Квантовая физика кот. Кот Шредингера: суть простыми словами. Достижения в науке

«Для того, чтобы научиться бить в наш барабан, нам пришлось создать специальные квантовые “палочки”, роль которых играют одиночные частицы света. Все это открывает дорогу для создания механического аналога кота Шредингера, и проверки законов квантовой механики на макромасштабах», - заявил Мартин Рингбауэр (Martin Ringbauer) из университета Квинсленда в Брисбане (Австралия).

depositphotos.com

Кот Шредингера - «участник» мысленного эксперимента, который был предложен австрийским физиком Эрвином Шредингером в 1935 году. Во время него в закрытый ящик помещаются кот и механизм, открывающий емкость с ядом в случае распада радиоактивного атома (что может случиться или не случиться).

В соответствии с принципами квантовой физики кот является одновременно и живым, и мертвым. Отсюда берет свое начало термин «квантовая суперпозиция» - совокупность всех состояний, в которых может одновременно находиться кот. Сегодня физики, в том числе ученые из Российского квантового центра, активно пытаются создать такого кота Шредингера, которого можно было бы увидеть невооруженным глазом.

© Фото: Imperial College London Квантовый барабан, созданный физиками из Австралии и Британии

Рингбауэр и его коллеги сделали первый шаг к «выращиванию» большой кошки Шредингера, изучая то, как одиночные частицы света взаимодействуют с очень тонкими, но при этом видимыми глазу пленками. Ученых интересовало то, будут ли столкновения фотонов с подобными мембранами порождать в них квантовые эффекты, «нарушающие» классические законы механики.

Как отмечает физик, при некоторых условиях одиночную частицу света можно «распилить» пополам, создав два более тусклых, но при этом запутанных фотона. Если одну из этих частиц направить на мембрану, а вторую - на обычное зеркало, их взаимодействия приведут к тому, что между «барабаном» и фотонами возникнет еще одна квантовая связь.

В этот момент в дело вступает то, что «распиленный» фотон на самом деле одновременно находится и в той, и в другой точке - он или пролетает мимо мембраны, не вызывая в ней колебаний, или же ударяется об нее. Соответственно, при некоторых измерениях он будет «бить» в барабан, а при других - не будет вызывать в нем никаких изменений. Иными словами, барабан будет одновременно и молчать, и стучать, что делает подобную пленку макроскопическим аналогом кота Шредингера.

© Imperial College London

Руководствуясь этими идеями, авторы статьи собрали подобную установку и начали наблюдать за колебаниями пленки, используя еще один лазер. Как признает Рингбауэр, при комнатных температурах подобная конструкция еще пока не полностью похожа на «барабан Шредингера», однако даже в таких условиях на его поверхности возникают аномалии, которые указывают на наличие у него квантовых свойств.

В ближайшее время его команда планирует улучшить работу лазерных датчиков колебаний и поместит «квантовый барабан» в холодильную установку, что, как они надеются, поможет нам впервые увидеть настоящего кота Шредингера.

June 24th, 2015

К своему стыду хочу признаться, что слышал это выражение, но не знал вообще что оно означает и хотя бы по какой теме употребляется. Давайте я вам расскажу, что вычитал в интернете про этого кота …

«Кот Шредингера » – так называется знаменитый мысленный эксперимент знаменитого австрийского физика-теоретика Эрвина Шредингера, который также является лауреатом Нобелевской премии. С помощью этого вымышленного опыта ученый хотел показать неполноту квантовой механики при переходе от субатомных систем к макроскопическим системам.

Оригинальная статья Эрвина Шредингера вышла в свет 1935 году. Вот цитата:

Можно построить и случаи, в которых довольно бурлеска. Пусть какой-нибудь кот заперт в стальной камере вместе со следующей дьявольской машиной (которая должна быть независимо от вмешательства кота): внутри счётчика Гейгера находится крохотное количество радиоактивного вещества, столь небольшое, что в течение часа может распасться только один атом, но с такой же вероятностью может и не распасться; если же это случится, считывающая трубка разряжается и срабатывает реле, спускающее молот, который разбивает колбочку с синильной кислотой.

