Коэффициент корреляции рангов пример. Корреляционный анализ спирмена

​ Коэффициент ранговой корреляции Спирмена – это непараметрический метод, который используется с целью статистического изучения связи между явлениями. В этом случае определяется фактическая степень параллелизма между двумя количественными рядами изучаемых признаков и дается оценка тесноты установленной связи с помощью количественно выраженного коэффициента.

1. История разработки коэффициента ранговой корреляции

Данный критерий был разработан и предложен для проведения корреляционного анализа в 1904 году Чарльзом Эдвардом Спирменом , английским психологом, профессором Лондонского и Честерфилдского университетов.

2. Для чего используется коэффициент Спирмена?

Коэффициент ранговой корреляции Спирмена используется для выявления и оценки тесноты связи между двумя рядами сопоставляемых количественных показателей . В том случае, если ранги показателей, упорядоченных по степени возрастания или убывания, в большинстве случаев совпадают (большему значению одного показателя соответствует большее значение другого показателя - например, при сопоставлении роста пациента и его массы тела ), делается вывод о наличии прямой корреляционной связи. Если ранги показателей имеют противоположную направленность (большему значению одного показателя соответствует меньшее значение другого - например, при сопоставлении возраста и частоты сердечных сокращений ), то говорят об обратной связи между показателями.

    Коэффициент корреляции Спирмена обладает следующими свойствами:
  1. Коэффициент корреляции может принимать значения от минус единицы до единицы, причем при rs=1 имеет место строго прямая связь, а при rs= -1 – строго обратная связь.
  2. Если коэффициент корреляции отрицательный, то имеет место обратная связь, если положительный, то – прямая связь.
  3. Если коэффициент корреляции равен нулю, то связь между величинами практически отсутствует.
  4. Чем ближе модуль коэффициента корреляции к единице, тем более сильной является связь между измеряемыми величинами.

3. В каких случаях можно использовать коэффициент Спирмена?

В связи с тем, что коэффициент является методом непараметрического анализа , проверка на нормальность распределения не требуется.

Сопоставляемые показатели могут быть измерены как в непрерывной шкале (например, число эритроцитов в 1 мкл крови), так и в порядковой (например, баллы экспертной оценки от 1 до 5).

Эффективность и качество оценки методом Спирмена снижается, если разница между различными значениями какой-либо из измеряемых величин достаточно велика. Не рекомендуется использовать коэффициент Спирмена, если имеет место неравномерное распределение значений измеряемой величины.

4. Как рассчитать коэффициент Спирмена?

Расчет коэффициента ранговой корреляции Спирмена включает следующие этапы:

5. Как интерпретировать значение коэффициента Спирмена?

При использовании коэффициента ранговой корреляции условно оценивают тесноту связи между признаками, считая значения коэффициента равные 0,3 и менее - показателями слабой тесноты связи; значения более 0,4, но менее 0,7 - показателями умеренной тесноты связи, а значения 0,7 и более - показателями высокой тесноты связи.

Статистическая значимость полученного коэффициента оценивается при помощи t-критерия Стьюдента. Если расчитанное значение t-критерия меньше табличного при заданном числе степеней свободы, статистическая значимость наблюдаемой взаимосвязи - отсутствует. Если больше, то корреляционная связь считается статистически значимой.

Коэффициент корреляции рангов, предложенный К. Спирменом, относится к непараметрическим показателям связи между переменными, измеренными в ранговой шкале. При расчете этого коэффициента не требуется никаких предположений о характере распределений признаков в генеральной совокупности. Этот коэффициент определяет степень тесноты связи порядковых признаков, которые в этом случае представляют собой ранги сравниваемых величин.

Величина коэффициента корреляции Спирмена также лежит в интервале +1 и -1. Он, как и коэффициент Пирсона, может быть положительным и отрицательным, характеризуя направленность связи между двумя признаками, измеренными в ранговой шкале.

В принципе число ранжируемых признаков (качеств, черт и т.п.) может быть любым, но сам процесс ранжирования большего, чем 20 числа признаков -- затруднителен. Возможно, что именно поэтому таблица критических значений рангового коэффициента корреляции рассчитана лишь для сорока ранжируемых признаков (n < 40, табл. 20 приложения 6).

Ранговый коэффициент корреляции Спирмена подсчитывается по формуле:

где n - количество ранжируемых признаков (показателей, испытуемых);

D - разность между рангами по двум переменным для каждого испытуемого;

Сумма квадратов разностей рангов.

Используя ранговый коэффициент корреляции, рассмотрим следующий пример.

Пример : Психолог выясняет, как связаны между собой индивидуальные показатели готовности к школе, полученные до начала обучения в школе у 11 первоклассников и их средняя успеваемость в конце учебного года.

Для решения этой задачи были проранжированы, во-первых, значения показателей школьной готовности, полученные при поступлении в школу, и, во-вторых, итоговые показатели успеваемости в конце года у этих же учащихся в среднем. Результаты представим в табл. 13.

Таблица 13

№ учащихся

Ранги показателей школьной готовности

Ранги среднегодовой успеваемости

Подставляем полученные данные в формулу и производим расчет. Получаем:

Для нахождения уровня значимости обращаемся к табл. 20 приложения 6, в которой приведены критические значения для коэффициентов ранговой корреляции.

Подчеркнем, что в табл. 20 приложения 6, как и в таблице для линейной корреляции Пирсона, все величины коэффициентов корреляции даны по абсолютной величине. Поэтому, знак коэффициента корреляции учитывается только при его интерпретации.

Нахождение уровней значимости в данной таблице осуществляется по числу n, т. е. по числу испытуемых. В нашем случае n = 11. Для этого числа находим :

0,61 для P 0,05

0,76 для P 0,01

Строим соответствующую ``ось значимости"":

Полученный коэффициент корреляции совпал с критическим значением для уровня значимости в 1%. Следовательно, можно утверждать, что показатели школьной готовности и итоговые оценки первоклассников связаны положительной корреляционной зависимостью - иначе говоря, чем выше показатель школьной готовности, тем лучше учится первоклассник. В терминах статистических гипотез психолог должен отклонить нулевую (Нгипотезу о сходстве и принять альтернативную (Но наличии различий, которая говорит о том, что связь между показателями школьной готовности и средней успеваемостью отлична от нуля.

Случай одинаковых (равных) рангов

При наличии одинаковых рангов формула расчета коэффициента линейной корреляции Спирмена будет несколько иной. В этом случае в формулу вычисления коэффициентов корреляции добавляются два новых члена, учитывающие одинаковые ранги. Они называются поправками на одинаковые ранги и добавляются в числитель расчетной формулы.

где n - число одинаковых рангов в первом столбце,

k - число одинаковых рангов во втором столбце.

Если имеется две группы одинаковых рангов, в каком-либо столбце то формула поправки несколько усложняется:

где n - число одинаковых рангов в первой группе ранжируемого столбца,

k - число одинаковых рангов в второй группе ранжируемого столбца. Модификация формулы в общем случае такова:

Пример : Психолог, используя тест умственного развития (ШТУР) проводит исследование интеллекта у 12 учащихся 9 класса. Одновременно с этим, но просит учителей литературы и математики провести ранжирование этих же учащихся по показателям умственного развития. Задача заключается в том, чтобы определить, как связаны между собой объективные показатели умственного развития (данные ШТУРа) и экспертные оценки учителей.

Экспериментальные данные этой задачи и дополнительные столбцы, необходимые для расчета коэффициента корреляции Спирмена, представим в виде табл. 14.

Таблица 14

№ учащихся

Ранги тестирования с помощью ШТУРа

Экспертные оценки учителей по математики

Экспертные оценки учителей по литературе

D (второго и третьего столбцов)

D (второго и четвертого столбцов)

(второго и третьего столбцов)

(второго и четвертого столбцов)

Поскольку при ранжировании использовались одинаковые ранги, то необходимо проверить правильность ранжирования во втором, третьем и четвертом столбцах таблицы. Суммирование в каждом из этих столбцов дает одинаковую сумму - 78.

