Линия тренда в Excel на разных графиках. Анализ временных рядов

  • 6.Статистическая сводка и группировка. Виды группировок.
  • 7.Абсолютные статистические величины: понятия, виды.
  • 8.Относительные статистические величины: понятия, виды.
  • 9.Средние величины: понятия, виды. (степенные, структурные) Средние величины.
  • Степенные средние
  • Структурные средние
  • 10.Средняя арифметическая и средняя гармоническая величины. Средняя арифметическая
  • Средняя гармоническая.
  • 11.Основные свойства средней арифметической.
  • 12.Показатели вариации признака и способы их расчета.
  • Абсолютные и средние показатели вариации и способы их расчета.
  • 13.Экономические индексы: понятия, виды. Индивидуальные индексы цен, физического объема реализации, товарооборота. Понятие индексов
  • Индивидуальные индексы
  • Сводные индексы
  • Индекс цены товарооборота Индекс физического объема товарооборота Проблема выбора весов
  • Цепные и базисные индексы с постоянными и переменными весами
  • Индексы постоянного состава, переменного состава и структурных сдвигов
  • Территориальные индексы
  • 14.Агрегатные индексы цен, физического объема, товарооборота, их взаимосвязь. Агрегатные индексы.
  • 15.Средние арифметический и средние гармонический индексы физического объема продукции. Средние индексы.
  • 16.Выборочное наблюдение, виды выработки (повторная, бесповторная).
  • 17.Средняя и предельная ошибки выборки. Расчет доверительного интервала.
  • 18.Расчет необходимой численности выборки, обеспечивающий с определенной вероятностью заданную точность наблюдения.
  • 19.Ряды динамики: понятия, виды (моментальные, интервальные). Показатели ряда
  • 20.Среднии показатели ряда динамики. Определение среднего уровня ряда динамики.
  • 21.Методы сглаживания рядов динамики.
  • 22.Виды взаимосвязей между явлениями (функциональные, корреляционные). Классификация корреляционных взаимосвязей.
  • 23.Расчет параметров линейного тренда.
  • 24.Линейный коэффициент корреляции.
  • 25.Расчет параметров линейной парной регрессии.
  • 26.Понятие и формирование снс.
  • 27.Система национальных счетов: стандартный набор счетов для секторов экономики.
  • 28.Основные макроэкономические показатели снс.
  • 29.Методы расчета валового внутреннего продукта.
  • 30.Показатели естественного движения населения и методы их расчета.
  • 31.Показатели миграции населения и методы их расчета.
  • 32.Расчет перспективной численности населения.
  • 33.Система показателей уровня жизни. Индекс развития человеческого потенциала.
  • 34.Категория людей, относящимся к занятым. Расчет коэффициента занятости и нагрузке на оного занятого в экономике.
  • 35.Категория людей, относящимся к безработным. Расчет коэффициента безработицы.
  • 36.Статистика численности работников предприятия.
  • 37.Фонды рабочего времени и методы их расчета.
  • 38Коэффициенты использования фондов рабочего времени и методы их расчета.
  • 39.Статистика национального богатства: состав нефинансовых производственных активов.
  • 40.Статистика национального богатства: состав нефинансовых непроизводственных активов.
  • 41.Статистика национального богатства: состав финансовых активов.
  • Структура национального богатства. Элементы национального богатства* (на начало года; без учета стоимости земли, недр и лесов)
  • 42.Статистика международной торговли.
  • 43.Статистика госбюджета.
  • 44.Статистика основных фондов.
  • 45.Статистика оборотных фондов.
  • 46.Статистика производительности труда.
  • 47.Статистика заработной платы.
  • 48.Статистика себестоимости продукции.
  • 49.Расчет индексов, используемых для изучения динамики средних цен, индекса постоянного состава, индекса структурных сдвигов, индекса переменного состава.
  • 50.Агрегатные индексы цен ласпейреса, пааше, фишера, маршалла.
  • Индексы Пааше, Ласпейреса и "идеальный индекс" Фишера
  • 23.Расчет параметров линейного тренда.

    Основной тенденцией развития (трендом) называется плавное и устойчивое изменение уровня явления во времени, свободное от случайных колебаний.

    Задача состоит в том, чтобы выявить общую тенденцию в изменении уровней ряда, освобожденную от действия различ­ных случайных факторов. С этой целью ряды динамики подвергаются обработке методами укрупнения ин­тервалов, скользящей средней и аналитического выравнивания.

    *Одним из наиболее простых методов изучения основной тенденции в рядах динамики является укрупнение интервалов. Он основан на укрупнении периодов времени, к которым отно­сятся уровни ряда динамики (одновременно уменьшается коли­чество интервалов). Например, ряд ежесуточного выпуска про­дукции заменяется рядом месячного выпуска продукции и т.д. Средняя, исчисленная по укрупненным^ интервалам, позволяет выявлять направление и характер (ускорение или замедление роста) основной тенденции развития.

    * Выявление основной тенденции может осуществляться также методом скользящи (подвижной) средней. Сущность его заключается в том, что исчисляется средний уровень из опреде­ленного числа, обычно нечетного (3, 5, 7 и т.д.), первыхтю сче­ту уровней ряда, затем - из такого же числа уровней, но начи­ная со второго по счету, далее - начиная с третьего и т.д. Таким образом, средняя как бы «скользит» по ряду динамики, пере­двигаясь на один срок.

    на два члена в начале и конце ряда. Он меньше, чем фактиче­ский подвержен колебаниям из-за случайных причин, и четче, в виде некоторой плавной линии на графике, выражает основную тенденцию роста урожайности за изучаемый период, связанную с действием долговременно существующих причин и условий развития.

    Недостатком сглаживания ряда является «укорачивание» сглаженного ряда по сравнению с фактическим, а следователь­но, потеря информации.

    Рассмотренные приемы сглаживания динамических рядов (укрупнение интервалов и метод скользящей средней) дают воз­можность определить лишь общую тенденцию развития явле­ния, более или менее освобожденную от случайных и волнооб­разных колебаний. Однако получить обобщенную статистиче­скую модель тренда посредством этих методов нельзя.