Если на час предоставить всю эту систему самой себе, то можно сказать, что кот будет жив по истечении этого времени, коль скоро распада атома не произойдёт. Первый же распад атома отравил бы кота. Пси-функция системы в целом будет выражать это, смешивая в себе или размазывая живого и мёртвого кота (простите за выражение) в равных долях. Типичным в подобных случаях является то, что неопределённость, первоначально ограниченная атомным миром, преобразуется в макроскопическую неопределённость, которая может быть устранена путём прямого наблюдения. Это мешает нам наивно принять «модель размытия» как отражающую действительность. Само по себе это не означает ничего неясного или противоречивого. Есть разница между нечётким или расфокусированным фото и снимком облаков или тумана.

Другими словами:

  1. Есть ящик и кот. В ящике имеется механизм, содержащий радиоактивное атомное ядро и ёмкость с ядовитым газом. Параметры эксперимента подобраны так, что вероятность распада ядра за 1 час составляет 50%. Если ядро распадается, открывается ёмкость с газом и кот погибает. Если распада ядра не происходит - кот остается жив-здоров.
  2. Закрываем кота в ящик, ждём час и задаёмся вопросом: жив ли кот или мертв?
  3. Квантовая же механика как бы говорит нам, что атомное ядро (а следовательно и кот) находится во всех возможных состояниях одновременно (см. квантовая суперпозиция). До того как мы открыли ящик, система «кот-ядро» находится в состоянии «ядро распалось, кот мёртв» с вероятностью 50% и в состоянии «ядро не распалось, кот жив» с вероятностью 50%. Получается, что кот, сидящий в ящике, и жив, и мёртв одновременно.
  4. Согласно современной копенгагенской интерпретации, кот-таки жив/мёртв без всяких промежуточных состояний. А выбор состояния распада ядра происходит не в момент открытия ящика, а ещё когда ядро попадает в детектор. Потому что редукция волновой функции системы «кот-детектор-ядро» не связана с человеком-наблюдателем ящика, а связана с детектором-наблюдателем ядра.

Согласно квантовой механике, если над ядром атома не производится наблюдение, то его состояние описывается смешением двух состояний - распавшегося ядра и нераспавшегося ядра, следовательно, кот, сидящий в ящике и олицетворяющий ядро атома, и жив, и мёртв одновременно. Если же ящик открыть, то экспериментатор может увидеть только какое-нибудь одно конкретное состояние - «ядро распалось, кот мёртв» или «ядро не распалось, кот жив».

Суть человеческим языком: эксперимент Шредингера показал, что, с точки зрения квантовой механики, кот одновременно и жив, и мертв, чего быть не может. Следовательно, квантовая механика имеет существенные изъяны.

Вопрос стоит так: когда система перестаёт существовать как смешение двух состояний и выбирает одно конкретное? Цель эксперимента - показать, что квантовая механика неполна без некоторых правил, которые указывают, при каких условиях происходит коллапс волновой функции, и кот либо становится мёртвым, либо остаётся живым, но перестаёт быть смешением того и другого. Поскольку ясно, что кот обязательно должен быть либо живым, либо мёртвым (не существует состояния, промежуточного между жизнью и смертью), то это будет аналогично и для атомного ядра. Оно обязательно должно быть либо распавшимся, либо нераспавшимся (Википедия).

Еще одной наиболее свежей интерпретацией мысленного эксперимента Шредингера является рассказ Шелдона Купера, героя сериала «Теория большого взрыва» («Big Bang Theory»), который он произнес для менее образованной соседки Пенни. Суть рассказа Шелдона заключается в том, что концепция кота Шредингера может быть применена в отношениях между людьми. Для того чтобы понять, что происходит между мужчиной и женщиной, какие отношения между ними: хорошие или плохие, – нужно просто открыть ящик. А до этого отношения являются одновременно и хорошими, и плохими.

Ниже приведен видеофрагмент этого диалога «Теории большого взрыва» между Шелдоном и Пении.

