Метод наискорейшего градиентного спуска. Безусловная оптимизация. Метод наискорейшего спуска

Также можно искать не наилучшую точку в направлении градиента, а какую-либо лучше текущей.

Наиболее простой в реализации из всех методов локальной оптимизации. Имеет довольно слабые условия сходимости, но при этом скорость сходимости достаточно мала (линейна). Шаг градиентного метода часто используется как часть других методов оптимизации, например, метод Флетчера - Ривса .

Описание [ | ]

Усовершенствования [ | ]

Метод градиентного спуска оказывается очень медленным при движении по оврагу, причём при увеличении числа переменных целевой функции такое поведение метода становится типичным. Для борьбы с этим явлением используется, суть которого очень проста. Сделав два шага градиентного спуска и получив три точки, третий шаг следует сделать в направлении вектора, соединяющего первую и третью точку, вдоль дна оврага.

Для функций, близких к квадратичным, эффективным является метод сопряжённых градиентов .

Применение в искусственных нейронных сетях [ | ]

Метод градиентного спуска с некоторой модификацией широко применяется для обучения перцептрона и в теории искусственных нейронных сетей известен как метод обратного распространения ошибки . При обучении нейросети типа «персептрон» требуется изменять весовые коэффициенты сети так, чтобы минимизировать среднюю ошибку на выходе нейронной сети при подаче на вход последовательности обучающих входных данных. Формально, чтобы сделать всего один шаг по методу градиентного спуска (сделать всего одно изменение параметров сети), необходимо подать на вход сети последовательно абсолютно весь набор обучающих данных, для каждого объекта обучающих данных вычислить ошибку и рассчитать необходимую коррекцию коэффициентов сети (но не делать эту коррекцию), и уже после подачи всех данных рассчитать сумму в корректировке каждого коэффициента сети (сумма градиентов) и произвести коррекцию коэффициентов «на один шаг». Очевидно, что при большом наборе обучающих данных алгоритм будет работать крайне медленно, поэтому на практике часто производят корректировку коэффициентов сети после каждого элемента обучения, где значение градиента аппроксимируются градиентом функции стоимости, вычисленном только на одном элементе обучения. Такой метод называют стохастическим градиентным спуском или оперативным градиентным спуском . Стохастический градиентный спуск является одной из форм стохастического приближения. Теория стохастических приближений даёт условия сходимости метода стохастического градиентного спуска.

Ссылки [ | ]

  • J. Mathews. Module for Steepest Descent or Gradient Method. (недоступная ссылка)

Литература [ | ]

  • Акулич И. Л. Математическое программирование в примерах и задачах. - М. : Высшая школа, 1986. - С. 298-310.
  • Гилл Ф., Мюррей У., Райт М. Практическая оптимизация = Practical Optimization. - М. : Мир, 1985.
  • Коршунов Ю. М., Коршунов Ю. М. Математические основы кибернетики. - М. : Энергоатомиздат, 1972.
  • Максимов Ю. А., Филлиповская Е. А. Алгоритмы решения задач нелинейного программирования. - М. : МИФИ, 1982.
  • Максимов Ю. А. Алгоритмы линейного и дискретного программирования. - М. : МИФИ, 1980.
  • Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. - М. : Наука, 1970. - С. 575-576.
  • С. Ю. Городецкий, В. А. Гришагин. Нелинейное программирование и многоэкстремальная оптимизация. - Нижний Новгород: Издательство Нижегородского Университета, 2007. - С. 357-363.
Назначение сервиса . Онлайн-калькулятор используется для нахождения минимума функции методом наискорейшего спуска или методом Коши (см. пример). Решение оформляется в формате Word .

f(x 1 ,x 2) =

Для нахождения максимума функции , необходимо умножить целевую функцию на (-1) , т.е. Fmin = -Fmax .
Метод отыскания минимума функции Метод наискорейшего спуска Метод Ньютона
Начиная из точки ( ; ) .
Точность ξ = . Количество итераций 1 2 3

