«Когда кажется, что всё идёт против вас, помните, что самолёт взлетает против ветра, а не с ним». Самолет взлетает против ветра

Ведь все же знают: против течения плыть сложнее, а уж когда зимой холодный воздух дует прямо в лицо, идти совершенно невозможно… В авиации все наоборот. Полоса и направление взлета и посадки выбираются всегда так, чтобы максимально избежать попутного ветра. Пусть он дует сбоку или спереди, но только, пожалуйста, не сзади. Почему так? Все просто. Самолет двигается относительно воздуха, и если ветер дует ниже спины, то для достижения нужной скорости для появления подъемной силы придется слишком сильно разогнаться относительно земли. То же самое и при посадке — и в том, и в другом случае пробег по земле будет больше, сильнее будут изнашиваться шины, а если скорость окажется слишком велика, то можно и с полосы выкатиться: вам просто не хватит ее длины.

Попробовать поучаствовать в таком аттракционе можно в Сочи, Тивате и ряде других аэропортов, где взлетать и садиться можно только с одной стороны (с другой мешают горы): там часто приходится делать это при попутном ветре, а если он слишком сильный, то есть шанс прокатиться до запасного аэродрома.

В каждом аэропорту есть своя схема захода и выхода, причем для каждого из взлетных и посадочных курсов она своя. Как правило, погода и рабочая полоса известны уже перед вылетом, поэтому пилоты знают, к какой точке нужно подойти для правильного захода.

В больших загруженных аэропортах могут быть определены специальные «зоны ожидания», в которые отправляются прибывающие самолеты в тех случаях, когда возникает «пробка» в очереди на посадку. В аэропортах поменьше диспетчер может просто дать команду кружить в таком-то районе на такой-то высоте, так что если вы вдруг обнаружили, что ваш самолет летает по кругу на месте, это вовсе не значит, что он вырабатывает топливо перед аварийной посадкой, и паниковать не стоит. Опытные диспетчеры и вовсе могут попросить того, кто ближе к полосе, увеличить скорость, а тех, кто подальше, чуть снизить. При этом они видят на локаторе тип каждого воздушного судна и понимают, может ли оно физически лететь быстрее или медленнее — лишний раз беспокоить тоже не будут.

Как выбирается маршрут самолета? Конечно, так, чтобы потратить минимальное количество топлива. Но самолеты двигаются вовсе не по кратчайшей прямой между двумя городами, что было бы логично, а следуют по воздушным трассам. Грубо говоря, это поворотные пункты, между которыми проложены «воздушные коридоры», и маршрут прокладывается последовательно от одной точки к другой. Все эти точки обозначены на картах и имеют мнемонические обозначения из 5 букв, чтобы было легко запомнить, а в небе они обозначаются либо дирижаблями, либо летающими световыми буями. С первым апреля! Конечно, они никак не обозначены ни в небе, ни на земле; все эти точки — просто набор определенных географических координат, то есть, они сугубо виртуальные.

Однако следовать воздушным трассам нужно очень четко. Гражданский борт не может отклониться от трассы более чем на 3 километра, иначе сначала диспетчер будет настойчиво требовать вернуться на курс, а потом вмешается ПВО, контролирующая все воздушное пространство: по боевой тревоге будут подняты истребители, недвусмысленно намекающие, что так делать не следует. Особенно есть борт иностранный: сбивать его, как корейский «Боинг», вряд ли будут, но заставить сесть на озеро, как другой корейский «Боинг», могут запросто. И, конечно, жалоба в авиакомпанию от аэронавигационной службы будет отправлена однозначно.

Казалось бы, следование маршрутам уменьшает пропускную способность воздушного пространства. Но, во-первых, они проложены оптимально и лишних «облетов» стараются не допускать — разве что избегают территорий, где идет война. Во-вторых, без этого в воздухе был бы бардак и диспетчерам трудно было бы следить за тем, чтобы самолеты не сталкивались друг с другом. На маршрутах же все четко: расстояние между бортами не менее 5 километров, и при этом они летят на разной высоте с шагом в 500 метров. Более того, занимаемый эшелон зависит от направления: если текущий курс — от 0 до 180 градусов, то выбирают 10100, 11100, 12100 метров, а если от 180 до 360, то 9600, 10600, 11600. Поэтому самолеты, летящие в противоположных направлениях, не могут пересечься на одной и той же высоте. Эшелон, кстати, в процессе полета можно менять. Например, если на вашем эшелоне сильный встречный ветер, а «соседи» говорят, что у них поспокойнее, то можно попробовать запросить у диспетчера смену эшелона. Скорость ветра может достигать 100-150 км/ч, так что он очень сильно влияет на скорость самолета относительно земли. И именно из-за ветра всегда быстрее лететь с запада на восток, чем с востока на запад (посмотрите любое расписание): в северном полушарии преобладают именно ветры, дующие с запада на восток.