Иллюстрация Шрёдингера является наилучшим примером для описания главного парадокса квантовой физики: согласно её законам, частицы, такие как электроны, фотоны и даже атомы существуют в двух состояниях одновременно («живых» и «мёртвых», если вспоминать многострадального кота). Эти состояния называются суперпозициями .

Американский физик Арт Хобсон (Art Hobson) из университета Арканзаса (Arkansas State University) предложил своё решение данного парадокса.

«Измерения в квантовой физике базируются на работе неких макроскопических устройств, таких как счётчик Гейгера, при помощи которых определяется квантовое состояние микроскопических систем - атомов, фотонов и электронов. Квантовая теория подразумевает, что если вы подсоедините микроскопическую систему (частицу) к некому макроскопическому устройству, различающему два разных состояния системы, то прибор (счётчик Гейгера, например) перейдёт в состояние квантовой запутанности и тоже окажется одновременно в двух суперпозициях. Однако невозможно наблюдать это явление непосредственно, что делает его неприемлемым», - рассказывает физик.

Хобсон говорит, что в парадоксе Шрёдингера кот играет роль макроскопического прибора, счётчика Гейгера, подсоединённого к радиоактивному ядру, для определения состояния распада или «нераспада» этого ядра. В таком случае, живой кот будет индикатором «нераспада», а мёртвый кот - показателем распада. Но согласно квантовой теории, кот, так же как и ядро, должен пребывать в двух суперпозициях жизни и смерти.

Вместо этого, по словам физика, квантовое состояние кота должно быть запутанным с состоянием атома, что означает что они пребывают в «нелокальной связи» друг с другом. То есть, если состояние одного из запутанных объектов внезапно сменится на противоположное, то состояние его пары точно также поменяется, на каком бы расстоянии друг от друга они ни находились. При этом Хобсон ссылается наэкспериментальные подтверждения этой квантовой теории.

«Самое интересное в теории квантовой запутанности - это то, что смена состояния обеих частиц происходит мгновенно: никакой свет или электромагнитный сигнал не успел бы передать информацию от одной системы к другой. Таким образом, можно сказать, что это один объект, разделённый на две части пространством, и неважно, как велико расстояние между ними», - поясняет Хобсон.

Кот Шрёдингера больше не живой и мёртвый одновременно. Он мёртв, если произойдёт распад, и жив, если распад так и не случится.

Добавим, что похожие варианты решения этого парадокса были предложены ещё тремя группами учёных за последние тридцать лет, однако они не были восприняты всерьёз и так и остались незамеченными в широких научных кругах. Хобсонотмечает , что решение парадоксов квантовой механики, хотя бы теоретические, совершенно необходимы для её глубинного понимания.

Шредингер

А вот совсем недавно ТЕОРЕТИКИ ОБЪЯСНИЛИ, КАК ГРАВИТАЦИЯ УБИВАЕТ КОТА ШРЁДИНГЕРА, но это уже сложнее …

Как правило, физики объясняют феномен того, что суперпозиция возможна в мире частиц, но невозможна с котами или другими макрообъектами, помехами от окружающей среды. Когда квантовый объект проходит сквозь поле или взаимодействует со случайными частицами, он тут же принимает всего одно состояние - как если бы его измерили. Именно так и разрушается суперпозиция, как полагали учёные.

Но даже если каким-либо образом стало возможным изолировать макрообъект, находящийся в состоянии суперпозиции, от взаимодействий с другими частицами и полями, то он всё равно рано или поздно принял бы одно-единственное состояние. По крайней мере, это верно для процессов, протекающих на поверхности Земли.

«Где-то в межзвёздном пространстве, может быть, кот и имел бы шанс сохранить квантовую когерентность , но на Земле или вблизи любой планеты это крайне маловероятно. И причина тому - гравитация», - поясняет ведущий автор нового исследования Игорь Пиковский (Igor Pikovski) из Гарвард-Смитсоновского центра астрофизики.

Пиковский и его коллеги из Венского университета утверждают, что гравитация оказывает разрушительное воздействие на квантовые суперпозиции макрообъектов, и потому мы не наблюдаем подобных явлений в макромире. Базовая концепция новой гипотезы, к слову, кратко изложена в художественном фильме «Интерстеллар».