    *Для того чтобы дать количественную модель, выражающую основную тенденцию изменения уровней динамического ряда во вре­мени, используется аналитическое выравнивание ряда динамики.

    где yt - уровни динамического ряда, вычисленные по соответст­вующему аналитическому уравнению на момент времени t.

    Определение теоретических (расчетных) уровней yt произ­водится на основе так называемой адекватной математической модели, которая наилучшим образом отображает (аппроксимиру­ет) основную тенденцию ряда динамики. Выбор типа модели зависит от цели исследования и должен быть основан на теоретическом анализе, выявляющем характер развития явления, а также на графическом изображении ряда динамики (линейной диаграмме).

    Например, простейшими моделями (формулами), выражаю­щими тенденцию развития, являются:

    линейная функция - прямая yt = a0 + a1t,

    где a0,a1 - параметры уравнения; t - время;

    показательная функция yt = A0A1t

    степенная функция - кривая второго порядка (парабола)

    В тех случаях, когда требуется особо точное изучение тен­денции развития (например, модели тренда для прогнозирова­ния), при выборе вида адекватной функции можно использовать специальные критерии математической статистики.

    Расчет параметров функции обычно производится методом наименьших квадратов, в котором в качестве решения принима­ется точка минимума суммы квадратов отклонений между тео­ретическими и эмпиричесими уровнями:

    где yt - выравненные (расчетные) уровни; yt - фактические уровни.

    Параметры уравнения а,-, удовлетворяющие этому условию, могут быть найдены решением системы нормальных уравнений. На основе найденного уравнения тренда вычисляются выравненные уровни. Таким образом, выравнивание ряда динамики заключается в замене фактических уровней у,- плавно изменяю­щимися уровнями У(, наилучшим образом аппроксимирующилми статистические данные.

    Выравнивание по прямой используется, как правило, в тех случаях, когда абсолютные приросты практически постоянны, т. е. когда уровни изменяются в арифметической прогрессии (или близко к ней).

    Выравнивание по показательной функции используется в тех случаях, когда ряд отражает развитие в геометриче­ской прогрессии, т. е. когда цепные коэффициенты рос­та практически постоянны.

    Рассмотрим «технику» выравнивания ряда динамики по прямой: yt=a0+a1t

    Параметры а0, а1 согласно методу наименьших квадратов находятся решением следующей системы нор­мальных уравнений, полученной путем алгебраического преобразования условия

    где у - фактические (эмпирические) уровни ряда; t - время (порядковый номеа периода или момента времени).

    Назначение сервиса . Сервис используется для расчета параметров тренда временного ряда y t онлайн с помощью метода наименьших квадратов (МНК) (см. пример нахождения уравнения тренда), а также способом от условного нуля. Для этого строится система уравнений:
    a 0 n + a 1 ∑t = ∑y
    a 0 ∑t + a 1 ∑t 2 = ∑y t

    и таблица следующего вида:

    t y t 2 y 2 t y y(t)
    1
    ... ... ... ... ... ...
    N
    ИТОГО

    Инструкция . Укажите количество данных (количество строк). Полученное решение сохраняется в файле Word и Excel .

    Количество строк (исходных данных)
    Использовать способ отсчета времени от условного начала (перенос начала координат в середину ряда динамики)
    ",1);">

    Тенденция временного ряда характеризует совокупность факторов, оказывающих долговременное влияние и формирующих общую динамику изучаемого показателя.

    Способ отсчета времени от условного начала

    Для определения параметров математической функции при анализе тренда в рядах динамики используется способ отсчета времени от условного начала. Он основан на обозначении в ряду динамики показаний времени таким образом, чтобы ∑t i . При этом в ряду динамики с нечетным числом уровней порядковый номер уровня, находящегося в середине ряда, обозначают через нулевое значение и принимают его за условное начало отсчета времени с интервалом +1 всех последующих уровней и –1 всех предыдущих уровней. Например, при обозначения времени будут: –2, –1, 0, +1, +2 . При четном числе уровней порядковые номера верхней половины ряда (от середины) обозначаются числами: –1, –3, –5 , а нижней половины ряда обозначаются +1, +3, +5 .

    Пример . Статистическое изучение динамики численности населения.

    1. С помощью цепных, базисных, средних показателей динамики оцените изменение численности, запишите выводы.
    2. С помощью метода аналитического выравнивания (по прямой и параболе, определив коэффициенты с помощью МНК) выявите основную тенденцию в развитии явления (численность населения Республики Коми). Оцените качество полученных моделей с помощью ошибок и коэффициентов аппроксимации.
    3. Определите коэффициенты линейного и параболического трендов с помощью средств «Мастера диаграмм». Дайте точечный и интервальный прогнозы численности на 2010 г. Запишите выводы.
    1990 1996 2001 2002 2003 2004 2005 2006 2007 2008
    1249 1133 1043 1030 1016 1005 996 985 975 968
    Метод аналитического выравнивания

    а) Линейное уравнение тренда имеет вид y = bt + a
    1. Находим параметры уравнения методом наименьших квадратов . Используем способ отсчета времени от условного начала.
    Система уравнений МНК для линейного тренда имеет вид:
    a 0 n + a 1 ∑t = ∑y
    a 0 ∑t + a 1 ∑t 2 = ∑y t

    t y t 2 y 2 t y
    -9 1249 81 1560001 -11241
    -7 1133 49 1283689 -7931
    -5 1043 25 1087849 -5215
    -3 1030 9 1060900 -3090
    -1 1016 1 1032256 -1016
    1 1005 1 1010025 1005
    3 996 9 992016 2988
    5 985 25 970225 4925
    7 975 49 950625 6825
    9 968 81 937024 8712
    0 10400 330 10884610 -4038

    Для наших данных система уравнений примет вид:
    10a 0 + 0a 1 = 10400
    0a 0 + 330a 1 = -4038
    Из первого уравнения выражаем а 0 и подставим во второе уравнение
    Получаем a 0 = -12.236, a 1 = 1040
    Уравнение тренда:
    y = -12.236 t + 1040

    Оценим качество уравнения тренда с помощью ошибки абсолютной аппроксимации.