Правила ввода функции

В методе наискорейшего спуска в качестве направления поиска выбирается вектор, направление которого противоположно направлению вектора градиента функции ▽f(x). Из математического анализа известно, что вектор grad f(x)=▽f(x) характеризует направление наиболее быстрого возрастания функции (см. градиент функции). Поэтому вектор - grad f (X) = -▽f(X) называется антиградиентом и является направлением наиболее быстрого ее убывания. Рекуррентное соотношение, с помощью которого реализуется метод наискорейшего спуска, имеет вид X k +1 =X k - λ k ▽f(x k), k = 0,1,...,
где λ k >0 - величина шага. В зависимости от выбора величины шага можно получить различные варианты градиентного метода. Если в процессе оптимизации величина шага λ фиксирована, то метод носит название градиентного метода с дискретным шагом. Процесс оптимизации на первых итерациях можно значительно ускорить, если λ k выбирать из условия λ k =min f(X k + λS k) .
Для определения λ k используется любой метод одномерной оптимизации. В этом случае метод называется методом наискорейшего спуска. Как правило, в общем случае недостаточно одного шага для достижения минимума функции, процесс повторяют до тех пор, пока последующие вычисления позволяют улучшать результат.
Если пространство очень вытянуто по некоторым переменным, то образуется “овраг”. Поиск может замедлиться и идти зигзагами поперек дна “оврага”. Иногда решение невозможно получить за приемлемое время.
Еще одним недостатком метода может быть критерий остановки ||▽f(X k)|| <ε k , так как этому условию удовлетворяет и седловая точка, а не только оптимум.

Пример . Начиная из точки x k =(-2, 3) определите точку x k +1 методом наискорейшего спуска для минимизации функции .
В качестве направления поиска выберем вектор градиент в текущей точке

Проверим критерий остановки . Имеем
Вычислим значение функции в начальной точке f(X 1) = 35. Сделаем
шаг вдоль направления антиградиента

Вычислим значение функции в новой точке
f(X 2) = 3(-2 + 19λ 1) 2 + (3-8λ 1) 2 - (-2 + 19λ 1)(3-8λ 1) - 4(-2 + 19λ 1)
Найдем такой шаг, чтобы целевая функция достигала минимума вдоль этого направления. Из необходимого условия существования экстремума функции
f’(X 2) = 6(-2 + 19λ 1) 19 + 2(3-8λ 1)(-8) – (73 - 304 λ 1) – 4*19
или f’(X 2) = 2598 λ 1 – 425 = 0.
Получим шаг λ 1 = 0.164
Выполнение этого шага приведет в точку

в которой значение градиента , значение функции f(X 2) = 0.23. Точность не достигнута, из точки делаем шаг вдоль направления антиградиента .

f(X 2) = 3(1,116 – 1,008λ 1) 2 + (1,688-2,26λ 1) 2 - (1,116 – 1,008λ 1)(1,688-2,26λ 1) - 4(1,116 – 1,008λ 1)
f’(X 2) = 11,76 – 6,12λ 1 = 0
Получаем λ 1 = 0.52

Пример 6.8.3-1. Найти минимум функции Q(x,y) методом ГДШ.

Пусть Q(x,y) = x 2 +2y 2 ; x 0 = 2;y 0 = 1.

Проверим достаточные условия существования минимума:

Проделаем одну итерацию согласно алгоритму.

1. Q(x 0 ,y 0) = 6.

2. При х = x 0 и y = y 0 ,

3. Шаг l k = l 0 = 0,5

Таким образом, 4 < 8, следовательно, условие сходимости не выполняется и требуется, уменьшив шаг (l=l /2), повторять п.п.3-4 до выполнения условия сходимости. То есть, полученный шаг используется для нахождения следующей точки траектории спуска.

Суть метода состоит в следующем. Из выбранной точки (x 0 ,y 0) спуск осуществляют в направлении антиградиента до тех пор, пока не будет достигнуто минимальное значение целевой функции Q(x, y) вдоль луча (рис. 6.8.4-1). В найденной точке луч касается линии уровня. Затем из этой точки спуск проводится в направлении антиградиента (перпендикулярном линии уровня) до тех пор, пока соответствующий луч не коснется в новой точке проходящей через нее линии уровня, и т.д.

Выразим целевую функцию Q(x, y) через шаг l. При этом представим целевую функцию на определенном шаге как функцию одной переменной, т.е. величины шага

Величина шага на каждой итерации определяется из условия минимума :

Min( (l)) l k = l*(x k , y k), l >0.