Эйнштейновская общая теория относительности гласит, что чрезвычайно массивный объект будет искривлять вблизи себя пространство-время. Рассматривая ситуацию на более мелком уровне, можно сказать, что для молекулы, помещённой у поверхности Земли, время будет идти несколько медленнее, чем для той, что находится на орбите нашей планеты.

Из-за влияния гравитации на пространство-время молекула, попавшая под это влияние, испытает отклонение в своём положении. А это, в свою очередь, должно повлиять и на её внутреннюю энергию - колебания частиц в молекуле, которые изменяются с течением времени. Если молекулу ввести в состояние квантовой суперпозиции двух локаций, то соотношение между положением и внутренней энергией вскоре заставило бы молекулу «выбрать» только одну из двух позиций в пространстве.

«В большинстве случаев явление декогеренции связано с внешним влиянием, но в данном случае внутреннее колебание частиц взаимодействует с движением самой молекулы», - поясняет Пиковский.

Этот эффект пока что никто не наблюдал, поскольку другие источники декогеренции, такие как магнитные поля, тепловое излучение и вибрации, как правило, гораздо сильнее, и вызывают разрушение квантовых систем задолго до того, как это сделает гравитация. Но экспериментаторы стремятся проверить высказанную гипотезу.

Подобная установка также может быть использована для проверки способности гравитации разрушать квантовые системы. Для этого необходимо будет сравнить вертикальный и горизонтальный интерферометры: в первом суперпозиция должна будет вскоре исчезнуть из-за растяжения времени на разных «высотах» пути, тогда как во втором квантовая суперпозиция может и сохраниться.

источники

http://4brain.ru/blog/%D0%BA%D0%BE%D1%82-%D1%88%D1%80%D0%B5%D0%B4%D0%B8%D0%BD%D0%B3%D0%B5%D1%80%D0%B0-%D1%81%D1%83%D1%82%D1%8C-%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%8B%D0%BC%D0%B8-%D1%81%D0%BB%D0%BE%D0%B2%D0%B0%D0%BC%D0%B8/

http://www.vesti.ru/doc.html?id=2632838

Вот еще немного околонаучного: вот например , а вот . Если вы еще не в курсе, почитайте про и что такое . А и узнаем, что за Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

В 1935 году великий физик, нобелевский лауреат и основоположник квантовой механики Эрвин Шрёдингер сформулировал свой знаменитый парадокс.

Учёный предположил, что если взять некого кота и поместить его в стальную непрозрачную коробку с "адской машиной", то через час он будет жив и мёртв одновременно. Механизм в коробке выглядит следующим образом: внутри счётчика Гейгера находится микроскопическое количество радиоактивного вещества, способного распасться за час лишь на один атом; при этом оно с той же вероятностью может и не распасться. Если распад всё же произойдёт, то сработает рычажный механизм и молоток разобьёт сосуд с синильной кислотой и кот погибнет; если распада не будет, то сосуд останется цел, а кот — жив и здоров.

Если бы речь шла не о коте и коробке, а о мире субатомных частиц, то учёные бы сказали, что кот и жив и мёртв одновременно, однако в макромире такое умозаключение некорректно. Так почему же мы оперируем такими понятиями, когда речь идёт о более мелких частицах материи?

Иллюстрация Шрёдингера является наилучшим примером для описания главного парадокса квантовой физики: согласно её законам, частицы, такие как электроны, фотоны и даже атомы существуют в двух состояниях одновременно ("живых" и "мёртвых", если вспоминать многострадального кота). Эти состояния называются суперпозициями .

Американский физик Арт Хобсон (Art Hobson) из университета Арканзаса (Arkansas State University) предложил своё решение данного парадокса.

"Измерения в квантовой физике базируются на работе неких макроскопических устройств, таких как счётчик Гейгера, при помощи которых определяется квантовое состояние микроскопических систем — атомов, фотонов и электронов. Квантовая теория подразумевает, что если вы подсоедините микроскопическую систему (частицу) к некому макроскопическому устройству, различающему два разных состояния системы, то прибор (счётчик Гейгера, например) перейдёт в состояние квантовой запутанности и тоже окажется одновременно в двух суперпозициях. Однако невозможно наблюдать это явление непосредственно, что делает его неприемлемым", — рассказывает физик.