Проверяем по расчетной формуле. Проверка дает:

В пятом и шестом столбцах таблицы приведены величины разности рангов между экспертными оценками психолога по тесту ШТУР для каждого ученика и величинами экспертных оценок учителей, соответственно по математике и литературе. Сумма величин разностей рангов должна быть равна нулю. Суммирование величин D в пятом и шестом столбцах дало искомый результат. Следовательно, вычитание рангов проведено правильно. Подобную проверку необходимо делать каждый раз при проведении сложных видов ранжирования.

Прежде, чем начать расчет по формуле необходимо рассчитать поправки на одинаковые ранги для второго, третьего и четвертого столбцов таблицы.

В нашем случае во втором столбце таблицы два одинаковых ранга, следовательно, по формуле величина поправки D1 будет:

В третьем столбце три одинаковых ранга, следовательно, по формуле величина поправки D2 будет:

В четвертом столбце таблицы две группы по три одинаковых ранга, следовательно, по формуле величина поправки D3 будет:

Прежде, чем преступить к решению задачи, напомним, что психолог выясняет два вопроса - как связаны величины рангов по тесту ШТУР с экспертными оценками по математике и литературе. Именно поэтому расчет проводится дважды.

Считаем первый ранговый коэффициент с учетом добавок по формуле. Получаем:

Подсчитаем без учета добавки:

Как видим, разница в величинах коэффициентов корреляции оказалась очень незначительной.

Считаем второй ранговый коэффициент с учетом добавок по формуле. Получаем:

Подсчитаем без учета добавки:

И опять, различия оказались очень незначительны. Поскольку число учащихся в обоих случаях одинаково, по табл. 20 приложения 6 находим критические значения при n = 12 сразу для обоих коэффициентов корреляции.

0,58 для P 0,05

0,73 для P 0,01

Откладываем первое значение на ``оси значимости"":

В первом случае полученный коэффициент ранговой корреляции находится в зоне значимости. Поэтому психолог должен отклонить нулевую Нгипотезу о сходстве коэффициента корреляции с нулем и принять альтернативную Но значимом отличии коэффициента корреляции от нуля. Иными словами, полученный результат говорит о том, что чем выше экспертные оценки учащихся по тесту ШТУР, тем выше их экспертные оценки по математике.

Откладываем второе значение на ``оси значимости"":

Во втором случае коэффициент ранговой корреляции находится в зоне неопределенности. Поэтому психолог может принять нулевую Нгипотезу о сходстве коэффициента корреляции с нулем и отклонить альтернативную Но значимом отличии коэффициента корреляции от нуля. В этом случае полученный результат говорит о том, что экспертные оценки учащихся по тесту ШТУР не связаны с экспертными оценками по литературе.

Для применения коэффициента корреляции Спирмена, необходимо соблюдать следующие условия:

1. Сравниваемые переменные должны быть получены в порядковой (ранговой) шкале, но могут быть измерены также в шкале интервалов и отношений.

2. Характер распределения коррелируемых величин не имеет значения.

3. Число варьирующих признаков в сравниваемых переменных X и Y должно быть одинаковым.

Таблицы для определения критических значений коэффициента корреляции Спирмена (табл. 20 приложение 6) рассчитаны от числа признаков равных n = 5 до n = 40 и при большем числе сравниваемых переменных следует использовать таблицу для пирсоновского коэффициента корреляции (табл. 19 приложение 6). Нахождение критических значений осуществляется при k = n.

37. Коэффициент ранговой корреляции Спирмена.

С. 56 (64) 063.JPG

http://psystat.at.ua/publ/1-1-0-33

Коэффициент ранговой корреляции Спирмена используется в случаях, когда:
- переменные имеют ранговую шкалу измерения;
- распределение данных слишком отличается от нормального или вообще неизвестно;
- выборки имеют небольшой объём (N < 30).

Интерпретация рангового коэффициента корреляции Спирмена не отличается от коэффициента Пирсона, однако его смысл несколько отличен. Чтобы понять различие этих методов и логически обосновать области их применения сравним их формулы.

Коэффициент корреляции Пирсона:

Коэффициент корреляции Спирмена:

Как видим формулы значительно различаются. Сравним формулы

В формуле корреляции Пирсона используется среднее арифметическое и стандартное отклонение коррелируемых рядов, а в формуле Спирмена не используется. Таким образом, для получения адекватного результата по формуле Пирсона, необходимо, чтобы коррелируемые ряды были приближены к нормальному распределению (среднее и стандартное отклонение являются параметрами нормального распределения ). Для формулы Спирмена это не актуально.

Элементом формулы Пирсона является стандартизация каждого ряда в z-шкалу .

Как видим, перевод переменных в Z-шкалу присутствует в формуле коэффициента корреляции Пирсона. Соответственно, для коэффициента Пирсона абсолютно не имеет значение масштаб данных: к примеру, мы можем коррелировать две переменных, одна из которых имеет мин. = 0 и макс. = 1, а вторая мин. = 100 и макс. = 1000. Как бы не различался размах диапазона значений, все они будут переведены в стандартные z-значения одинаковые по своему масштабу.

В коэффициенте Спирмена такой нормализации не происходит, поэтому

ОБЯЗАТЕЛЬНЫМ УСЛОВИЕМ ИСПОЛЬЗОВАНИЯ КОЭФФИЦИЕНТА СПИРМЕНА ЯВЛЯЕТСЯ РАВЕНСТВО РАЗМАХА ДВУХ ПЕРЕМЕННЫХ.

Перед использованием коэффициента Спирмена для рядов данных с различным размахом, необходимо обязательно их ранжировать . Ранжирование приводит к тому, что значения этих рядов приобретают одинаковый минимум = 1 (минимальный ранг) и максимум, равный количеству значений (максимальный, последний ранг = N, т.е. максимальному количеству случаев в выборке).

В каких случаях можно обойтись без ранжирования

Это случаи, когда данные имеют исходно ранговую шкалу . К примеру, тест ценностных ориентаций Рокича.

Также, это случаи, когда количество вариантов значений невелико и в выборке присутствуют фиксированные минимум и максимум. К примеру, в семантическом дифференциале минимум = 1, максимум = 7.

Пример расчета рангового коэффициента корреляции Спирмена

Тест ценностных ориентаций Рокича был проведён на двух выборках Xи Y. Задача: узнать, насколько близки иерархии ценностей данных выборок (буквально – на сколько они похожи).

Полученное значение r=0,747 проверяется по таблице критических значений . Согласно таблице, при N=18, полученное значение достоверно на уровне p<=0,005

Ранговые коэффициенты корреляции по Спирману и Кендалу

Для переменных, принадлежащих к порядковой шкале или для переменных, не подчиняющихся нормальному распределению, а также для переменных принадлежащих к интервальной шкале, вместо коэффициента Пирсона рассчитывается ранговая корреляция по Спирману. Для этого отдельным значениям переменных присваиваются ранговые места, которые впоследствии обрабатываются с помощью соответствующих формул. Чтобы выявить ранговую корреляцию, уберите в диалоговом окне Bivariate Correlations... (Парные корреляции) метку для расчета корреляции по Пирсону, установленную по умолчанию. Вместо этого активируйте расчет корреляции Спирмана. Это расчет даст следующие результаты. Коэффициенты ранговой корреляции весьма близки к соответствующим значениям коэффициентов Пирсона (исходные переменные имеют нормальное распределение).

titkova-matmetody.pdf с. 45

Метод ранговой корреляции Спирмена позволяет определить тесноту (силу) и направление

корреляционной связи между двумя признаками или двумя профилями (иерархиями) признаков.

Для подсчета ранговой корреляции необходимо располагать двумя рядами значений,

которые могут быть проранжированы. Такими рядами значений могут быть:

1) два признака, измеренные в одной и той же группе испытуемых;

2) две индивидуальные иерархии признаков, выявленные у двух испытуемых по одному и тому же

набору признаков;

3) две групповые иерархии признаков,

4) индивидуальная и групповая иерархии признаков.

Вначале показатели ранжируются отдельно по каждому из признаков.

Как правило, меньшему значению признака начисляется меньший ранг.

В первом случае (два признака) ранжируются индивидуальные значения по первому

признаку, полученные разными испытуемыми, а затем индивидуальные значения по второму

признаку.