Именно с полушариями связан и эффект дуги: когда вы в самолете на экране монитора видите маршрут полета, он кажется дугообразным потому, что земля круглая, а проекция карты — плоская: ведь на самом деле ближе к полюсам меридианы сходятся, в то время как на карте это не так. Если вы полетите где-то в районе Экватора, там искажения будут минимальны и линия окажется прямой.

P.S. И, как сказал Николай Жуковский, «Самолёт - величайшее творение разума и рук человеческих. Он неподвластен никаким авторитетам, кроме лиц, уважающих лётные законы»

Человечество издавна интересовал вопрос, как же так получается, что многотонный летательный аппарат легко поднимается к небесам. Как же происходит взлет и как летают самолеты? Когда авиалайнер движется на большой скорости по взлетной полосе, у крыльев появляется подъемная сила и работает снизу вверх.

При движении воздушного судна вырабатывается разница давлений на нижнюю и верхнюю стороны крыла, благодаря чему получается подъемная сила, удерживающая воздушное судно в воздухе. Т.е. высокое давление воздуха снизу толкает крыло вверх, при этом низкое давление сверху затягивает крыло на себя. В результате крыло поднимается.

Для взлета авиалайнера, ему необходим достаточный разбег. Подъемная сила крыльев увеличивается в процессе набора скорости , которая должна превысить предельный взлетный режим. Затем пилот увеличивает угол взлета , отводя штурвал к себе. Носовая часть лайнера поднимается вверх, и машина поднимается в воздух.

Затем убираются шасси и выпускные фары . С целью уменьшения подъемной силы крыла, пилот постепенно выполняет уборку механизации. Когда авиалайнер достигнет необходимого уровня, летчик устанавливает стандартное давление, а двигателям – номинальный режим . Чтобы посмотреть, как взлетает самолет, видео предлагаем просмотреть в конце статьи.

Взлет судна выполняется под углом . С практической точки зрения этому можно дать следующее объяснение. Руль высоты – это подвижная поверхность, управляя которой можно вызвать отклонение самолета по тангажу.

Рулем высоты можно управлять углом тангажа, т.е. изменять скорость набора или потери высоты. Это происходит вследствие изменения угла атаки и силы подъема. Увеличивая скорость двигателя, пропеллер начинает крутиться быстрее и поднимает авиалайнер вверх. И наоборот, направляя рули высоты вниз, нос самолета опускается вниз, при этом скорость двигателя следует уменьшать.

Хвостовая часть авиалайнера укомплектована рулем направления и тормозами на обе стороны колес.

Как летают авиалайнеры

Отвечая на вопрос, почему летают самолеты, следует вспомнить закон физики. Разница давлений воздействует на подъемную силу крыла.

Скорость потока будет больше, если давление воздуха будет низким и с точностью, наоборот.

Поэтому, если скорость авиалайнера большая, то его крылья приобретают подъемную силу, которая толкает воздушное судно.

Еще на подъемную силу крыла авиалайнера влияют некоторые обстоятельства: угол атаки, скорость и плотность потока воздуха, площадь, профиль и форма крыла.

Современные лайнеры имеют минимальную скорость от 180 до 250 км/час , при которых осуществляется взлет, планирует в небесах и не падает.

Высота полета

Какая же предельная и безопасная высота полета самолета.

Не все суда имеют одинаковую высоту полета , «воздушный потолок» может колебаться на высоте от 5000 до 12100 метров . На больших высотах плотность воздуха минимальная, при этом лайнер достигает наименьшего сопротивления воздуха.

Двигателю лайнера необходим фиксированный объем воздуха для сжигания, потому как двигатель не создаст нужной тяги. Также, при полетах на большой высоте, самолет экономит топливо до 80% в отличие от высоты до километра.

За счет чего самолет находится в воздухе

Чтобы ответить, почему самолеты летают, необходимо поочередно разобрать принципы его перемещения в воздухе. Реактивный авиалайнер с пассажирами на борту достигает несколько тонн, но при этом, легко взлетает и осуществляет тысячекилометровый перелет.

На движение в воздухе влияют и динамические свойства аппарата, конструкции агрегатов, формирующие полетную конфигурацию.

Силы, влияющие на движение самолета в воздухе

Работа авиалайнера начинается с запуска двигателя. Небольшие суда работают на поршневых двигателях, вращающих воздушные винты, при этом создается тяга, помогающая воздушному судну перемещаться в воздушном пространстве.