    Ошибка аппроксимации в пределах 5%-7% свидетельствует о хорошем подборе уравнения тренда к исходным данным.

    б) выравнивание по параболе
    Уравнение тренда имеет вид y = at 2 + bt + c
    1. Находим параметры уравнения методом наименьших квадратов.
    Система уравнений МНК:
    a 0 n + a 1 ∑t + a 2 ∑t 2 = ∑y
    a 0 ∑t + a 1 ∑t 2 + a 2 ∑t 3 = ∑yt
    a 0 ∑t 2 + a 1 ∑t 3 + a 2 ∑t 4 = ∑yt 2

    t y t 2 y 2 t y t 3 t 4 t 2 y
    -9 1249 81 1560001 -11241 -729 6561 101169
    -7 1133 49 1283689 -7931 -343 2401 55517
    -5 1043 25 1087849 -5215 -125 625 26075
    -3 1030 9 1060900 -3090 -27 81 9270
    -1 1016 1 1032256 -1016 -1 1 1016
    1 1005 1 1010025 1005 1 1 1005
    3 996 9 992016 2988 27 81 8964
    5 985 25 970225 4925 125 625 24625
    7 975 49 950625 6825 343 2401 47775
    9 968 81 937024 8712 729 6561 78408
    0 10400 330 10884610 -4038 0 19338 353824

    Для наших данных система уравнений имеет вид
    10a 0 + 0a 1 + 330a 2 = 10400
    0a 0 + 330a 1 + 0a 2 = -4038
    330a 0 + 0a 1 + 19338a 2 = 353824
    Получаем a 0 = 1.258, a 1 = -12.236, a 2 = 998.5
    Уравнение тренда:
    y = 1.258t 2 -12.236t+998.5

    Ошибка аппроксимации для параболического уравнения тренда.

    Поскольку ошибка меньше 7%, то данное уравнение можно использовать в качестве тренда.

    Минимальная ошибка аппроксимации при выравнивании по параболе. К тому же коэффициент детерминации R 2 выше чем при линейной. Следовательно, для прогнозирования необходимо использовать уравнение по параболе.

    Интервальный прогноз.
    Определим среднеквадратическую ошибку прогнозируемого показателя.

    m = 1 - количество влияющих факторов в уравнении тренда.
    Uy = y n+L ± K
    где

    L - период упреждения; у n+L - точечный прогноз по модели на (n + L)-й момент времени; n - количество наблюдений во временном ряду; Sy - стандартная ошибка прогнозируемого показателя; T табл - табличное значение критерия Стьюдента для уровня значимости α и для числа степеней свободы, равного n-2 .
    По таблице Стьюдента находим Tтабл
    T табл (n-m-1;α/2) = (8;0.025) = 2.306
    Точечный прогноз, t = 10: y(10) = 1.26*10 2 -12.24*10 + 998.5 = 1001.89 тыс. чел.

    1001.89 - 71.13 = 930.76 ; 1001.89 + 71.13 = 1073.02
    Интервальный прогноз:
    t = 9+1 = 10: (930.76;1073.02)

    Согласно формуле (9.29) параметры линейного тренда равны а = 1894/11 = 172,2 ц/га; b = 486/110 = 4,418 ц/га. Уравнение линейного тренда имеет вид:

    у̂ = 172,2 + 4,418t , где t = 0 в 1987 г Это означает,что средний фактический и выравненный уровень, отнесенный к середине периода, т.е. к 1991 г., равен 172 ц с 1 ra a среднегодовой прирост составляет 4,418 ц/га в год

    Параметры параболического тренда согласно (9.23) равны- b = 4,418; a = 177,75; с = -0,5571. Уравнение параболического тренда имеет вид у̃ = 177,75 + 4,418t - 0.5571t 2 ; t = 0 в 1991 г. Это означает, что абсолютный прирост урожайности замедляется в среднем на 2·0,56 ц/га в год за год. Сам же абсолютный прирост уже не является константой параболического тренда, а является средней величиной за период. В год, принятый за начало отсчета т.е. 1991 г., тренд проходит через точку с ординатой 77,75 ц/га; Свободный член параболического тренда не является средним уровнем за период. Параметры экспоненциального тренда вычисляются по формулам(9.32) и (9.33) lnа = 56,5658/11 = 5,1423; потенцируя, получаем а = 171,1; lnk = 2,853:110 = 0,025936; потенцируя, получаем k = 1,02628.

    Уравнение экспоненциального тренда имеет вид: y̅ = 171,1·1,02628 t .

    Это означает, что среднегодовой темп поста урожайности за период составил 102,63%. В точке принятК начало отсчета, тренд проходит точку с ординатой 171,1 ц/га.

    Рассчитанные по уравнениям трендов уровни записаны в трех последних графах табл. 9.5. Как видно по этим данным. расчетные значения уровней по всем трем видам трендов различаются ненамного, так как и ускорение параболы, и темп роста экспоненты невелики. Существенное отличие имеет парабола - рост уровней с 1995 г. прекращается, в то время как при линейном тренде уровни растут и далее, а при экспоненте их ост ускоряется. Поэтому для прогнозов на будущее эти три тренда неравноправны: при экстраполяции параболы на будущие годы уровни резко разойдутся с прямой и экспонентой, что видно из табл. 9.6. В этой таблицепредставлена распечатка решения на ПЭВМ по программе «Statgraphics» тех же трех трендов. Отличие их свободных членов от приведенных выше объясняется тем, что программа нумерует года не от середины, а от начала, так что свободные члены трендов относятся к 1986 г., для которого t = 0. Уравнение экспоненты на распечатке оставлено в логарифмированном виде. Прогноз сделан на 5 лет вперед, т.е. до 2001 г.. При изменении начала координат (отсчета времени) в уравнении параболы меняется и средний абсолютной прирост, параметр b. так как в результате отрицательного ускорения прирост все время сокращается, а его максимум - в начале периода. Константой параболы является только ускорение.