Если два признака связаны положительно, то испытуемые, имеющие низкие ранги по

одному из них, будут иметь низкие ранги и по другому, а испытуемые, имеющие высокие ранги по

одному из признаков, будут иметь по другому признаку также высокие ранги. Для подсчета rs

необходимо определить разности (d) между рангами, полученными данным испытуемым по обоим

признакам. Затем эти показатели d определенным образом преобразуются и вычитаются из 1. Чем

меньше разности между рангами, тем больше будет rs, тем ближе он будет к +1.

Если корреляция отсутствует, то все ранги будут перемешаны и между ними не будет

никакого соответствия. Формула составлена так, что в этом случае rs окажется близким к 0.

В случае отрицательной корреляции низким рангам испытуемых по одному признаку

будут соответствовать высокие ранги по другому признаку, и наоборот. Чем больше несовпадение

между рангами испытуемых по двум переменным, тем ближе rs к -1.

Во втором случае (два индивидуальных профиля ), ранжируются индивидуальные

значения, полученные каждым из 2-х испытуемым по определенному (одинаковому для них

обоих) набору признаков. Первый ранг получит признак с самым низким значением; второй ранг –

признак с более высоким значением и т.д. Очевидно, что все признаки должны быть измерены в

одних и тех же единицах, иначе ранжирование невозможно. Например, невозможно

проранжировать показатели по личностному опроснику Кеттелла (16PF), если они выражены в

"сырых" баллах, поскольку по разным факторам диапазоны значений различны: от 0 до 13, от 0 до

20 и от 0 до 26. Мы не можем сказать, какой из факторов будет занимать первое место по

выраженности, пока не приведем все значения к единой шкале (чаще всего это шкала стенов).

Если индивидуальные иерархии двух испытуемых связаны положительно, то признаки,

имеющие низкие ранги у одного из них, будут иметь низкие ранги и у другого, и наоборот.

Например, если у одного испытуемого фактор Е (доминантность) имеет самый низкий ранг, то и у

другого испытуемого он должен иметь низкий ранг, если у одного испытуемого фактор С

(эмоциональная устойчивость) имеет высший ранг, то и другой испытуемый должен иметь по

этому фактору высокий ранг и т.д.

В третьем случае (два групповых профиля), ранжируются среднегрупповые значения,

полученные в 2-х группах испытуемых по определенному, одинаковому для двух групп, набору

признаков. В дальнейшем линия рассуждений такая же, как и в предыдущих двух случаях.

В случае 4-ом (индивидуальный и групповой профили), ранжируются отдельно

индивидуальные значения испытуемого и среднегрупповые значения по тому же набору

признаков, которые получены, как правило, при исключении этого отдельного испытуемого – он

не участвует в среднегрупповом профиле, с которым будет сопоставляться его индивидуальный

профиль. Ранговая корреляция позволит проверить, насколько согласованы индивидуальный и

групповой профили.

Во всех четырех случаях значимость полученного коэффициента корреляции определяется

по количеству ранжированных значений N. В первом случае это количество будет совпадать с

объемом выборки n. Во втором случае количеством наблюдений будет количество признаков,

составляющих иерархию. В третьем и четвертом случае N – это также количество сопоставляемых

признаков, а не количество испытуемых в группах. Подробные пояснения даны в примерах. Если

абсолютная величина rs достигает критического значения или превышает его, корреляция

достоверна.

Гипотезы.

Возможны два варианта гипотез. Первый относится к случаю 1, второй – к трем остальным

Первый вариант гипотез

H0: Корреляция между переменными А и Б не отличается от нуля.

H2: Корреляция между переменными А и Б достоверно отличается от нуля.

Второй вариант гипотез

H0: Корреляция между иерархиями А и Б не отличается от нуля.

H2: Корреляция между иерархиями А и Б достоверно отличается от нуля.

Ограничения коэффициента ранговой корреляции

1. По каждой переменной должно быть представлено не менее 5 наблюдений. Верхняя

граница выборки определяется имеющимися таблицами критических значений.

2. Коэффициент ранговой корреляции Спирмена rs при большом количестве одинаковых

рангов по одной или обеим сопоставляемым переменным дает огрубленные значения. В идеале

оба коррелируемых ряда должны представлять собой две последовательности несовпадающих

значений. В случае, если это условие не соблюдается, необходимо вносить поправку на

одинаковые ранги.

Коэффициент ранговой корреляции Спирмена подсчитывается по формуле:

Если в обоих сопоставляемых ранговых рядах присутствуют группы одинаковых рангов,

перед подсчетом коэффициента ранговой корреляции необходимо внести поправки на одинаковые

ранги Та и Тв:

Та = Σ (а3 – а)/12,

Тв = Σ (в3 – в)/12,

где а – объем каждой группы одинаковых рангов в ранговом ряду А, в объем каждой

группы одинаковых рангов в ранговом ряду В.

Для подсчета эмпирического значения rs используют формулу:

38. Точечно-бисериальный коэффициент корреляции.

О корреляции вообще см. вопрос № 36 с. 56 (64) 063.JPG

harchenko-korranaliz.pdf

Пусть переменная X измерена в сильной шкале, а переменная Y – в дихотомической. Точечный бисериальный коэффициент корреляции rpb вычисляется по формуле:

Здесь x 1 – среднее значение по Х объектов со значением «единица» по Y;

x 0 – среднее значение по Х объектов со значением «ноль» по Y;

s х – среднее квадратическое отклонение всех значений по Х;

n 1 – число объектов «единица» по Y, n 0 - число объектов «ноль» по Y;

n = n 1 + n 0 – объем выборки.

Точечный бисериальный коэффициент корреляции можно рассчитать также с помощью других эквивалентных выражений:

Здесь x – общее среднее значение по переменной Х .

Точечный бисериальный коэффициент корреляции rpb изменяется в пределах от –1 до +1. Его значение равно нулю в том случае, если пере-менные с единицей по Y имеют среднее по Y , равное среднему переменных с нулем по Y .

Проверка гипотезы о значимости точечного бисериального коэффициента корреляции заключается в проверке нулевой гипотезы h 0 о равенстве генерального коэффициента корреляции нулю: ρ = 0, которая осуществляется с помощью критерия Стьюдента. Эмпирическое значение

сравнивается с критическими значениями t a (df ) для числа степеней свободы df = n – 2

Если выполняется условие | t | ≤ (df ), нулевая гипотеза ρ = 0 не от-вергается. Точечный биссериальный коэффициент корреляции значимо от-личается от нуля, если эмпирическое значение | t | попадает в критическую область, то есть если выполняется условие | t | > (n – 2). Достоверность связи, рассчитанной с помощью точечного бисериального коэффициента корреляции rpb , можно определить также с помощью критерия χ 2 для числа степеней свободы df = 2.

Точечно-бисериальная корреляция

Последующая модификация коэффициента корреляции произведения моментов получила отражение в точечно бисериальном r . Эта стат. показывает связь между двумя переменными, одна из к-рых предположительно непрерывна и нормально распределена, а др. яв-ся дискретной в точном смысле слова. Точечно-бисериальный коэффициент корреляции обозначается через r pbis Поскольку в r pbis дихотомия отражает подлинную природу дискретной переменной, а не яв-ся искусственной, как в случае r bis , его знак определяется произвольно. Поэтому для всех практ. целей r pbis рассматривается в диапазоне от 0,00 до +1,00.

Существует и такой случай, когда две переменные считаются непрерывными и нормально распределенными, но обе искусственно дихотомизированы, как в случае бисериальной корреляции. Для оценки связи между такими переменными применяется тетрахорический коэффициент корреляции r tet ,к-рый был тж выведен Пирсоном. Осн. (точные) формулы и процедуры для вычисления r tet достаточно сложны. Поэтому при практ. применении этого метода используются приближения r tet ,получаемые на основе сокращенных процедур и таблиц.

/on-line/dictionary/dictionary.php?term=511

ТОЧЕЧНО-БИСЕРИАЛЬНЫЙ КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ - это коэффициент корреляции между двумя переменными, одна из которых измерена в дихотомической шкале, а другая – в интервальной шкале. Применяется в классической и современной тестологии как показатель качества тестового задания – надежности-согласованности с общим баллом по тесту.