Хобсон говорит, что в парадоксе Шрёдингера кот играет роль макроскопического прибора, счётчика Гейгера, подсоединённого к радиоактивному ядру, для определения состояния распада или "нераспада" этого ядра. В таком случае, живой кот будет индикатором "нераспада", а мёртвый кот — показателем распада. Но согласно квантовой теории, кот, так же как и ядро, должен пребывать в двух суперпозициях жизни и смерти.

Вместо этого, по словам физика, квантовое состояние кота должно быть запутанным с состоянием атома, что означает что они пребывают в "нелокальной связи" друг с другом. То есть, если состояние одного из запутанных объектов внезапно сменится на противоположное, то состояние его пары точно также поменяется, на каком бы расстоянии друг от друга они ни находились. При этом Хобсон ссылается на этой квантовой теории.

"Самое интересное в теории квантовой запутанности — это то, что смена состояния обеих частиц происходит мгновенно: никакой свет или электромагнитный сигнал не успел бы передать информацию от одной системы к другой. Таким образом, можно сказать, что это один объект, разделённый на две части пространством, и неважно, как велико расстояние между ними", — поясняет Хобсон.

Кот Шрёдингера больше не живой и мёртвый одновременно. Он мёртв, если произойдёт распад, и жив, если распад так и не случится.

Добавим, что похожие варианты решения этого парадокса были предложены ещё тремя группами учёных за последние тридцать лет, однако они не были восприняты всерьёз и так и остались незамеченными в широких научных кругах. Хобсон отмечает , что решение парадоксов квантовой механики, хотя бы теоретические, совершенно необходимы для её глубинного понимания.


Наверняка вы не раз слышали, что существует такой феномен, как «Кот Шредингера». Но если вы не физик, то, скорее всего, лишь отдаленно представляете себе, что это за кот и зачем он нужен.

«Кот Шредингера » – так называется знаменитый мысленный эксперимент знаменитого австрийского физика-теоретика Эрвина Шредингера, который также является лауреатом Нобелевской премии. С помощью этого вымышленного опыта ученый хотел показать неполноту квантовой механики при переходе от субатомных систем к макроскопическим системам.

В данной статье дана попытка объяснить простыми словами суть теории Шредингера про кота и квантовую механику, так чтобы это было доступно человеку, не имеющему высшего технического образования. В статье также будут представлены различные интерпретации эксперимента, в том числе и из сериала «Теория большого взрыва».

Описание эксперимента

Оригинальная статья Эрвина Шредингера вышла в свет в 1935 году. В ней эксперимент был описан с использованием или даже олицетворение:

Можно построить и случаи, в которых довольно бурлеска. Пусть какой-нибудь кот заперт в стальной камере вместе со следующей дьявольской машиной (которая должна быть независимо от вмешательства кота): внутри счётчика Гейгера находится крохотное количество радиоактивного вещества, столь небольшое, что в течение часа может распасться только один атом, но с такой же вероятностью может и не распасться; если же это случится, считывающая трубка разряжается и срабатывает реле, спускающее молот, который разбивает колбочку с синильной кислотой.

Если на час предоставить всю эту систему самой себе, то можно сказать, что кот будет жив по истечении этого времени, коль скоро распада атома не произойдёт. Первый же распад атома отравил бы кота. Пси-функция системы в целом будет выражать это, смешивая в себе или размазывая живого и мёртвого кота (простите за выражение) в равных долях. Типичным в подобных случаях является то, что неопределённость, первоначально ограниченная атомным миром, преобразуется в макроскопическую неопределённость, которая может быть устранена путём прямого наблюдения. Это мешает нам наивно принять «модель размытия» как отражающую действительность. Само по себе это не означает ничего неясного или противоречивого. Есть разница между нечётким или расфокусированным фото и снимком облаков или тумана.