    В строке «Data» приводятся уровни исходного ряда; «Forecast summary» означает сводные данные для прогноза. В следующих строках - уравнения прямой, параболы, экспоненты - в логарифмическом виде. Графа ME означает среднее расхождение между уровнями исходного ряда и уровнями тренда (выравненными). Для прямой и параболы это расхождение всегда равно нулю. Уровни экспоненты в среднем на 0,48852 ниже уровней исходного ряда. Точное совпадение возможно, если истинный тренд - экспонента; в данном случае совпадения нет, но различие, мало. Графа МАЕ -это дисперсия s 2 - мера колеблемости фактических уровней относительно тренда, о чем сказано в п. 9.7. Графа МАЕ - среднее линейное отклонение уровней от тренда по модулю (см. параграф 5.8); графа МАРЕ - относительное линейное отклонение в процентах. Здесь они приведены как показатели пригодности выбранного вида тренда. Меньшую дисперсию и модуль отклонения имеет парабола: она за период 1986 - 1996 гг. ближе к фактическим уровням. Но выбор типа тренда нельзя сводить лишь к этому критерию. На самом деле замедление прироста есть результат большого отрицательного отклонения, т. е. неурожая в 1996 г.

    Вторая половина таблицы - это прогноз уровней урожайности по трем видам трендов на годы; t = 12, 13, 14, 15 и 16 от начала отсчета (1986 г.). Прогнозируемые уровни по экспоненте вплоть до 16-го года ненамного выше,.чем по прямой. Уровни тренда-параболы - снижаются, все более расходясь с другими трендами.

    Как видно в табл. 9.4, при вычислении параметров тренда уровни исходного ряда входят с разными весами - значениями t p и их квадратов. Поэтому влияние колебаний уровней на параметры тренда зависит от того, на какой номер года приходится урожайный либо неурожайный год. Если резкое отклонение приходится на год с нулевым номером (t i = 0 ), то оно никакого влияния на параметры тренда не окажет, а если попадет на начало и конец ряда, то повлияет сильно. Следовательно, однократное аналитическое выравнивание неполно освобождает параметры тренда от влияния колеблемости, и при сильных колебаниях они могут быть сильно искажены, что в нашем примере случилось с параболой. Для дальнейшего исключения искажающего влияния колебаний на параметры тренда следует применить метод многократного скользящего выравнивания.

    Этот прием состоит в том, что параметры тренда вычисляются не сразу по всему ряду, а скользящим методом, сначала за первые т периодов времени или моментов, затем за период от 2-го до т + 1, от 3-го до (т + 2)-го уровня и т.п. Если число исходных уровней ряда равно п, а длина каждой скользящей базы расчета параметров равна т, то число таких скользящих баз t или отдельных значений параметров, которые будут по ним определены, составит:

    L = п + 1 - т.

    Применение методики скользящего многократного выравнивания рассматривать, как видно из приведенных расчетов, возможно только при достаточно большом числе уровней ряда, как правило 15 и более. Рассмотрим эту методику на примере данных табл. 9.4 -динамики цен на нетопливные товары развивающихся стран, что опять же дает возможность читателю участвовать в небольшом научном исследовании. На этом же примере продолжим и методику прогнозирования в разделе 9.10.

    Если вычислять в нашем ряду параметры по 11 -летним периодам (по 11 уровням), то t = 17 + 1 - 11 = 7. Смысл многократного скользящего выравнивания в том, что при последовательных сдвигах базы расчета параметров на концах ее и в середине окажутся разные уровни с разными по знаку и величине отклонениями от тренда. Поэтому при одних сдвигах базы параметры будут завышаться, при других - занижаться, а при последующем усреднении значений параметров по всем сдвигам базы расчета произойдет дальнейшее взаимопогашение искажений параметров тренда колебаниями уровней.

    Многократное скользящее выравнивание не только позволяет получить более точную и надежную оценку параметров тренда, но и осуществить контроль правильности выбора типа уравнения тренда. Если окажется, что ведущий параметр тренда, его константа при расчете по скользящим базам не беспорядочно колеблется, а систематически изменяет свою величину существенным образом, значит, тип тренда был выбран неверно, данный параметр константой не является.

    Что касается свободного члена при многократном выравнивании, то нет необходимости и, более того, просто неверно вычислять его величину как среднюю по всем сдвигам базы, ибо при таком способе отдельные уровни исходного ряда входили бы в расчет средней с разными весами, и сумма выравненных уровней разошлась бы с суммой членов исходного ряда. Свободный член тренда - это средняя величина уровня за период, при условии отсчета времени от середины периода. При отсчете от начала, если первый уровень t i = 1, свободный член будет равен: a 0 = у̅ - b ((N-1)/2). Рекомендуется длину скользящей базы расчета параметров тренда выбирать не менее 9-11 уровней, чтобы в достаточной мере погасить колебания уровней. Если исходный ряд очень длинный, база может составлять до 0,7 - 0,8 его длины. Для устранения влияния долго-периодических (циклических) колебаний на параметры тренда, число сдвигов базы должно быть равно или кратно длине цикла колебаний. Тогда начало и конец базы будут последовательно «пробегать» все фазы цикла и при усреднении параметра по всем сдвигам его искажения от циклических колебаний будут взаимопогашаться. Другой способ - взять длину скользящей базы, равной длине цикла, чтобы начало базы и конец базы всегда приходились на одну и ту же фазу цикла колебаний.