Для коррелирования переменных, измеренных в дихотомической и интервальной шкале используют точечно-бисериальный коэффициент корреляции .
Точечно-бисериальный коэффициент корреляции - это метод корреляционного анализа отношения переменных, одна из которых измерена в шкале наименований и принимает только 2 значения (к примеру, мужчины/женщины, ответ верный/ответ неверный, признак есть/признака нет), а вторая в шкале отношений или интервальной шкале. Формула расчета коэффициента точечно-бисериальной корреляции:

Где:
m1 и m0 - средние значения Х со значением 1 или 0 по Y.
σx – стандартное отклонение всех значений по Х
n1 ,n0 – количество значений Х с 1 или 0 по Y.
n – общее количество пар значений

Чаще всего данный вид коэффициента корреляции применяется для расчета связи пунктов теста с суммарной шкалой. Это один из видов проверки валидности.

39. Рангово-бисериальный коэффициент корреляции.

О корреляции вообще см. вопрос № 36 с. 56 (64) 063.JPG

harchenko-korranaliz.pdf с. 28

Рангово-бисериальный коэффициент корреляции, используемый в случаях, когда одна из переменных (Х ) представлена в порядковой шкале, а другая (Y ) – в дихотомической, вычисляется по формуле

.

Здесь – средний ранг объектов, имеющих единицу по Y ; – средний ранг объектов с нулем по Y , n – объем выборки.

Проверка гипотезы о значимости рангово-бисериального коэффи-циента корреляции осуществляется аналогично точечному биссериальному коэффициенту корреляции с помощью критерия Стьюдента с заменой в формулах r pb на r rb .

В тех случаях, когда одна переменная измеряется в дихотомической шкале (переменная X), а другая в ранговой шкале (переменная У), используется рангово-бисериальный коэффициент корреляции. Мы помним, что переменная X, измеренная в дихотомической шкале, принимает только два значения (кода) 0 и 1. Особо подчеркнем: несмотря на то что этот коэффициент изменяется в диапазоне от –1 до +1, его знак для интерпретации результатов не имеет значения. Это еще одно исключение из общего правила.

Расчет этого коэффициента производится по формуле:

где `X 1средний ранг по тем элементам переменной Y , которым соответствует код (признак) 1 в переменной Х ;

`X 0– средний ранг по тем элементам переменной Y, которым соответствует код (признак) 0 в переменной Х\

N – общее количество элементов в переменной X.

Для применения рангово-бисериального коэффициента корреляции необходимо соблюдать следующие условия:

1. Сравниваемые переменные должны быть измерены в разных шкалах: одна X – в дихотомической шкале; другая Y– в ранговой шкале.

2. Число варьирующих признаков в сравниваемых переменных X и Y должно быть одинаковым.

3. Для оценки уровня достоверности рангово-бисериального коэффициента корреляции следует пользоваться формулой (11.9)и таблицей критических значений для критерия Стьюдентапри k = n – 2.

http://psystat.at.ua/publ/drugie_vidy_koehfficienta_korreljacii/1-1-0-38

Случаи, когда одна из переменных представлена в дихотомической шкале , а другая в ранговой (порядковой) , требуют применения коэффициента рангово-бисериальной корреляции:

rpb=2 / n * (m1 - m0)

где:
n – число объектов измерения
m1 и m0 - средний ранг объектов с 1 или 0 по второй переменной.
Данный коэффициент также применяется при проверке валидности тестов.

40. Коэффициент линейной корреляции.

О корреляции вообще (и в частности о линейной как раз) см. вопрос № 36 с. 56 (64) 063.JPG

КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ г-ПИРСОНА

r -Пирсона (Pearson r ) применяется для изучения взаимосвязи двух метричес- ких переменных, измеренных на одной и той же выборке. Существует множество ситуаций, в которых уместно его применение. Влияет ли интеллект на успе-ваемость на старших курсах университета? Связан ли размер заработной пла-ты работника с его доброжелательностью к коллегам? Влияет ли настроение школьника на успешность решения сложной арифметической задачи? Для ответа на подобные вопросы исследователь должен измерить два интересую-щих его показателя у каждого члена выборки. Данные для изучения взаимо-связи затем сводятся в таблицу, как в приведенном ниже примере.

ПРИМЕР 6.1

В таблице приведен пример исходных данных измерения двух показателей интел-лекта (вербального и невербального) у 20 учащихся 8-го класса.

Связь между этими переменными можно изобразить при помощи диаграммы рас-сеивания (см. рис. 6.3). Диаграмма показывает, что существует некоторая взаимо-связь измеренных показателей: чем больше значения вербального интеллекта, тем (преимущественно) больше значения невербального интеллекта.

Прежде чем дать формулу коэффициента корреляции, попробуем просле-дить логику ее возникновения, используя данные примера 6.1. Положение каждой /-точки (испытуемого с номером /) на диаграмме рассеивания отно-сительно остальных точек (рис. 6.3) может быть задано величинами и знака-ми отклонений соответствующих значений переменных от своих средних ве-личин: (xj - MJ и (у, -М у ). Если знаки этих отклонений совпадают, то это свидетельствует в пользу положительной взаимосвязи (большим значениям по х соответствуют большие значения по у или меньшим значениям по х со-ответствуют меньшие значения по у).

Для испытуемого № 1 отклонение от среднего по х и по у положительное, а для испытуемого № 3 и то и другое отклонения отрицательные. Следовательно, данные того и другого свидетельствуют о положительной взаимосвязи изучаемых призна-ков. Напротив, если знаки отклонений от средних по х и по у различаются, то это будет свидетельствовать об отрицательной взаимосвязи между признаками. Так, для испытуемого № 4 отклонение от среднего по х является отрицательным, по у - положительным, а для испытуемого № 9 - наоборот.

Таким образом, если произведение отклонений (х,- М х ) х (у, - М у ) поло-жительное, то данные /-испытуемого свидетельствуют о прямой (положи-тельной) взаимосвязи, а если отрицательное - то об обратной (отрицатель-ной) взаимосвязи. Соответственно, если х w у ъ основном связаны прямо пропорционально, то большинство произведений отклонений будет поло-жительным, а если они связаны обратным соотношением, то большинство произведений будет отрицательным. Следовательно, общим показателем для силы и направления взаимосвязи может служить сумма всех произведений отклонений для данной выборки:

При прямо пропорциональной связи между переменными эта величина является большой и положительной - для большинства испытуемых откло-нения совпадают по знаку (большим значениям одной переменной соответ-ствуют большие значения другой переменной и наоборот). Если же х и у име-ют обратную связь, то для большинства испытуемых большим значениям одной переменной будут соответствовать меньшие значения другой перемен-ной, т. е. знаки произведений будут отрицательными, а сумма произведений в целом будет тоже большой по абсолютной величине, но отрицательной по знаку. Если систематической связи между переменными не будет наблюдать-ся, то положительные слагаемые (произведения отклонений) уравновесятся отрицательными слагаемыми, и сумма всех произведений отклонений будет близка к нулю.

Чтобы сумма произведений не зависела от объема выборки, достаточно ее усреднить. Но мера взаимосвязи нас интересует не как генеральный параметр, а как вычисляемая его оценка - статистика. Поэтому, как и для формулы дис-персии, в этом случае поступим также, делим сумму произведений отклоне-ний не на N , а на TV- 1. Получается мера связи, широко применяемая в физи-ке и технических науках, которая называется ковариацией (Covahance ):


В психологии, в отличие от физики, большинство переменных измеряют-ся в произвольных шкалах, так как психологов интересует не абсолютное зна-чение признака, а взаимное расположение испытуемых в группе. К тому же ковариация весьма чувствительна к масштабу шкалы (дисперсии), в которой измерены признаки. Чтобы сделать меру связи независимой от единиц изме-рения того и другого признака, достаточно разделить ковариацию на соот-ветствующие стандартные отклонения. Таким образом и была получена фор- мула коэффициента корреляции К. Пирсона:

или, после подстановки выражений для о х и


Если значения той и другой переменной были преобразованы в г-значения по формуле


то формула коэффициента корреляции r-Пирсона выглядит проще (071.JPG):

/dict/sociology/article/soc/soc-0525.htm

КОРРЕЛЯЦИЯ ЛИНЕЙНАЯ - статистическая линейная связь непричинного характера между двумя количественными переменными х и у . Измеряется с помощью "коэффициента К.Л." Пирсона, который является результатом деления ковариации на стандартные отклонения обеих переменных:

,

где s xy - ковариация между переменными х и у ;

s x , s y - стандартные отклонения для переменных х и у ;

x i , y i - значения переменных х и у для объекта с номером i ;

x , y - средние арифметические для переменных х и у .