Таким образом, на каждой итерации выбор шага l k предполагает решение задачи одномерной оптимизации. По способу решения этой задачи различают:

· аналитический метод (НСА);

· численный метод (НСЧ).

В методе НСА значение шага получают из условия , а в методе НСЧ величину l k находят на отрезке c заданной точностью, используя один из методов одномерной оптимизации.

Пример 6.8.4-1. Найти минимум функции Q(x,y)=x 2 + 2y 2 с точностью e=0.1, при начальных условиях: x 0 =2; y 0 =1.

Проделаем одну итерацию методом НСА .


=(x-2lx) 2 +2(y-4ly) 2 = x 2 -4lx 2 +4l 2 x 2 +2y 2 -16ly 2 +32l 2 y 2 .

Из условия ¢(l)=0 найдем значение l*:

Полученная функция l=l(x,y) позволяет найти значение l. При x=2 и y=1 имеем l=0.3333.

Вычислим значения координат следующей точки:

Проверим выполнение критерия окончания итераций при k=1:

Поскольку |2*0.6666|>0.1 и |-0.3333*4|>0.1 , то условия окончания процесса итераций не выполнены, т.е. минимум не найден. Поэтому следует вычислить новое значение l при x=x 1 и y=y 1 и получить координаты следующей точки спуска. Вычисления продолжаются до тех пор, пока не выполнятся условия окончания спуска.

Отличие численного метода НС от аналитического состоит в том, что поиск значения l на каждой итерации происходит одним из численных методов одномерной оптимизации (например, методом дихотомии или методом золотого сечения). При этом в качестве интервала неопределенности служит диапазон допустимых значений l - .

Градиентом дифференцируемой функции f(x) в точке х называется n -мерный вектор f(x ) , компоненты которого являются частными производными функции f(х), вычисленными в точке х , т. е.

f"(x) = (дf(х )/дх 1 , …, дf(х )/дх n) T .

Этот вектор перпендикулярен к плоскости, проведенной через точку х , и касательной к поверхности уровня функции f(x), проходящей через точку х .В каждой точке такой поверхности функция f(x) принимает одинаковое значение. Приравнивая функцию различным постоянным величинам С 0 , С 1 , ... , получим серию поверхностей, характеризующих ее топологию (Рис. 2.8).

Рис. 2.8. Градиент

Вектор-градиент направлен в сторону наискорейшего возрастания функции в данной точке. Вектор, противоположный градиенту (-f’(х )) , называется антиградиентом и направлен в сторону наискорейшего убывания функции. В точке минимума градиент функции равен нулю. На свойствах градиента основаны методы первого порядка, называемые также градиентным и методами минимизации. Использование этих методов в общем случае позволяет определить точку локального минимума функции.

Очевидно, что если нет дополнительной информации, то из начальной точки х разумно перейти в точку х , лежащую в направлении антиградиента - наискорейшего убывания функции. Выбирая в качестве направления спуска р [k ] антиградиент -f’(х [k]) в точке х [k ], получаем итерационный процесс вида

х[k+ 1] = x [k ]-a k f"(x [k]) , а k > 0; k =0, 1, 2, ...

В координатной форме этот процесс записывается следующим образом:

x i [k +1]=х i [k ] - a k f(x [k]) /x i

i = 1, ..., n ; k = 0, 1, 2,...

В качестве критерия останова итерационного процесса используют либо выполнение условия малости приращения аргумента || x [k +l] - x [k ] || <= e , либо выполнение условия малости градиента

|| f’(x [k +l]) || <= g ,

Здесь e и g - заданные малые величины.

Возможен и комбинированный критерий, состоящий в одновременном выполнении указанных условий. Градиентные методы отличаются друг от друга способами выбора величины шага а k .

При методе с постоянным шагом для всех итераций выбирается некоторая постоянная величина шага. Достаточно малый шаг а k обеспечит убывание функции, т. е. выполнение неравенства

f(х[k +1]) = f(x [k] – a k f’(x [k])) < f(x [k]) .