    Поскольку по данным табл. 9.4, уже было установлено, что тренд имеет линейную форму, проводим расчет среднегодового абсолютного прироста, т. е. параметра b уравнения линейного тренда скользящим способом по 11-летним базам (см. табл. 9.7). В ней же приведен расчет данных, необходимых для последующего изучения колеблемости в параграфе 9.7. Остановимся подробнее на методике многократного выравнивания по скользящим базам. Рассчитаем параметр b по всем базам:


    Является тренд . Одним из наиболее популярных способов моделирования тенденции временного ряда является нахождение аналитической функции, характеризующей зависимость уровней ряда от времени. Этот способ называется аналитическим выравниванием временного ряда.

    Зависимость показателя от времени может принимать разные формы, поэтому находят различные функции: линейную, гиперболу, экспоненту, степенную функцию, полиномы различных степеней. Временной ряд исследуют аналогично линейной регрессии.

    Параметры любого тренда можно определить обычным методом наименьших квадратов, используя в качестве фактора время t = 1, 2,…, n, а в качестве зависимой переменной используют уровни временного ряда. Для нелинейных трендов сначала проводят процедуру линеаризации.

    К числу наиболее распространенных способов определения типа тенденции относят качественный анализ изучаемого ряда , построение и анализ графика зависимости уровней ряда от времени, расчет основных показателей динамики. В этих же целях можно часто используют и .

    Линейный тренд

    Тип тенденции определяют путем сравнения коэффициентов автокорреляции первого порядка. Если временной ряд имеет линейный тренд, то его соседние уровни yt и yt-1 тесно коррелируют. В таком случае коэффициент автокорреляции первого порядка уровней исходного ряда должен быть максимальный. Если временной ряд содержит нелинейную тенденцию, то чем сильнее выделена нелинейная тенденция во временном ряду, тем в большей степени будут различаться значения указанных коэффициентов.

    Выбор наилучшего уравнения в случае, если ряд содержит , можно осуществить перебором основных видов тренда, расчета по каждому уравнению коэффициента корреляции и выбора уравнения тренда с максимальным значением коэффициента.

    Параметры тренда

    Наиболее простую интерпретацию имеют параметры экспоненциального и линейного трендов.

    Параметры линейного тренда интерпретируют так: а — исходный уровень временного ряда в момент времени t = 0; b - средний за период абсолютный прирост уровней рада.

    Параметры экспоненциального тренда имеют такую интерпретацию. Параметр а - это исходный уровень временного ряда в момент времени t = 0. Величина exp(b) - это средний в расчете на единицу времени коэффициент роста уровней ряда.

    По аналогии с линейной моделью расчетные значения уровней рада по экспоненциальному тренду можно определить путем подстановки в уравнение тренда значений времени t = 1,2,…, n, либо в соответствии с интерпретацией параметров экспоненциального тренда: каждый последующий уровень такого ряда есть произведение предыдущего уровня на соответствующий коэффициент роста

    При наличии неявной нелинейной тенденции нужно дополнять описанные выше методы выбора лучшего уравнения тренда качественным анализом динамики изучаемого показателя, для того, чтобы избежать ошибок спецификации при выборе вида тренда. Качественный анализ предполагает изучение проблем возможного наличия в исследуемом ряду поворотных точек и изменения темпов прироста, начиная с определенного момента времени под влиянием ряда факторов, и т. д. В том случае если уравнение тренда выбрано неправильно при больших значениях t, результаты прогнозирования динамики временного ряда с использованием исследуемого уравнения будут недостоверными по причине ошибки спецификации.

    Иллюстрация возможного появления ошибки спецификации приведем на рисунке

    Если оптимальной формой тренда является парабола, в то время как на самом деле имеет место линейная тенденция, то при больших t парабола и линейная функция естественно будут по разному описывать тенденцию в уровнях ряда.

    а) Методы выделения тренда. Анализ значимости тренда. Выделение остатков и их анализ.

    Одним из важнейших понятий технического анализа является понятие тренда. Слово тренд - калька с английского trend (тенденция). Однако точного определения тренда в техническом анализе не дается. И это не случайно. Дело в том, что тренд или тенденция временного ряда - это несколько условное понятие. Под трендом понимают закономерную, неслучайную составляющую временного ряда (обычно монотонную, т.е. либо возрастающую, либо убывающую), которая может быть вычислена по вполне определенному однозначному правилу. Тренд реального временного ряда часто связан с действием природных (например, физических) законов или каких-либо других объективных закономерностей. Однако, вообще говоря, нельзя однозначно разделить случайный процесс или временной ряд на регулярную часть (тренд) и колебательную часть (остаток). Поэтому обычно предполагают, что тренд - это некоторая функция или кривая достаточно простого вида (линейная, квадратичная и т.п.), описывающая «среднее поведение» ряда или процесса. Если оказывается, что выделение такого тренда упрощает исследование, то предположение о выбранной форме тренда считается допустимым. B техническом анализе обычно предполагается, что тренд линеен (и его график - прямая линия) или кусочно линеен (и тогда его график - ломаная линия).

    Предположим, что реализация временного ряда в моменты времени Т=t1, t2,...tN принимает значения X=x1,х2,...xN. Линейный тренд имеет уравнение x=at+b. Известны специальные методы нахождения коэффициентов а и b этого уравнения. В том техническом анализе, который описывается в большинстве книг, тренд находится некоторыми графическими или несложными приближенными приемами. Однако в современной практике широко используются компьютеры, которые за считанные секунды могут по заданному массиву данных выписать точное уравнения тренда заданного вида (в частности, линейного тренда).