Коэффициент Пирсона r может принимать значения из интервала [-1; +1]. Значение r = 0 означает отсутствие линейной связи между переменными х и у (но не исключает статистической связи нелинейной). Положительные значения коэффициента (r > 0) свидетельствуют о прямой линейной связи; чем ближе его значение к +1, тем сильнее связь статистическая прямая. Отрицательные значения коэффициента (r < 0) свидетельствуют об обратной линейной связи; чем ближе его значение к -1, тем сильнее обратная связь. Значения r = ±1 означают наличие полной линейной связи, прямой или обратной. В случае полной связи все точки с координатами (x i , y i ) лежат на прямой y = a + bx .

"Коэффициент К.Л." Пирсона применяется также для измерения тесноты связи в модели регрессии линейной парной.

41. Корреляционная матрица и корреляционный граф.

О корреляции вообще см. вопрос № 36 с. 56 (64) 063.JPG

Корреляционная матрица. Часто корреляционный анализ включает в себя изучение связей не двух, а множества переменных, измеренных в количествен-ной шкале на одной выборке. В этом случае вычисляются корреляции для каждой пары из этого множества переменных. Вычисления обычно прово-дятся на компьютере, а результатом является корреляционная матрица.

Корреляционная матрица (Correlation Matrix ) - это результат вычисления корреляций одного типа для каждой пары из множества Р переменных, изме-ренных в количественной шкале на одной выборке.

ПРИМЕР

Предположим, изучаются связи между 5 переменными (vl, v2,..., v5; P = 5), изме-ренными на выборке численностью N=30 человек. Ниже приведена таблица ис-ходных данных и корреляционная матрица.

И
сходные данные:

Корреляционная матрица:

Нетрудно заметить, что корреляционная матрица является квадратной, симметрич-ной относительно главной диагонали (таккакг,у= /} у), с единицами на главной диа-гонали (так как г и = Гу = 1).

Корреляционная матрица является квадратной: число строк и столбцов равно числу переменных. Она симметрична относительно главной диагона-ли, так как корреляция х с у равна корреляции у с х. На ее главной диагонали располагаются единицы, так как корреляция признака с самим собой равна единице. Следовательно, анализу подлежат не все элементы корреляцион-ной матрицы, а те, которые находятся выше или ниже главной диагонали.

Количество коэффициентов корреляции, подлежащих анализу при изучении связей Рпризнаков определяется формулой: Р(Р- 1)/2. В приведенном выше примере количество таких коэффициентов корреляции 5(5 - 1)/2 = 10.

Основная задача анализа корреляционной матрицы - выявление структуры взаимосвязей множества признаков. При этом возможен визуальный анализ корреляционных плеяд - графического изображения структуры статистически значимых связей, если таких связей не очень много (до 10-15). Другой спо-соб - применение многомерных методов: множественного регрессионного, факторного или кластерного анализа (см. раздел «Многомерные методы...»). Применяя факторный или кластерный анализ, можно выделить группиров-ки переменных, которые теснее связаны друг с другом, чем с другими пере-менными. Весьма эффективно и сочетание этих методов, например, если признаков много и они не однородны.

Сравнение корреляций - дополнительная задача анализа корреляционной матрицы, имеющая два варианта. Если необходимо сравнение корреляций в одной из строк корреляционной матрицы (для одной из переменных), при-меняется метод сравнения для зависимых выборок (с. 148-149). При сравне-нии одноименных корреляций, вычисленных для разных выборок, применя-ется метод сравнения для независимых выборок (с. 147-148).

Методы сравнения корреляций в диагоналях корреляционной матрицы (для оценки стационарности случайного процесса) и сравнения нескольких корре-ляционных матриц, полученных для разных выборок (на предмет их одно-родности), являются трудоемкими и выходят за рамки данной книги. Позна-комиться с этими методами можно по книге Г. В. Суходольского 1 .

Проблема статистической значимости корреляций. Проблема заключается в том, что процедура статистической проверки гипотезы предполагает одно- кратное испытание, проведенное на одной выборке. Если один и тот же метод применяется многократно, пусть даже и в отношении различных переменных, то увеличивается вероятность получить результат чисто слу-чайно. В общем случае, если мы повторяем один и тот же метод проверки гипотезы к раз в отношении разных переменных или выборок, то при уста-новленной величине а мы гарантированно получим подтверждение гипоте-зы в ахк числе случаев.

Предположим, анализируется корреляционная матрица для 15 переменных, то есть вычислено 15(15-1)/2 = 105 коэффициентов корреляции. Для проверки гипотез установлен уровень а = 0, 05. Проверяя гипотезу 105 раз, мы пять раз (!) получим ее подтверждение независимо от того, существует ли связь на самом деле. Зная это и получив, скажем, 15 «статистически достоверных» коэффициентов корреляции, сможем ли мы сказать, какие из них получены случайно, а какие - отражают ре-альную связь?

Строго говоря, для принятия статистического решения необходимо умень-шить уровень а во столько раз, сколько гипотез проверяется. Но вряд ли это целесообразно, так как непредсказуемым образом увеличивается вероятность проигнорировать реально существующую связь (допустить ошибку II рода).

Одна только корреляционная матрица не является достаточным основанием для статистических выводов относительно входящих в нее отдельных коэффи- циентов корреляций!

Можно указать лишь один действительно убедительный способ решения этой проблемы: разделить выборку случайным образом на две части и прини-мать во внимание только те корреляции, которые статистически значимы в обеих частях выборки. Альтернативой может являться использование много-мерных методов (факторного, кластерного или множественного регрессион-ного анализа) - для выделения и последующей интерпретации групп статис-тически значимо связанных переменных.

Проблема пропущенных значений. Если в данных есть пропущенные значе-ния, то возможны два варианта расчета корреляционной матрицы: а) построч-ное удаление значений (Exclude cases listwise ); б) попарное удаление значений (Exclude cases pairwise ). При построчном удалении наблюдений с пропусками удаляется вся строка для объекта (испытуемого), который имеет хотя бы одно пропущенное значение по одной из переменных. Этот способ приводит к «пра-вильной» корреляционной матрице в том смысле, что все коэффициенты вы-числены по одному и тому же множеству объектов. Однако если пропущенные значения распределены случайным образом в переменных, то данный метод может привести к тому, что в рассматриваемом множестве данных не останется ни одного объекта (в каждой строке встретится, по крайней мере, одно пропу-щенное значение). Чтобы избежать подобной ситуации, используют другой способ, называемый попарным удалением. В этом способе учитываются только пропуски в каждой выбранной паре столбцов-переменных и игнорируются пропуски в других переменных. Корреляция для пары переменных вычисляет-ся по тем объектам, где нет пропусков. Во многих ситуациях, особенно когда число пропусков относительно мало, скажем 10%, и пропуски распределены достаточно хаотично, этот метод не приводит к серьезным ошибкам. Однако иногда это не так. Например, в систематическом смещении (сдвиге) оценки может «скрываться» систематическое расположение пропусков, являющееся причиной различия коэффициентов корреляции, построенных по разным под-множествам (например - для разных подгрупп объектов). Другая проблема, связанная с корреляционной матрицей, вычисленной при попарном удалении пропусков, возникает при использовании этой матрицы в других видах анали-за (например, в множественном регрессионном или факторном анализе). В них предполагается, что используется «правильная» корреляционная матрица с определенным уровнем состоятельности и «соответствия» различных коэффи-циентов. Использование матрицы с «плохими» (смещенными) оценками приводит к тому, что программа либо не в состоянии анализировать такую матри-цу, либо результаты будут ошибочными. Поэтому, если применяется попарный метод исключения пропущенных данных, необходимо проверить, имеются или нет систематические закономерности в распределении пропусков.