Однако это может привести к необходимости проводить неприемлемо большое количество итераций для достижения точки минимума. С другой стороны, слишком большой шаг может вызвать неожиданный рост функции либо привести к колебаниям около точки минимума (зацикливанию). Из-за сложности получения необходимой информации для выбора величины шага методы с постоянным шагом применяются на практике редко.

Более экономичны в смысле количества итераций и надежности градиентные методы с переменным шагом, когда в зависимости от результатов вычислений величина шага некоторым образом меняется. Рассмотрим применяемые на практике варианты таких методов.

При использовании метода наискорейшего спуска на каждой итерации величина шага а k выбирается из условия минимума функции f(x) в направлении спуска, т. е.
f(x [k ] –a k f’(x [k ])) = f(x [k] – af"(x [k ])) .

Это условие означает, что движение вдоль антиградиента происходит до тех пор, пока значение функции f(x) убывает. С математической точки зрения на каждой итерации необходимо решать задачу одномерной минимизации по а функции
j (a) = f(x [k ] - af"(x [k ])) .

Алгоритм метода наискорейшего спуска состоит в следующем.

1. Задаются координаты начальной точки х .

2. В точке х [k ], k = 0, 1, 2, ... вычисляется значение градиента f’(x [k ]) .

3. Определяется величина шага a k , путем одномерной минимизации по а функции j (a) = f(x [k ] - af"(x [k ])).

4. Определяются координаты точки х [k+ 1]:

х i [k+ 1] = x i [k ] – а k f’ i (х [k ]), i = 1 ,..., п.

5. Проверяются условия останова стерационного процесса. Если они выполняются, то вычисления прекращаются. В противном случае осуществляется переход к п. 1.

В рассматриваемом методе направление движения из точки х [k ] касается линии уровня в точке x [k+ 1] (Рис. 2.9). Траектория спуска зигзагообразная, причем соседние звенья зигзага ортогональны друг другу. Действительно, шаг a k выбирается путем минимизации по а функции?(a) = f(x [k] - af"(x [k ])) . Необходимое условие минимума функции d j (a)/da = 0. Вычислив производную сложной функции, получим условие ортогональности векторов направлений спуска в соседних точках:

dj (a)/da = -f’(x [k+ 1]f’(x [k ]) = 0.

Рис. 2.9. Геометрическая интерпретация метода наискорейшего спуска

Градиентные методы сходятся к минимуму с высокой скоростью (со скоростью геометрической прогрессии) для гладких выпуклых функций. У таких функций наибольшее М и наименьшее m собственные значения матрицы вторых производных (матрицы Гессе)

мало отличаются друг от друга, т. е. матрица Н(х) хорошо обусловлена. Напомним, что собственными значениями l i , i =1, …, n , матрицы являются корни характеристического уравнения

Однако на практике, как правило, минимизируемые функции имеют плохо обусловленные матрицы вторых производных (т/М << 1). Значения таких функций вдоль некоторых направлений изменяются гораздо быстрее (иногда на несколько порядков), чем в других направлениях. Их поверхности уровня в простейшем случае сильно вытягиваются (Рис. 2.10), а в более сложных случаях изгибаются и представляют собой овраги. Функции, обладающие такими свойствами, называют овражными. Направление антиградиента этих функций (см. Рис. 2.10) существенно отклоняется от направления в точку минимума, что приводит к замедлению скорости сходимости.

Рис. 2.10. Овражная функция

Скорость сходимости градиентных методов существенно зависит также от точности вычислений градиента. Потеря точности, а это обычно происходит в окрестности точек минимума или в овражной ситуации, может вообще нарушить сходимость процесса градиентного спуска. Вследствие перечисленных причин градиентные методы зачастую используются в комбинации с другими, более эффективными методами на начальной стадии решения задачи. В этом случае точка х находится далеко от точки минимума, и шаги в направлении антиградиента позволяют достичь существенного убывания функции.

Рассмотренные выше градиентные методы отыскивают точку минимума функции в общем случае лишь за бесконечное число итераций. Метод сопряженных градиентов формирует направления поиска, в большей мере соответствующие геометрии минимизируемой функции. Это существенно увеличивает скорость их сходимости и позволяет, например, минимизировать квадратичную функцию

f(x) = (х, Нх) + (b, х) + а

с симметрической положительно определенной матрицей Н за конечное число шагов п, равное числу переменных функции. Любая гладкая функция в окрестности точки минимума хорошо аппроксимируется квадратичной, поэтому методы сопряженных градиентов успешно применяют для минимизации и неквадратичных функций. В таком случае они перестают быть конечными и становятся итеративными.