Большие авиалайнеры работают на реактивных двигателях, которые в процессе работы выбрасывают много воздуха, при этом реактивная сила приводит летательный аппарат к движению вперед.

Почему же самолет взлетает и находится долгое время в воздухе? Так как форма крыльев имеет разную конфигурацию: сверху округлая, а снизу плоская , то поток воздуха с обеих сторон не одинаковый. Сверху крыльев воздух скользит и становится разреженным, а давление его меньше, чем воздух снизу крыла. Потому, посредством неравномерного давления воздуха и форме крыльев, возникает сила, приводящая к взлету самолета вверх.

Но чтобы авиалайнер мог легко оторваться от земли, ему необходимо на высокой скорости совершить разбег по взлетной полосе.

Из этого следует вывод, чтобы авиалайнер беспрепятственно находился в полете, ему необходим движущийся воздух, который рассекают крылья и создает подъемную силу.

Взлет самолета и его скорость

Многих пассажиров интересует вопрос, какую скорость развивает самолет при взлете? Существует ошибочное представление, что скорость взлета для каждого самолета одинакова. Чтобы ответить на вопрос, какая скорость самолета при взлете, следует обратить внимание на немаловажные факторы.

  1. Авиалайнер не имеет строго фиксированной скорости. Подъемная сила воздушного лайнера зависит от его массы и длины крыльев . Взлет совершается тогда, когда при встречном потоке создается подъемная сила, которая на много больше массы самолета. Поэтому, взлет и скорость воздушного аппарата зависит от направления ветра, атмосферного давления, влажности, осадков, длины и состояния взлетной полосы.
  2. Чтобы создать подъемную силу и удачно выполнить отрыв от земли, самолету необходимо набрать максимальную взлетную скорость и достаточный разбег . Для этого требуются длинные взлетные полосы. Чем большегрузный самолет, тем требуются длиннее взлетно-посадочная полоса.
  3. Для каждого самолета существует своя шкала взлетных скоростей, потому что все они имеют свое предназначение: пассажирский, спортивный, грузовой. Чем легче самолет, тем взлетная скорость значительно ниже и наоборот.

Взлет пассажирского реактивного самолета Boeing 737

  • Разбег авиалайнера по взлетной полосе начинается, когда двигатель достигнет 800 оборотов в минуту, пилот потихоньку отпускает тормоза и держит рычаг управления на нейтральном уровне. Затем самолет продолжает движение на трех колесах;
  • Перед отрывом от земли скорость лайнера должна достигнуть 180 км в час . Затем летчик тянет рычаг, что приводит к отклонению щитков – закрылков и поднятию носовой части самолета. Далее разгон производится на двух колесах;
  • После, с приподнятой носовой частью, авиалайнер разгоняется на двух колесах до 220 км в час , а затем производится отрыв от земли.

Поэтому, если вы хотите подробнее узнать, как взлетает самолет, на какую высоту и с какой скоростью, мы предлагаем вам эту информацию в нашей статье. Надеемся, что от воздушного путешествия вы получите огромное удовольствие.

Если да, то эта статья может представлять для вас интерес.

Фобия - сильно выраженный упорный навязчивый страх , необратимо обостряющийся в определённых ситуациях и не поддающийся полному логическому объяснению.

В результате развития фобии человек начинает бояться и соответственно избегать определенных объектов, видов деятельности или ситуаций.

Если страх выходит из-под контроля человека и препятствует его нормальной жизнедеятельности, то тогда может быть поставлен диагноз панического расстройства либо специфической фобии.

Акрофобия – боязнь высоты.

Вышеописанные ощущения, безусловно, говорят о том, что человек во время приступа испытывает реальный страх смерти. Смотрит «смерти в лицо». Точнее сказать, его тело ведет себя так, как будто подвергается смертельной опасности. В то время, как реальная ситуация смертельной угрозы не несет.

Страх высоты, возникающий у человека, который стоит у края крыши 25-этажного дома – это адекватная реакция психики на опасность, предупреждение об опасности. Однако такое же состояние, возникающее на балконе 5 этажа или на автодорожной эстакаде – это уже приступ фобии. Психоанализ различает рациональный страх (реакцию на опасность) и иррациональный страх, являющийся следствием нереализованных жизненных стремлений и проявляющийся как способ функционирования суперэго.