Другими словами:

  1. Есть ящик и кот. В ящике имеется механизм, содержащий радиоактивное атомное ядро и ёмкость с ядовитым газом. Параметры эксперимента подобраны так, что вероятность распада ядра за 1 час составляет 50%. Если ядро распадается, открывается ёмкость с газом и кот погибает. Если распада ядра не происходит - кот остается жив-здоров.
  2. Закрываем кота в ящик, ждём час и задаёмся вопросом: жив ли кот или мертв?
  3. Квантовая же механика как бы говорит нам, что атомное ядро (а следовательно и кот) находится во всех возможных состояниях одновременно (см. квантовая суперпозиция). До того как мы открыли ящик, система «кот-ядро» находится в состоянии «ядро распалось, кот мёртв» с вероятностью 50% и в состоянии «ядро не распалось, кот жив» с вероятностью 50%. Получается, что кот, сидящий в ящике, и жив, и мёртв одновременно.
  4. Согласно современной копенгагенской интерпретации, кот-таки жив/мёртв без всяких промежуточных состояний. А выбор состояния распада ядра происходит не в момент открытия ящика, а ещё когда ядро попадает в детектор. Потому что редукция волновой функции системы «кот-детектор-ядро» не связана с человеком-наблюдателем ящика, а связана с детектором-наблюдателем ядра.

Объяснение простыми словами

Согласно квантовой механике, если над ядром атома не производится наблюдение, то его состояние описывается смешением двух состояний - распавшегося ядра и нераспавшегося ядра, следовательно, кот, сидящий в ящике и олицетворяющий ядро атома, и жив, и мёртв одновременно. Если же ящик открыть, то экспериментатор может увидеть только какое-нибудь одно конкретное состояние - «ядро распалось, кот мёртв» или «ядро не распалось, кот жив».

Суть человеческим языком: эксперимент Шредингера показал, что, с точки зрения квантовой механики, кот одновременно и жив, и мертв, чего быть не может. Следовательно, квантовая механика имеет существенные изъяны.

Вопрос стоит так: когда система перестаёт существовать как смешение двух состояний и выбирает одно конкретное? Цель эксперимента - показать, что квантовая механика неполна без некоторых правил, которые указывают, при каких условиях происходит коллапс волновой функции, и кот либо становится мёртвым, либо остаётся живым, но перестаёт быть смешением того и другого. Поскольку ясно, что кот обязательно должен быть либо живым, либо мёртвым (не существует состояния, промежуточного между жизнью и смертью), то это будет аналогично и для атомного ядра. Оно обязательно должно быть либо распавшимся, либо нераспавшимся (Википедия).

Видео из «Теории большого взрыва»

Еще одной наиболее свежей интерпретацией мысленного эксперимента Шредингера является рассказ Шелдона Купера, героя сериала «Теория большого взрыва» («Big Bang Theory»), который он произнес для менее образованной соседки Пенни. Суть рассказа Шелдона заключается в том, что концепция кота Шредингера может быть применена в отношениях между людьми. Для того чтобы понять, что происходит между мужчиной и женщиной, какие отношения между ними: хорошие или плохие, – нужно просто открыть ящик. А до этого отношения являются одновременно и хорошими, и плохими.

Ниже приведен видеофрагмент этого диалога «Теории большого взрыва» между Шелдоном и Пении.

Остался ли кот живым в результате эксперимента?

Для тех, кто невнимательно читал статью, но все равно переживает за кота — хорошие новости: не переживайте, по нашим данным, в результате мысленного эксперимента сумасшедшего австрийского физика

НИ ОДИН КОТ НЕ ПОСТРАДАЛ

Как объяснил нам Гейзенберг, из-за принципа неопределенности описание объектов квантового микромира носит иной характер, нежели привычное описание объектов ньютоновского макромира. Вместо пространственных координат и скорости, которыми мы привыкли описывать механическое движение, например шара по бильярдному столу, в квантовой механике объекты описываются так называемой волновой функцией. Гребень «волны» соответствует максимальной вероятности нахождения частицы в пространстве в момент измерения. Движение такой волны описывается уравнением Шрёдингера, которое и говорит нам о том, как изменяется со временем состояние квантовой системы.