Если попарное исключение пропущенных данных не приводит к какому-либо систематическому сдвигу средних значений и дисперсий (стандартных отклонений), то эти статистики будут похожи на аналогичные показатели, вы-численные при построчном способе удаления пропусков. Если наблюдается значительное различие, то есть основание предполагать наличие сдвига в оцен-ках. Например, если среднее (или стандартное отклонение) значений перемен-ной А, которое использовалось при вычислении ее корреляции с переменной В, намного меньше среднего (или стандартного отклонения) тех же значений переменной А, которые использовались при вычислении ее корреляции с пе-ременной С, то имеются все основания ожидать, что эти две корреляции (А-В нА-С) основаны на разных подмножествах данных. В корреляциях будет сдвиг, вызванный неслучайным расположением пропусков в значениях переменных.

Анализ корреляционных плеяд. После решения проблемы статистической зна-чимости элементов корреляционной матрицы статистически значимые корре-ляции можно представить графически в виде корреляционной плеяды или пле-яд. Корреляционная плеяда - это фигура, состоящая из вершин и соединяющих их линий. Вершины соответствуют признакам и обозначаются обычно цифра-ми - номерами переменных. Линии соответствуют статистически достоверным связям и графически выражают знак, а иногда - и /j-уровень значимости связи.

Корреляционная плеяда может отра-жать все статистически значимые связи корреляционной матрицы (иногда называ-ется корреляционным графом ) или только их содержательно выделенную часть (напри-мер, соответствующую одному фактору по результатам факторного анализа).

ПРИМЕР ПОСТРОЕНИЯ КОРРЕЛЯЦИОННОЙ ПЛЕЯДЫ


Подготовка к проведению государственной (итоговой) аттестации выпускников: формирования базы ЕГЭ (общий список участников ЕГЭ всех категорий с указанием предметов) – с учетом резервных дней в случае совпадения предметов;

  • План работы (27)

    Решение

    2. Деятельность ОУ по совершенствованию содержания и оценке качества по предметам естественно-математического образования МОУ СОШ № 4, Литвиновская, Чапаевская,

  • Дата публикации: 03.09.2017 13:01

    Термин «корреляция» активно используется в гуманитарных науках, медицине; часто мелькает в СМИ. Ключевую роль корреляции играют в психологии. В частности, расчет корреляций выступает важным этапом реализации эмпирического исследования при написании ВКР по психологии.

    Материалы по корреляциям в сети слишком научны. Неспециалисту трудно разобраться в формулах. В то же время понимание смысла корреляций необходимо маркетологу, социологу, медику, психологу - всем, кто проводит исследования на людях.

    В этой статье мы простым языком объясним суть корреляционной связи, виды корреляций, способы расчета, особенности использования корреляции в психологических исследованиях, а также при написании дипломных работ по психологии.

    Содержание

    Что такое корреляция

    Корреляция - это связь. Но не любая. В чем же ее особенность? Рассмотрим на примере.

    Представьте, что вы едете на автомобиле. Вы нажимаете педаль газа - машина едет быстрее. Вы сбавляете газ - авто замедляет ход. Даже не знакомый с устройством автомобиля человек скажет: «Между педалью газа и скоростью машины есть прямая связь: чем сильнее нажата педаль, тем скорость выше».

    Это зависимость функциональная - скорость выступает прямой функцией педали газа. Специалист объяснит, что педаль управляет подачей топлива в цилиндры, где происходит сжигание смеси, что ведет к повышению мощности на вал и т.д. Это связь жесткая, детерминированная, не допускающая исключений (при условии, что машина исправна).

    Теперь представьте, что вы директор фирмы, сотрудники которой продают товары. Вы решаете повысить продажи за счет повышения окладов работников. Вы повышаете зарплату на 10%, и продажи в среднем по фирме растут. Через время повышаете еще на 10%, и опять рост. Затем еще на 5%, и опять есть эффект. Напрашивается вывод - между продажами фирмы и окладом сотрудников есть прямая зависимость - чем выше оклады, тем выше продажи организации. Такая же это связь, как между педалью газа и скоростью авто? В чем ключевое отличие?

    Правильно, между окладом и продажами заисимость не жесткая. Это значит, что у кого-то из сотрудников продажи могли даже снизиться, невзирая на рост оклада. У кого-то остаться неизменными. Но в среднем по фирме продажи выросли, и мы говорим - связь продаж и оклада сотрудников есть, и она корреляционная.

    В основе функциональной связи (педаль газа - скорость) лежит физический закон. В основе корреляционной связи (продажи - оклад) находится простая согласованность изменения двух показателей. Никакого закона (в физическом понимании этого слова) за корреляцией нет. Есть лишь вероятностная (стохастическая) закономерность.

    Численное выражение корреляционной зависимости

    Итак, корреляционная связь отражает зависимость между явлениями. Если эти явления можно измерить, то она получает численное выражение.

    Например, изучается роль чтения в жизни людей. Исследователи взяли группу из 40 человек и измерили у каждого испытуемого два показателя: 1) сколько времени он читает в неделю; 2) в какой мере он считает себя благополучным (по шкале от 1 до 10). Ученые занесли эти данные в два столбика и с помощью статистической программы рассчитали корреляцию между чтением и благополучием. Предположим, они получили следующий результат -0,76. Но что значит это число? Как его проинтерпретировать? Давайте разбираться.

    Полученное число называется коэффициентом корреляции. Для его правильной интерпретации важно учитывать следующее:

    1. Знак «+» или «-» отражает направление зависимости.
    2. Величина коэффициента отражает силу зависимости.

    Прямая и обратная

    Знак плюс перед коэффициентом указывает на то, что связь между явлениями или показателями прямая. То есть, чем больше один показатель, тем больше и другой. Выше оклад - выше продажи. Такая корреляция называется прямой, или положительной.

    Если коэффициент имеет знак минус, значит, корреляция обратная, или отрицательная. В этом случае чем выше один показатель, тем ниже другой. В примере с чтением и благополучием мы получили -0,76, и это значит, что, чем больше люди читают, тем ниже уровень их благополучия.

    Сильная и слабая

    Корреляционная связь в численном выражении - это число в диапазоне от -1 до +1. Обозначается буквой «r». Чем выше число (без учета знака), тем корреляционная связь сильнее.

    Чем ниже численное значение коэффициента, тем взаимосвязь между явлениями и показателями меньше.

    Максимально возможная сила зависимости - это 1 или -1. Как это понять и представить?

    Рассмотрим пример. Взяли 10 студентов и измерили у них уровень интеллекта (IQ) и успеваемость за семестр. Расположили эти данные в виде двух столбцов.

    Испытуемый

    IQ

    Успеваемость (баллы)

    Посмотрите внимательно на данные в таблице. От 1 до 10 испытуемого растет уровень IQ. Но также растет и уровень успеваемости. Из любых двух студентов успеваемость будет выше у того, у кого выше IQ. И никаких исключений из этого правила не будет.

    Перед нами пример полного, 100%-но согласованного изменения двух показателей в группе. И это пример максимально возможной положительной взаимосвязи. То есть, корреляционная зависимость между интеллектом и успеваемостью равна 1.

    Рассмотрим другой пример. У этих же 10-ти студентов с помощью опроса оценили, в какой мере они ощущают себя успешными в общении с противоположным полом (по шкале от 1 до 10).

    Испытуемый

    IQ

    Успех в общении с противоположным полом (баллы)

    Смотрим внимательно на данные в таблице. От 1 до 10 испытуемого растет уровень IQ. При этом в последнем столбце последовательно снижается уровень успешности общения с противоположным полом. Из любых двух студентов успех общения с противоположным полом будет выше у того, у кого IQ ниже. И никаких исключений из этого правила не будет.

    Это пример полной согласованности изменения двух показателей в группе - максимально возможная отрицательная взаимосвязь. Корреляционная связь между IQ и успешностью общения с противоположным полом равна -1.

    А как понять смысл корреляции равной нулю (0)? Это значит, связи между показателями нет. Еще раз вернемся к нашим студентам и рассмотрим еще один измеренный у них показатель - длину прыжка с места.

    Испытуемый

    IQ

    Длина прыжка с места (м)

    Не наблюдается никакой согласованности между изменением IQ от человека к человеку и длинной прыжка. Это и свидетельствует об отсутствии корреляции. Коэффициент корреляции IQ и длины прыжка с места у студентов равен 0.