    Для временного ряда общее уравнение линейного тренда имеет вид:

    Величина МТ - среднее значение моментов времени t1, t2,...tN. Выбирая подходящую единицу времени, мы всегда можем считать, что t1, t2... - это просто натуральные числа 1,2.... Например, так будет для ценового ряда, в котором цены на акции фиксируется ежедневно на момент начала торгов, если за единицу времени взять один день. В таком случае:

    Величины от и о называются средними квадратичными отклонениями, они характеризуют разброс значений вокруг средних значений МТ и MX величин Т и X соответственно. Вычисление о вручную довольно утомительно, особенно для больших массивов данных. Однако все компьютерные программы, ориентированные на финансовые приложения, и даже такие универсальные программы, как Excel (не говоря уж о специальных статистических пакетах, таких как SPSS, Statistica, Statgraphics и др.) дают возможность мгновенно вычислить о для любого массива данных, который введен в память компьютера (и записан в некоторой определенной форме). Что касается величины от, то для случая ряда натуральных чисел она равна:

    Величина г играет в формуле тренда ключевую роль. Она называется коэффициентом корреляции (другое название: нормированный коэффициент корреляции) и характеризует степень взаимосвязи переменных Х и Т. Коэффициент корреляции принимает значения в промежутке от - 1 до +1. Если он близок к нулю, то это значит, что нет возможности выделить значимый линейный тренд. Если он положителен, то есть тенденция роста изучаемого индекса, причем, чем ближе г к единице, тем эта тенденция становится все более определенной. При отрицательном г имеем тенденцию к убыванию.

    Вычисление г весьма громоздко, но современный компьютер делает это практически мгновенно.

    При r>0 говорят о положительном тренде (с течением времени значения временного ряда имеет тенденцию возрастать), при r

    Знаете ли Вы, что: самые успешные в Рунете управляющие ПАММ-счетами осуществляют свою деятельность через компанию Альпари: рейтинг ПАММ-счетов ; рейтинг готовых портфелей ПАММ-счетов .

    После вычисления линейного тренда нужно выяснить, насколько он значим. Это делается с помощью анализа коэффициента корреляции. Дело в том, что отличие коэффициента корреляции от нуля и тем самым наличие тренда (положительного или отрицательного) может оказаться случайным, связанным со спецификой рассматриваемого отрезка временного ряда. Иначе говоря, при анализе другого набора экспериментальных данных (для того же временного ряда) может оказаться, что полученная при этом оценка величины г намного ближе к нулю, чем исходная (и, возможно, даже имеет другой знак), и говорить о реальном, выраженном тренде тут уже становится трудно.

    Для проверки значимости тренда в математической статистике разработаны специальные методики. Одна из них основана на проверке равенства г = 0 с помощью распределения Стьюдента (Стьюдент - это псевдоним английского статистика У.Госсета).

    Предположим, что имеется набор экспериментальных данных - значения х1, х2,...xN временного ряда в равноотстоящие моменты времени t1, t2...tN. С помощью специальных программ (см. выше) по этим данным можно вычислить приближение г* к точному значению г коэффициента корреляции (это приближение называют оценкой). Назовем это значение г* экспериментальным. Общая идея метода статистической проверки гипотез такова. Выдвигается некоторая гипотеза, в нашем случае это гипотеза о равенстве нулю коэффициента корреляции. Далее, задается некоторый уровень вероятности а. Смысл этой величины заключается в том, что она является вероятностной мерой допустимой ошибки. А именно, мы допускаем, что сделанный нами вывод о справедливости или несправедливости гипотезы на основании заданного массива экспериментальных данных может оказаться ошибочным, ибо абсолютно точного вывода на основании лишь частичной информации ожидать, конечно, не стоит. Однако мы можем потребовать, чтобы вероятность этой ошибки не превосходила некоторой заранее выбранной величины а (уровня вероятности). Обычно берут ее значение равным 0.05 (т.е. 5%) или 0.10, иногда прут и 0.01. Событие, вероятность которого меньше, чем а, считается настолько редким, что мы берем на себя смелость им пренебрегать. Для временных рядов разной природы эту величину выбирают по-разному. Если речь идет о ряде цен на акции какой-то небольшой фирмы, то риск ошибиться не несет катастрофических последствий (для независимых от этой фирмы участников торгов) и потому а можно взять не очень маленьким. Если же речь идет о крупной сделке, то последствия ошибки могут быть очень тяжелыми и значение а берут поменьше.

    Можно доказать, что при достаточно больших значениях N эта величина Uэкс (тоже являющаяся случайной) очень похожа на одну из стандартных случайных величин, используемых в математической статистике или, как говорят в математической статистике, близка к распределению Стьюдента с числом степеней свободы k (так называется параметр, задающий распределение Стьюдента), равным N-2, где N-число экспериментальных данных.

    Для распределения Стьюдента имеются подробные таблицы, в которых для заданного уровня вероятности а и числа степеней свободы k указывается критическое значение Икр. Критическим или граничным оно называется потому, что ограничивает двустороннюю (учитывающую и положительные и отрицательные значения) область, вне которой значения случайной величины могут оказаться достаточно редко, с вероятностью не большей, чем а. Точнее, при условии г = 0 имеет место равенство:

    В настоящее время значение Uкр можно находить не только из таблиц (где оно приводится только лишь для некоторых отдельных значений уровня вероятности - см. Табл. 2 ниже). Любая современная статистическая программа для компьютера дает возможность мгновенно вычислить Uкр для произвольного заданного уровня вероятности. Как нетрудно понять, с ростом величины а значения Uкр тоже растут.

    Далее рассуждают следующим образом. Предположим, что число N достаточно велико. Тогда случайная величина 0зкс распределена приблизительно по закону Стьюдента. Если г = 0, то с большой (т.е. близкой к 1) вероятностью, равной 1 - а, значение Uэкс должно по модулю не превосходить Uкр, т.е. лежать между - кр и Uкр. А вот выходить за пределы отрезка [-Uкр, Uкр] величина Uзкс может только с вероятностью а (которую мы согласились считать малой). Поэтому если I Uзкс I > Uкр, то делают заключение о том, что гипотеза г = 0 экспериментальными данными не подтверждается, т.е. г значимо отличен от нуля и потому тренд является выраженным. Вероятность ошибки такого заключения не превосходит заданного уровня вероятности а. Если же | Uзкс | Например, пусть г*= 0.20 и N= 20. Тогда вычисление дает Uэкс = 0.87. Для уровня вероятности 5% находим из таблицы распределения Стьюдента Uкр = 2.10. Сравнивая Uэкс и Uкр, видим, что тут гипотезу о равенстве нулю коэффициента корреляции отвергать нет основания. Тренд здесь не является выраженным.

