.

Это означает, что классический вид кривой сдвинется на 2 единичных отрезка по оси абсцисс и на 3 — по оси ординат.

Как строить параболу по квадратному уравнению

Школьникам важно усвоить, как правильно начертить параболу по заданным параметрам.

Анализируя выражения и уравнения, можно увидеть следующее:

  1. Точка пересечения искомой линии с вектором ординат будет иметь значение, равное величине с.
  2. Все точки графика (по оси абсцисс) будут симметричны относительно основного экстремума функции.

Кроме того, места пересечения с ОХ можно найти, зная дискриминант (D) такой функции:

D = (b 2 — 4 * a * c).

Для этого нужно приравнять выражение к нулю.

Наличие корней параболы зависит от результата:

  • D ˃ 0, то х 1, 2 = (-b ± D 0,5) / (2 * a);
  • D = 0, то х 1, 2 = -b / (2 * a);
  • D ˂ 0, то нет точек пересечения с вектором ОХ.

Получаем алгоритм построения параболы:

  • определить направление ветвей;
  • найти координаты вершины;
  • найти пересечение с осью ординат;
  • найти пересечение с осью абсцисс.

Пример 1.

Дана функция у = х 2 — 5 * х + 4. Необходимо построить параболу. Действуем по алгоритму:

  1. а = 1, следовательно, ветви направлены вверх;
  2. координаты экстремума: х = — (-5) / 2 = 5/2; y = (5/2) 2 - 5 * (5/2) + 4 = -15/4;
  3. с осью ординат пересекается в значении у = 4;
  4. найдем дискриминант: D = 25 - 16 = 9;
  5. ищем корни:
  • Х 1 = (5 + 3) / 2 = 4; (4, 0);
  • Х 2 = (5 - 3) / 2 = 1; (1, 0).

Пример 2.

Для функции у = 3 * х 2 — 2 * х — 1 нужно построить параболу. Действуем по приведенному алгоритму:

  1. а = 3, следовательно, ветви направлены вверх;
  2. координаты экстремума: х = — (-2) / 2 * 3 = 1/3; y = 3 * (1/3) 2 - 2 * (1/3) - 1 = -4/3;
  3. с осью у будет пересекаться в значении у = -1;
  4. найдем дискриминант: D = 4 + 12 = 16. Значит корни:
  • Х 1 = (2 + 4) / 6 = 1; (1;0);
  • Х 2 = (2 - 4) / 6 = -1/3; (-1/3; 0).

По полученным точкам можно построить параболу.

Директриса, эксцентриситет, фокус параболы

Исходя из канонического уравнения, фокус F имеет координаты (p/2, 0).

Прямая АВ – директриса (своего рода хорда параболы определенной длины). Ее уравнение: х = -р/2.

Эксцентриситет (константа) = 1.

Заключение

Мы рассмотрели тему, которую изучают школьники в средней школе. Теперь вы знаете, глядя на квадратичную функцию параболы, как найти её вершину, в какую сторону будут направлены ветви, есть ли смещение по осям, и, имея алгоритм построения, сможете начертить её график.

Парабола - это бесконечная кривая, которая состоит из точек, равноудаленых от заданной прямой, называемой директрисой параболы, и заданной точки - фокуса параболы. Парабола является коническим сечением, то есть представляет собой пересечение плоскости и кругового конуса.

В общем виде математическое уравнение параболы имеет вид: y=ax^2+bx+c, где a не равно нулю, b отражает смещение графика функции по горизонтали относительно начала координат, а c - вертикальное смещение графика функции относительно начала координат. При этом, если a>0, то при построении графика будут направленны вверх, а в случае, если aСвойства параболы

Парабола - это кривая второго порядка, которая имеет ось симметрии, проходящую через фокус параболы и перпендикулярную директрисе параболы.

Парабола обладает особым оптическим свойством, заключающемся в фокусировки параллельных относительно оси ее симметрии световых лучей, направленных в параболу, в вершине параболы и расфокусировки пучка света, направленного в вершину параболы, в параллельные световые лучи относительной той же оси.

Если произвести отражение параболы относительно любой касательной, то образ параболы окажется на ее директрисе. Все параболы подобны между собой, то есть для каждых двух точек A и B одной параболы, найдутся точки A1 и B1, для которых верно утверждение |A1,B1| = |A,B|*k, где k – коэффициент подобия, который в численном значении всегда больше нуля.

Проявление параболы в жизни

Некоторые космические тела, такие как кометы или астероиды, проходящие вблизи крупных космических объектов на высокой скорости имеют траекторию движения в форме параболы. Это свойство малых космических тел используется при гравитационных маневрах космических кораблей.

Для тренировок будущих космонавтов, на земле проводятся специальные полеты самолетов по траектории параболы, чем достигается эффект невесомости в гравитационном поле земли.

В быту параболы можно встретить в различных осветительных приборах. Это связано с оптическим свойством параболы. Одним из последних способов применения параболы, основанных на ее свойствах фокусировки и расфокусировки световых лучей, стали солнечные батареи, которые все больше входят в сферу энергоснабжения в южных регионах России.