    Мы рассмотрели крайние случаи. В реальных измерениях коэффициенты редко бывают равны точно 1 или 0. При этом принята следующая шкала:

    • если коэффициент больше 0,70 - связь между показателями сильная;
    • от 0,30 до 0,70 - связь умеренная,
    • меньше 0,30 - связь слабая.

    Если оценить по этой шкале полученную нами выше корреляцию между чтением и благополучием, то окажется, что эта зависимость сильная и отрицательная -0,76. То есть, наблюдается сильная отрицательная связь между начитанностью и благополучием. Что еще раз подтверждает библейскую мудрость о соотношении мудрости и печали.

    Приведенная градация дает очень приблизительные оценки и в таком виде редко используются в исследованиях.

    Чаще используются градации коэффициентов по уровням значимости. В этом случае реально полученный коэффициент может быть значимым или не значимым. Определить это можно, сравнив его значение с критическим значением коэффициента корреляции, взятым из специальной таблицы. Причем эти критические значения зависят от численности выборки (чем больше объем, тем ниже критическое значение).

    Корреляционный анализ в психологии

    Корреляционный метод выступает одним из основных в психологических исследованиях. И это не случайно, ведь психология стремится быть точной наукой. Получается ли?

    В чем особенность законов в точных науках. Например, закон тяготения в физике действует без исключений: чем больше масса тела, тем сильнее оно притягивает другие тела. Этот физический закон отражает связь массы тела и силы притяжения.

    В психологии иная ситуация. Например, психологи публикуют данные о связи теплых отношений в детстве с родителями и уровня креативности во взрослом возрасте. Означает ли это, что любой из испытуемых с очень теплыми отношениями с родителями в детстве будет иметь очень высокие творческие способности? Ответ однозначный - нет. Здесь нет закона, подобного физическому. Нет механизма влияния детского опыта на креативность взрослых. Это наши фантазии! Есть согласованность данных (отношения - креативность), но за ними нет закона. А есть лишь корреляционная связь. Психологи часто называют выявляемые взаимосвязи психологическими закономерностями, подчеркивая их вероятностный характер - не жесткость.

    Пример исследования на студентах из предыдущего раздела хорошо иллюстрирует использование корреляций в психологии:

    1. Анализ взаимосвязи между психологическими показателями. В нашем примере IQ и успешность общения с противоположным полом - это психологические параметры. Выявление корреляции между ними расширяет представления о психической организации человека, о взаимосвязях между различными сторонами его личности - в данном случае между интеллектом и сферой общения.
    2. Анализ взаимосвязей IQ с успеваемостью и прыжками - пример связи психологического параметра с непсихологическими. Полученные результаты раскрывают особенности влияния интеллекта на учебную и спортивную деятельность.

    Вот как могли выглядеть краткие выводы по результатам придуманного исследования на студентах:

    1. Выявлена значимая положительная зависимость интеллекта студентов и их успеваемости.
    2. Существует отрицательная значимая взаимосвязь IQ с успешностью общения с противоположным полом.
    3. Не выявлено связи IQ студентов с умением прыгать с места.

    Таким образом, уровень интеллекта студентов выступает позитивным фактором их академической успеваемости, в то же время негативно сказываясь на отношениях с противоположным полом и не оказывая значимого влияния на спортивные успехи, в частности, способность к прыгать с места.

    Как видим, интеллект помогает студентам учиться, но мешает строить отношения с противоположным полом. При этом не влияет на их спортивные успехи.

    Неоднозначное влияние интеллекта на личность и деятельность студентов отражает сложность этого феномена в структуре личностных особенностей и важность продолжения исследований в этом направлении. В частности, представляется важным провести анализ взаимосвязей интеллекта с психологическими особенностями и деятельностью студентов с учетом их пола.

    Коэффициенты Пирсона и Спирмена

    Рассмотрим два метода расчета.

    Коэффициент Пирсона - это особый метод расчета взаимосвязи показателей между выраженностью численных значений в одной группе. Очень упрощенно он сводится к следующему:

    1. Берутся значения двух параметров в группе испытуемых (например, агрессии и перфекционизма).
    2. Находятся средние значения каждого параметра в группе.
    3. Находятся разности параметров каждого испытуемого и среднего значения.
    4. Эти разности подставляются в специальную форму для расчета коэффициента Пирсона.

    Коэффициент ранговой корреляции Спирмена рассчитывается похожим образом:

    1. Берутся значения двух индикаторов в группе испытуемых.
    2. Находятся ранги каждого фактора в группе, то есть место в списке по возрастанию.
    3. Находятся разности рангов, возводятся в квадрат и суммируются.
    4. Далее разности рангов подставляются в специальную форму для вычисления коэффициента Спирмена.

    В случае Пирсона расчет шел с использованием среднего значения. Следовательно, случайные выбросы данных (существенное отличие от среднего), например, из-за ошибки обработки или недостоверных ответов могут существенно исказить результат.

    В случае Спирмена абсолютные значения данных не играют роли, так как учитывается только их взаимное расположение по отношению друг к другу (ранги). То есть, выбросы данных или другие неточности не окажут серьезного влияния на конечный результат.

    Если результаты тестирования корректны, то различия коэффициентов Пирсона и Спирмена незначительны, при этом коэффициент Пирсона показывает более точное значение взаимосвязи данных.

    Как рассчитать коэффициент корреляции

    Коэффициенты Пирсона и Спирмена можно рассчитать вручную. Это может понадобиться при углубленном изучении статистических методов.

    Однако в большинстве случаев при решении прикладных задач, в том числе и в психологии, можно проводить расчеты с помощью специальных программ.

    Расчет с помощью электронных таблиц Microsoft Excel

    Вернемся опять к примеру со студентами и рассмотрим данные об уровне их интеллекта и длине прыжка с места. Занесем эти данные (два столбца) в таблицу Excel.

    Переместив курсор в пустую ячейку, нажмем опцию «Вставить функцию» и выберем «КОРРЕЛ» из раздела «Статистические».

    Формат этой функции предполагает выделение двух массивов данных: КОРРЕЛ (массив 1; массив»). Выделяем соответственно столбик с IQ и длиной прыжков.

    В таблицах Excel реализована формула расчета только коэффициента Пирсона.

    Расчет с помощью программы STATISTICA

    Заносим данные по интеллекту и длине прыжка в поле исходных данных. Далее выбираем опцию «Непараметрические критерии», «Спирмена». Выделяем параметры для расчета и получаем следующий результат.


    Как видно, расчет дал результат 0,024, что отличается от результата по Пирсону - 0,038, полученной выше с помощью Excel. Однако различия незначительны.

    Использование корреляционного анализа в дипломных работах по психологии (пример)

    Большинство тем выпускных квалификационных работ по психологии (дипломов, курсовых, магистерских) предполагают проведение корреляционного исследования (остальные связаны с выявлением различий психологических показателей в разных группах).

    Сам термин «корреляция» в названиях тем звучит редко - он скрывается за следующими формулировками:

    • «Взаимосвязь субъективного ощущения одиночества и самоактуализации у женщин зрелого возраста»;
    • «Особенности влияния жизнестойкости менеджеров на успешность их взаимодействия с клиентами в конфликтных ситуациях»;
    • «Личностные факторы стрессоустойчивости сотрудников МЧС».

    Таким образом, слова «взаимосвязь», «влияние» и «факторы» - верные признаки того, что методом анализа данных в эмпирическом исследовании должен быть корреляционный анализ.

    Рассмотрим кратко этапы его проведения при написании дипломной работы по психологии на тему: «Взаимосвязь личностной тревожности и агрессивности у подростков».

    1. Для расчета необходимы сырые данные, в качестве которых обычно выступают результаты тестирования испытуемых. Они заносятся в сводную таблицу и помещаются в приложение. Эта таблица устроена следующим образом:

    • каждая строка содержит данные на одного испытуемого;
    • каждый столбец содержит показатели по одной шкале для всех испытуемых.

    № испытуемого

    Личностная тревожность

    Агрессивность

    2. Необходимо решить, какой из двух типов коэффициентов - Пирсона или Спирмена - будет использоваться. Напоминаем, что Пирсон дает более точный результат, но он чувствителен к выбросам в данных Коэффициенты Спирмена могут использоваться с любыми данными (кроме номинативной шкалы), поэтому именно они чаще всего используют в дипломах по психологии.