    Если в результате исследования выяснилось, что тренд является выраженным, то только тогда можно этот тренд использовать для прогнозирования временного ряда. Вычислив коэффициенты а и b уравнения линейного тренда, указанные выше, получаем линейную зависимость, которая на некотором промежутке времени приблизительно описывает тенденцию динамики временного ряда. Графиком является прямая линия, продолжив которую в будущее, мы можем делать предположения о том, каковы будут значения временного ряда в будущем. Однако тенденции имеют свойства меняться, поэтому в какой-то момент времени в поведении временного ряда наступает перелом, после которого старое уравнение тренда уже не может описывать адекватно временной ряд. Сложность заключается в том, что уловить этот переломный момент очень непросто. Исследование линейного тренда ничего не говорит о наличии в будущем точек поворота, так что при их поиске приходится использовать совсем другие методы. О некоторых из них будет сказано ниже.

    Кроме линейного тренда, приходится рассматривать и тренды более сложной структуры. В техническом анализе в таких случаях говорят о замедлении или ускорении линейного тренда, как бы признавая, что он утратил свою линейность. При этом заранее указать ту функцию, с помощью которой можно описать этот тренд, обычно не представляется реальным. Поэтому часто на практике просто перебирают несколько простых функциональных зависимостей (которые могут содержать несколько параметров) и для каждой из них оценивают, насколько успешно функцией того или иного вида можно описать тенденцию рассматриваемого временного ряда. При наличии компьютера эти вычисления не занимают много времени, а иногда могут проводиться даже в автоматическом режиме, выделяющем среди нескольких заданных видов трендов оптимальный. Однако далеко не всегда среди рассмотренных функций есть та, которая действительно достаточно эффективно описывает тенденцию развития заданного временного ряда. В этом случае приходится идти другими путями. Так, часто в подобной ситуации производят различные преобразования членов временного ряда (логарифмирование, «дифференцирование» - образование разностей соседних членов ряда, «интегрирование» - суммирование последовательных членов ряда и др.) для того, чтобы попытаться получить временной ряд с ясно выраженным линейным трендом. Если это удается, то к полученному ряду применяют методы вычисления тренда, описанные выше, а потом обратным преобразованием возвращаются к исходному ряду.

    б) Методы выявления скрытых зависимостей. Корреляционный анализ временных рядов. Спектральный анализ и его применения.

    После того, как выявлен тренд, остается задача описать те колебания, которые временной ряд совершает вокруг этого тренда. Ведь ясно, что тренд - это просто тенденция, на ней основывать прогнозы рискованно, так как в разные промежутки времени реальная ситуация может отклоняться, причем весьма значительно, от тренда в ту или иную сторону. При этом отклонение в одну сторону может принести прибыль, а в другую - убытки. В техническом анализе в этом случае говорят об осцилляторах. Методика анализа осцилляторов до самого недавнего времени находилась на очень низком, практически на доматематическом уровне. Только в последние годы с приходом вычислительной техники и специалистов, имеющих хорошее математическое образование (они до сих пор реализовывали его в оборонной промышленности, которая во всем мире сейчас находится в упадке) при анализе осцилляторов стали использоваться достаточно современные методы (основанные на гармоническом и спектральном анализе).

    Колебания вокруг тренда разделяют на регулярные (являющиеся комбинацией нескольких синусоидальных или близких к ним колебаний, имеющих разные частоты) и случайные. Для выделения регулярных колебаний (их еще иногда называют скрытыми закономерностями) в математике по "заказам" большого числа прикладных наук разработано множество разных методов. Даже просто перечислить их нет никакой возможности. Однако все эти методы принадлежат обычно к одной из двух больших групп.

    В первой группе - методы, своим происхождением обязанные математической статистике, а точнее - теории корреляции. Теория корреляции изучает связи между случайными величинами, а также связи между отдельными значениями временных рядов, разделенных определенным промежутком времени (лагом). Если оказывается, например, что имеется тесная связь между значениями временного ряда, разделенными промежутком времени в 12 единиц, то это можно рассматривать как указание на то, что мы обнаружили колебательную компоненту (не обязательно точно синусоидальную) с периодом в 12 единиц времени. Практически такой анализ производят с помощью специальных программ, которые производят вычисление кореллограммы - оценки для функции корреляции (которая описывает корреляцию между значениями временного ряда, взятыми через всевозможные интервалы времени - лаги).

    Вторая группа методов пришла из техники - там при анализе сигналов давно и с успехом используется спектральный анализ. С помощью специальных методов (разложения в тригонометрические ряды и интегралы Фурье) производится выделение наиболее значимых гармоник, которые и дают регулярную часть колебаний вокруг тренда. Здесь вычисления еще более громоздкие, чем в корреляционном анализе. однако ныне об этих сложностях можно совершенно забыть (компьютер производит все необходимые расчеты за несколько секунд). Поэтому настало время учиться анализировать те данные, которые предоставляет спектральный анализ и строить на основании этих данных прогнозы. Эти методы довольно чувствительны к погрешностям в задании исходных данных и потому иногда приводят к заключениям о наличии закономерностей в изучаемом процессе, которых на самом деле нет.

    в) Стохастическое прогнозирование (модели ARIMA).