Если Суперэго жесткое, ригидное, то его запреты формируются в психике как правила, выполнение которых необходимо для получения права на жизнь . А нарушение соответственно – угрожает смертью. Ведь Суперэго формируется у ребенка в возрасте 3-5 лет, в те времена, когда он еще слишком мал для самостоятельного выживания, и оно реально зависит от любви и одобрения родителя. И вот Суперэго пугает «Я» смертью при попытке катектировать либидо в недопустимые с точки зрения Суперэго объекты.

В случае страха высоты Суперэго, видимо, стремится не допустить достижения успешности «Я», сепарации путем достижения превосходства над родителем (которое в психической жизни приравнивается к убийству родителя).

Страх высоты как фобию можно увязать со страхом в отношениях с социумом оказаться «не на высоте», проще говоря, облажаться. И формируются такие жизненные стратегии, как «не высовываться», «довольствоваться малым», «не радоваться, а то плакать придется», и так далее. А тут и страх высоты напомнит тебе, что ты не птица. Ты – курица.

Таким образом, при терапии страха высоты работа с самим симптомом становится второстепенной задачей. Основной целью будет анализ психической структуры пациента и работа над перестройкой этой структуры. Она будет заключаться в укреплении, доформировании Эго.

Одновременно необходимо ослабить и частично разрушить жесткое Суперэго. Это структура весьма живучая и по доброй воле разрушить себя не даст. И тут стоит направлять воздействие к детской части пациента, одновременно «забалтывая» СуперЭго (это когда учишь ребенка «плохому», одновременно создавая у его матери видимость того, что угрозы ее авторитету нет, а ребенок занят «хорошим делом» - рисует, учит стихи, в школе начал лучше учиться…). И в это время доращивать Эго до способности к сепарационному бунту. К полету. На любой высоте.

ВЛИЯНИЕ ВЕТРА НА ВЗЛЕТ САМОЛЕТА

Взлет самолета, как правило, выполняется против ветра, так как встречный ветер сокращает разбег и взлетную дистанцию и облегчает управление самолетом.

Скорость отрыва самолета Як-55 составляет Vотр = 100 км/ч, а самолета Як-52 = 120 км/ч. Это значит, что крылья самолетов будут обдуваться встречным потоком с соответствующими скоростями, на этих скоростях подъемная сила уравновесит вес самолета, который в данный момент оторвется от земли.

Рассмотрим взлет самолета при встречном ветре U=36 км/ч. Это значит, что когда самолет стоит на старте, то он уже обдувается встречным потоком воздуха со скоростью 36 км/ч. Так как для отрыва самолета от земли необходима скорость Vотр = 100 км/ч (Як-55) и Voтp =120 км/ч (Як-52), то, следовательно, не хватает скорости для самолета Як-55, равной разности (100-36=64 км/ч), для Як-52-(120-36=84 км/ч). Таким образом, при разбеге против ветра самолет оторвется уже в тот момент, когда его скорость относительно земли будет составлять 64 км/ч для самолета Як-55 и 84 км/ч - для Як 52.

При взлете с попутным ветром картина будет обратная. Когда самолет достигнет скорости 36 км/ч относительно земли, то относительно воздушного потока его скорость будет равна нулю (V=0). А так как для отрыва необходима скорость Voтp = 100 км/ч (Як-52) и Voтp = 120 км/ч (Як-55), то самолет должен увеличивать скорость, и поэтому его скорость относительно земли будет равна (100+36=136 км/ч) для самолета Як-55 и (120+36=156 км/ч) -для Як-52.

Формула длины разбега с учетом попутного или встречного ветра будет иметь вид

где знак минус говорит о том, что взлет производится против ветра.

Как видно из задачи, длина разбега против ветра меньше, чем по ветру. Длина других этапов взлетной дистанции при взлете против ветра тоже уменьшает путевую скорость самолета, а во втором - увеличивает.

При взлете против ветра самолет лучше управляется, чем при безветрии, так как уже в самом начале разбега обдувается встречным воздушным потоком.

При взлете по ветру, наоборот, в начале разбега самолет плохо слушается рулей, так как обдув встречным потоком начинается лишь спустя некоторое время после начала разбега (когда скорость движения самолета по земле станет равной или больше скорости ветра). Кроме того, попутный ветер ослабляет эффект обдувки рулей струёй от воздушного винта до тех пор, пока скорость самолета достаточно не возрастет. Это обстоятельство, а главным образом увеличение длины разбега, приводит к непригодности взлета по ветру, а иногда и опасным. Поэтому взлет необходимо осуществлять против ветра, особенно если ветер сильный.

Чем сильнее встречный ветер, тем большей высоты достигнет самолет в момент взлета. Это увеличение высоты происходит за счет действия встречного ветра, уменьшающего .