Теперь про кота. Всем известно, что коты любят прятаться в коробках (). Эрвин Шредингер тоже был в курсе. Более того, с чисто нордическим изуверством он использовал эту особенность в знаменитом мысленном эксперименте. Суть его заключалась в том, что в коробке с адской машиной заперт кот. Машина через реле подсоединена к квантовой системе, например, радиоактивно распадающемуся веществу. Вероятность распада известна и составляет 50%. Адская машина срабатывает когда квантовое состояние системы меняется (происходит распад) и котик погибает полностью. Если предоставить систему "Котик-коробка-адская машина-кванты" самой себе на один час и вспомнить, что состояние квантовой системы описывается в терминах вероятности, то становится понятным, что узнать жив котик или нет, в данный момент времени, наверняка не получится, так же, как не выйдет точно предсказать падение монеты орлом или решкой заранее. Парадокс очень прост: волновая функция, описывающая квантовую систему, смешивает в себе два состояния кота - он жив и мертв одновременно, так же как связанный электрон с равной вероятностью может находится в любом месте пространства, равноудаленного от атомного ядра. Если мы не открываем коробку, мы не знаем точно, как там котик. Не произведя наблюдения (читай измерения) над атомным ядром мы можем описать его состояние только суперпозицией (смешением) двух состояний: распавшегося и нераспавшегося ядра. Кот, находящийся в ядерной зависимости, и жив и мертв одновременно. Вопрос стоит так: когда система перестаёт существовать как смешение двух состояний и выбирает одно конкретное?

Копенгагенская интерпретация эксперимента говорит нам о том, что система перестаёт быть смешением состояний и выбирает одно из них в тот момент, когда происходит наблюдение, оно же измерение (коробка открывается). То есть сам факт измерения меняет физическую реальность, приводя к коллапсу волновой функции (котик либо становится мёртвым, либо остаётся живым, но перестаёт быть смешением того и другого)! Вдумайтесь, эксперимент и измерения, ему сопутствующие, меняют реальность вокруг нас. Лично мне этот факт выносит мозг гораздо сильнее алкоголя. Небезызвестный Стив Хокинг тоже тяжело переживает этот парадокс, повторяя, что когда он слышит про кота Шредингера, его рука тянется к браунингу. Острота реакции выдающегося физика-теоретика связанна с тем, что по его мнению, роль наблюдателя в коллапсе волновой функции (сваливанию её к одному из двух вероятностных) состояний сильно преувеличена.

Конечно, когда профессор Эрвин в далеком 1935 г. задумывал свое кото-измывательство это был остроумный способ показать несовершенство квантовой механики. В самом деле, кот не может быть жив и мертв одновременно. В результате одной из интерпретаций эксперимента стала очевидность противоречия законов макро-мира (например, второго закона термодинамики - кот либо жив, либо мертв) и микро-мира (кот жив и мертв одновременно).

Вышеописанное применяется на практике: в квантовых вычислениях и в квантовой криптографии. По волоконно-оптическому кабелю пересылается световой сигнал, находящийся в суперпозиции двух состояний. Если злоумышленники подключатся к кабелю где-то посередине и сделают там отвод сигнала, чтобы подслушивать передаваемую информацию, то это схлопнет волновую функцию (с точки зрения копенгагенской интерпретации будет произведено наблюдение) и свет перейдёт в одно из состояний. Проведя статистические пробы света на приёмном конце кабеля, можно будет обнаружить, находится ли свет в суперпозиции состояний или над ним уже произведено наблюдение и передача в другой пункт. Это делает возможным создание средств связи, которые исключают незаметный перехват сигнала и подслушивание.

Еще одной наиболее свежей интерпретацией мысленного эксперимента Шредингера является рассказ Шелдона Купера, героя сериала «Теория большого взрыва» («Big Bang Theory»), который он произнес для менее образованной соседки Пенни. Суть рассказа Шелдона заключается в том, что концепция кота Шредингера может быть применена в отношениях между людьми. Для того чтобы понять, что происходит между мужчиной и женщиной, какие отношения между ними: хорошие или плохие, – нужно просто открыть ящик. А до этого отношения являются одновременно и хорошими, и плохими.