    Стохастическое прогнозирование - построение прогнозов на основе разного рода стохастических моделей. Стохастическим модели - это такие модели, которые сконструированы с помощью понятий и методов теории случайных процессов. В частности, среди этих моделей имеются те, в которых будущие значения вычисляются с помощью формул, выражающих эти значения через несколько предыдущих (т.е. соответствующих предшествующим моментам времени) значений. Такого рода модели называют авторегрессионными. Есть модели и другого рода - в них процесс моделируется комбинацией нескольких абсолютно случайных процессов (называемых белым шумом). Эти модели называют моделями скользящего среднего. Понятие скользящего среднего в техническом анализе является одним из основных инструментов, Огромное число прогностических методик основано на различных комбинациях скользящих средних разных порядков" (соответствующих разным временным отрезкам - 7, 14 дней и др.). В инженерной практике сходный метод называется фи-" льтрацией сигнала. Наиболее эффективные модели используют оба указанных метода. Одна из самых распространенных. комбинированных моделей такого рода - это ARIMA. По-русски это звучит, как АРПСС и расшифровывается как Авто-Регрессия и Проинтегрированное Скользящее Среднее. Мы не будем здесь входить в подробности построения этих моделей - они достаточно сложны. Для тех, кто хочет всерьез ознакомиться с этим, самым эффективным классом стохастических моделей, рекомендуем обратиться к книге "Статистический анализ данных на компьютере" . Непосредственные вычисления в ARIAL производятся только с применением компьютера, так как они очень громоздки. Метод ARIMA является наиболее распространенным общим методом стохастического моделирования во многих областях, в том числе и при серьезном подходе к анализу данных и прогнозированию финансовой деятельности. После построения стохастической модели ее можно использовать для прогнозирования. Однако следует отметить, что прогноз в этой (как и во всех других математических моделях) выдается с указанными границами, в пределах которых возможна ошибка.

    На приведенной диаграмме (она построена с помощью программы Statgraphics) указан прогноз, получаемый с помощью стохастической модели. Он состоит из основной линии и двух граничных, между которыми с заданной степенью уверенности (называемой доверительной вероятностью, она обычно равна 95%) будут находиться члены исследуемого временного ряда (например, ряда цен) в ближайшем будущем.

    г) Использование чисел Фибоначчи. Методы Ганна.

    Использование чисел Фибоначчи в техническом анализе имеет довольно давнюю историю. Сами зти числа были введены математиком Леонардо Пизанским (его называли Фибоначчи, - т.е. сын Боначчо, а Боначчо - добродушный - было прозвищем его отца) в его "Книге абака" в 1228 году, где он их использовал для вычисления роста потомства у Кроликов. На самом деле этот ряд чисел был известен еще в древнем Египте. В книге Фибоначчи приведены первые 14 чисел этого бесконечного ряда чисел.

    Каждое число в этой последовательности равно сумме двух предыдущих. Первыми двумя числами берутся 1 и 1, а се последующие однозначно определяются с помощью указанного выше правила. Числа Фибоначчи особенно хорошо известны в развлекательной части математики, а также в некоторых разделах современной математики (издается даже международный математический журнал Fibonacci Quarterly, посвященный числам Фибоначчи и их применениям). Можно доказать, что отношение каждого числа Фибоначчи к последующему с ростом порядкового номера этого числа стремится к числу 0.618... - к знаменитому числу золотого сечения. Это число пользовалось огромной популярностью еще в средние века, а сейчас ему придается чуть ли не фундаментальное значение во многих областях искусства и науки. Однако очень часто на самом деле оказывается, что важную роль играет не само это число, а близкое к нему число 2/3 = 0.666666... Число 2/3 действительно фундаментально, оно символизирует троичное деление, а вот число золотого сечения часто используется просто "для красоты".

    В техническом анализе есть несколько методов, которые связаны с использованием числа золотого сечения и нескольких производных от него чисел. Прежде всего можно отметить, что продолжительности отдельных элементов (волн) в волновой теории Р.Эллиотта (о которой будет рассказано ниже) связываются между собой именно с помощью этого числа. Кстати, само разделение цикла на 8=5+3 этапов в волновой теории указывает на числа Фибоначчи 3,5,8.

    В техническом анализе для делений (вертикальными и наклонными прямыми) чарта используют число 0.618... и производные от него числа (например (0.61 8...] = 1-0.61 8...= 0382...). Например, строится сетка, соотношение сторон которой равно числу золотого сечения или отношению чисел Фибоначчи (что, как мы уже знаем, примерно одно и то же). Относительно этой сетки и изучаются отдельные элементы чарта (линии сопротивления и поддержки, точки поворота и другие характерные точки). Вертикальные линии этой сетки задают периоды Фибоначчи (причем в литературе рекомендуется игнорировать первые две-три линии этого разбиения). Можно также строить отдельные наклонные линии, тоже задаваемые числами Фибоначчи. Эти линии проводятся от ключевых точек графика (например, от точек поворота). Считается, что линии Фибоначчи сохраняют свое действие некоторое время и после изменения тренда, что позволяет использовать эти линии для прогнозирования. Однако во всех этих случаях можно просто использовать число 2/3 и получить ничуть не худшие результаты (хотя, может быть и не столь эффектно оформленные, как при использовании золотого сечения). С помощью таких делений иногда удается весьма эффективно описать движения цен. Однако при резком развороте рынка приходится заново перерисовывать все линии Фибоначчи.

    Подробную систему графического анализа чартов разработал Уильям Ганн (1878-1955), который одним из первых стал использовать в техническом анализе геометрические методы. Он строил наклонные линии (линии Ганна), задаваемые числами 1/8, 1/4, 1/3, 3/8, 1/2, 5/8, 2/3, 3/4, 7/8, и использовал их, в частности, для нахождения линий сопротивления и поддержки - фундаментальных линий в графическом техническом анализе. При приближении к этим линиям Ценовой ряд прекращает рост (для линии сопротивления) или падение (для линий поддержки) или, по крайней мере, сильно замедляет их. При некотором желании среди этих чисел можно найти такие, которые приближенно выражаются через число золотого сечения и на этом основании сделать вывод, что это замечательное число и здесь играет основную роль. Однако идея Ганна была намного проще - он просто выписал последовательность тех чисел в отрезке , которые задаются достаточно простыми дробями.

    Ганн строил лучи, исходящие их характерных точек чарта (обычно из точек поворота), чтобы получать линии сопротивления и поддержки. Самое трудное здесь - правильно выбрать исходную точку линий Ганна. Можно комбинировать сетку Фибоначчи и линии Ганна. Эти методы реализованы во многих программах технического анализа (таких, как, например, MetaStock).