Почему самолет взлетает против ветра

Перед началом взлета летательный аппарат обязательно должен быть развернут против ветра. При этом перед ним должно оставаться достаточно большое пространство для разбега, с которого и начинается каждый взлет.

Разбег необходим, чтобы самолет мог набрать достаточную скорость для отрыва от земли.

При на попутном ветре самолету требуется больший разбег и скорость разгона. Кроме того, если машина поднимается в воздух, может возникнуть помпаж, который довольно часто приводит к плачевным последствиям.

Помпаж – это срывной режим работы авиадвигателя, а также нарушение газодинамической устойчивости его работы, сопровождающийся хлопками в воздухозаборнике из-за противотока газов. Из-за этого происходит резкое падение тяги и мощная вибрация всего самолета, появляется дым из выхлопа двигателя. При этом , обтекающий лопатки рабочего колеса, после резко меняет направление, в результате чего внутри турбины появляются турбулентные завихрения.

Подъемная сила крыла зависит от квадрата скорости набегающего потока воздуха. При взлете против ветра к собственной скорости самого самолета добавляется еще и скорость ветра. А набегающий навстречу воздушный поток позволяет увеличить подъемную силу крыла, за счет чего уменьшается минимальная скорость самолета относительно земли для удержания себя в воздухе.

Подобное положение актуально не только взлета, но и для посадки. Ведь чем меньше скорость самолета при посадке, тем безопаснее и мягче ее можно совершить.

Опытные летчики утверждают, что ни в коем случае в момент взлета не нужно спешить. Ведь уже бывали случаи, когда излишняя торопливость приводила к крайне печальным последствиям.

Кроме того, что взлетать самолету против ветра намного проще, это еще и ощутимая экономия времени и топлива. Ведь железная махина расходует огромное количество керосина, а времени разбега способно сберечь достаточно много топлива.

Взлет при боковом ветре, особенно сильном, является крайне затруднительным. Ведь самолет попросту порывами сносит с полосы. И летчикам приходится применять ряд определенных комбинаций, которые помогут выровнять машину и поднять ее в воздух без особых проблем. Посадка в таких условиях также довольно затруднительна.

Что следует учитывать

Перед взлетом летчики получают всю необходимую информацию: и скорость ветра, и его направление, и многие другие специальные данные, которые должны помочь им осуществить правильный и легкий взлет.

Однако случается, что пилоты на взлете могут допускать ошибки. Некоторые из них пассажиры даже не ощущают. Другие заканчиваются весьма печально.

Летчикам же необходимо очень тщательно относиться к процедуре взлета и быть собранными на взлетной полосе. К тому же современные таковы, что легко могут взлетать как против, так и по . Да и боковой им тоже не доставит проблем.

Турбина представляет собой машину, в которой барабан, пропеллер или колесо вращается под воздействием струи пара, газа или воды и вырабатывает энергию. Простейшими турбинами считаются водяные колеса и ветряные мельницы.

Водные турбины применяются на электростанциях. Их строят вблизи плотин и водопадов. Для запуска турбины струя воды подводится к ее лопастям и заставляет их вращаться. Сама по себе турбина не производит электрической энергии. Но к ней подводится генератор, который турбина заставляет вращаться, и который в свою очередь вырабатывает электричество. Лопасти турбин могут быть выполнены в виде колес или барабанов с лопаточками по краям. Несущие лопасти некоторых турбин имеют форму пропеллера.

Паровые турбины приводятся в движение струей пара. Их используют для производства электроэнергии, для вращения корабельных винтов и работы помп. Газовые турбины работают за счет отработанного газа, образующегося после сгорания топлива. Струя горячего газа отводится к турбине и вращает ее лопасти.

Благодаря турбине в двигателе ускоряется наполнение цилиндров воздухом, что позволяет сжигать в них большее количество топлива. За счет этого мощность двигателя заметно увеличивается.

Принцип работы турбины довольно прост. Устройство использует энергию отработавших газов, которые попадают под давлением в корпус турбины через выпускной коллектор. На вал турбинного колеса устанавливается компрессорное колесо. Оно сжимает воздух при вращении и подает его во впускной коллектор. Следовательно, чем больший объем газа проходит через турбинное колесо, тем быстрее оно вращается.

Маленькая турбина будет вращаться быстрее, чем большая при одинаковой энергии выхлопных газов. Однако она является большим сужением на пути потока отработавшего газа. Это является причиной образования обратного давления между турбиной и камерой сгорания. Обратное давление является побочным эффектом использования турбины. Поэтому при ее выборе следует ориентироваться на обороты, необходимые для обеспечения желаемой реакции и давления наддува, придерживаясь минимизации обратного давления.