    3. Заносим таблицу сырых данных в статистическую программу.

    4. Рассчитываем значение.



    5. На следующем этапе важно определить, значима ли взаимосвязь. Статистическая программа подсветила результаты красным, что означает, что корреляция статистически значимы при уровне значимости 0,05 (указано выше).

    Однако полезно знать, как определить значимость вручную. Для этого понадобится таблица критических значений Спирмена.

    Таблица критических значений коэффициентов Спирмена

    Уровень статистической значимости

    Число испытуемых

    р=0,05

    р=0,01

    р=0,001

    0,88

    0,96

    0,99

    0,81

    0,92

    0,97

    0,75

    0,88

    0,95

    0,71

    0,83

    0,93

    0,67

    0,63

    0,77

    0,87

    0,74

    0,85

    0,58

    0,71

    0,82

    0,55

    0,68

    0,53

    0,66

    0,78

    0,51

    0,64

    0,76

    Нас интересует уровень значимости 0,05 и объем нашей выборки 10 человек. На пересечении этих данных находим значение критического Спирмена: Rкр=0,63.

    Правило такое: если полученное эмпирическое значение Спирмена больше либо равно критическому, то он статистически значим. В нашем случае: Rэмп (0,66) > Rкр (0,63), следовательно, взаимосвязь между агрессивностью и тревожностью в группе подростков статистически значима.

    5. В текст дипломной нужно вставлять данные в таблице формата word, а не таблицу из статистической программы. Под таблицей описываем полученный результат и интерпретируем его.

    Таблица 1

    Коэффициенты Спирмена агрессивности и тревожности в группе подростков

    Агрессивность

    Личностная тревожность

    0,665*

    * - статистически достоверна (р 0,05)

    Анализ данных, приведенных в таблице 1, показывает, что существует статистически значимая положительная связьмежду агрессивностью и тревожностью подростков. Это означает, что чем выше личностная тревожность подростков, тем выше уровень их агрессивности. Такой результат дает основание предположить, что агрессия для подростков выступает одним из способов купирования тревожности. Испытывая неуверенность в себе, тревогу в связи с угрозами самооценке, особенно чувствительной в подростковом возрасте, подросток часто использует агрессивное поведение, таким непродуктивным способом снижая тревогу.

    6. Можно ли при интерпретации связей говорить о влиянии? Можно ли сказать, что тревожность влияет на агрессивность? Строго говоря, нет. Выше мы показали, что корреляционная связь между явлениями носит вероятностный характер и отражает лишь согласованность изменений признаков в группе. При этом мы не можем сказать, что эта согласованность вызвана тем, что одно из явлений является причиной другого, влияет на него. То есть, наличие корреляции между психологическими параметрами не дает оснований говорить о существовании между ними причинно-следственной связи. Однако практика показывает, что термин «влияние» часто используется при анализе результатов корреляционного анализа.

    Дисциплина "высшая математика" у некоторых вызывает неприятие, так как поистине не всем дано ее понять. Но те, кому посчастливилось изучать этот предмет и решать задачи, используя различные уравнения и коэффициенты, могут похвастаться практически полной в ней осведемленности. В психологической науке существует не только гуманитарная направленность, но и определенные формулы и способы для математической проверки выдвигаемой в ходе исследований гипотезы. Для этого применяются различные коэффициенты.

    Коэффициент корреляции Спирмена

    Это распространенное измерение по определению тесноты связи между какими-либо двумя признаками. Коэффициент еще называют непараметрическим методом. Он показывает статистику связи. То есть мы знаем, например, что у ребенка агрессия и раздражительность связаны между собой, а коэффициент корреляции рангов Спирмена показывает статистическую математическую связь этих двух признаков.

    Как вычисляется ранговый коэффициент?

    Естественно, что для всех математических определений или величин существуют свои формулы, по которым они вычисляются. Ею обладает и коэффициент корреляции Спирмена. Формула у него следующая:

    С первого взгляда формула не совсем понятна, но если разобраться, все очень легко вычисляется:

    • n - это количество признаков или показателей, которые проранжированы.
    • d - разность определенных двух рангов, соответствующих конкретным двум переменным каждого испытуемого.
    • ∑d 2 - сумма всех квадратов разностей рангов признака, квадраты которых вычисляются отдельно для каждого ранга.

    Область применения математической меры связи

    Для применения рангового коэффициента необходимо, чтобы количественные данные признака были проранжированы, то есть им был присвоен определенный номер в зависимости от места, на котором расположен признак, и от его значения. Доказано, что два ряда признаков, выраженных в числовом виде, несколько параллельны между собой. Коэффициент ранговой корреляции Спирмена определяет степень этой параллельности, тесноты связи признаков.

    Для математической операции по расчету и определению связи признаков с помощью указанного коэффициента нужно произвести некоторые действия:

    1. Каждому значению какого-либо испытуемого или явления присваивается номер по порядку - ранг. Он может соответствовать значению явления по возрастанию и по убыванию.
    2. Дальше сопоставляются ранги значения признаков двух количественных рядов для того, чтобы определить разность между ними.
    3. В отдельном столбце таблицы для каждой полученной разности прописывается ее квадрат, а внизу результаты суммируются.
    4. После этих действий применяется формула, по которой рассчитывается коэффициент корреляции Спирмена.

    Свойства коэффициента корреляции

    К основным свойствам коэффициента Спирмена относят следующие:

    • Измерение значений в пределах от -1 до 1.
    • Знак коэффициента интерпретаций не имеет.
    • Теснота связи определяется по принципу: чем выше величина, тем теснее связь.

    Как проверить полученное значение?

    Для проверки связи признаков между собой необходимо выполнить определенные действия:

    1. Выдвигается нулевая гипотеза (H0), она же основная, затем формулируется другая, альтернативная первой (H 1). Первая гипотеза будет заключаться в том, что коэффициент корреляции Спирмена равняется 0 - это значит, что связи не будет. Вторая, наоборот, гласит, что коэффициент не равен 0, тогда связь есть.
    2. Следующим действием будет нахождение наблюдаемого значения критерия. Оно находится по основной формуле коэффициента Спирмена.
    3. Далее находятся критические значения заданного критерия. Это можно сделать только с помощью специальной таблицы, где отображаются различные значения по заданным показателям: уровень значимости (l) и число, определяющее (n).
    4. Теперь нужно сравнить два полученных значения: установленного наблюдаемого, а также критического. Для этого необходимо построить критическую область. Нужно начертить прямую линию, на ней отметить точки критического значения коэффициента со знаком "-" и со знаком"+". Слева и справа от критических значений полукругами от точек откладываются критические области. Посередине, объединяя два значения, отмечается полукругом ОПГ.
    5. После этого делается вывод о тесноте связи между двумя признаками.

    Где лучше использовать эту величину

    Самой первой наукой, где активно использовался этот коэффициент, была психология. Ведь это наука, не основывающаяся на цифрах, однако для доказательства каких-либо важных гипотез, касающихся развития отношений, черт характера людей, знаний студентов, требуется статистическое подтверждение выводов. Также его используют в экономике, в частности, при валютных оборотах. Здесь оцениваются признаки без статистики. Очень удобен коэффициент ранговой корреляции Спирмена в этой области применения тем, что оценка производится независимо от распределения переменных, так как они заменяются ранговым числом. Активно применяется коэффициент Спирмена в банковском деле. Социология, политология, демография и другие науки также используют его в своих исследованиях. Результаты получаются быстро и максимально точно.

    Удобно и быстро используется коэффициент корреляции Спирмена в Excel. Здесь существуют специальные функции, которые помогают быстро получить необходимые значения.

    Какие еще коэффициенты корреляции существуют?

    Кроме того, что мы узнали про коэффициент корреляции Спирмена, существуют еще различные корреляционные коэффициенты, позволяющие измерить, оценить качественные признаки, связь между количественными признаками, тесноту связи между ними, представленными в ранговой шкале. Это такие коэффициенты, как биссериальный, рангово-биссериальный, контенгенции, ассоциации, и так далее. Коэффициент Спирмена очень точно показывает тесноту связи, в отличие от всех остальных методов ее математического определения.