По определению, два n -мерных вектора х и у называют сопряженными по отношению к матрице H (или H -сопряженными), если скалярное произведение (x , Ну) = 0. Здесь Н - симметрическая положительно определенная матрица размером п хп.

Одной из наиболее существенных проблем в методах сопряженных градиентов является проблема эффективного построения направлений. Метод Флетчера-Ривса решает эту проблему путем преобразования на каждом шаге антиградиента -f(x [k ]) в направление p [k ], H -сопряженное с ранее найденными направлениями р , р , ..., р [k -1]. Рассмотрим сначала этот метод применительно к задаче минимизации квадратичной функции.

Направления р [k ] вычисляют по формулам:

p[k ] = -f’(x [k ]) +b k-1 p [k -l], k >= 1;

p = -f (x ) .

Величины b k -1 выбираются так, чтобы направления p [k ], р [k -1] были H -сопряженными:

(p [k ], Hp [k- 1])= 0.

В результате для квадратичной функции

,

итерационный процесс минимизации имеет вид

x[k +l] =x [k ] +a k p [k ],

где р [k ] - направление спуска на k- м шаге; а k - величина шага. Последняя выбирается из условия минимума функции f(х) по а в направлении движения, т. е. в результате решения задачи одномерной минимизации:

f(х[k ] + а k р [k ]) = f(x [k ] + ар [k ]) .

Для квадратичной функции

Алгоритм метода сопряженных градиентов Флетчера-Ривса состоит в следующем.

1. В точке х вычисляется p = -f’(x ) .

2. На k- м шаге по приведенным выше формулам определяются шаг а k . и точка х [k+ 1].

3. Вычисляются величины f(x [k +1]) и f’(x [k +1]) .

4. Если f’(x ) = 0, то точка х [k +1] является точкой минимума функции f(х). В противном случае определяется новое направление p [k +l] из соотношения

и осуществляется переход к следующей итерации. Эта процедура найдет минимум квадратичной функции не более чем за п шагов. При минимизации неквадратичных функций метод Флетчера-Ривса из конечного становится итеративным. В таком случае после (п+ 1)-й итерации процедуры 1-4 циклически повторяются с заменой х на х [п +1] , а вычисления заканчиваются при , где - заданное число. При этом применяют следующую модификацию метода:

x[k +l] = x [k ] +a k p [k ],

p[k ] = -f’(x [k ])+ b k- 1 p [k -l], k >= 1;

p = -f’(x );

f(х[k ] + a k p [k ]) = f(x [k ] + ap [k ];

.

Здесь I - множество индексов: I = {0, n, 2п, Зп, ...} , т. е. обновление метода происходит через каждые п шагов.

Геометрический смысл метода сопряженных градиентов состоит в следующем (Рис. 2.11). Из заданной начальной точки х осуществляется спуск в направлении р = -f"(x ). В точке х определяется вектор-градиент f"(x ). Поскольку х является точкой минимума функции в направлении р , то f’(х ) ортогонален вектору р . Затем отыскивается вектор р , H -сопряженный к р . Далее отыскивается минимум функции вдоль направления р и т. д.

Рис. 2.11. Траектория спуска в методе сопряженных градиентов

Методы сопряженных направлений являются одними из наиболее эффективных для решения задач минимизации. Однако следует отметить, что они чувствительны к ошибкам, возникающим в процессе счета. При большом числе переменных погрешность может настолько возрасти, что процесс придется повторять даже для квадратичной функции, т. е. процесс для нее не всегда укладывается в п шагов.

При использовании метода наискорейшего спуска на каждой итерации величина шага а k выбирается из условия минимума функции f(x) в направлении спуска, т. е.

f(x [k ] -a k f"(x [k ])) = f(x [k] - af"(x [k ])) .

Это условие означает, что движение вдоль антиградиента происходит до тех пор, пока значение функции f(x) убывает. С математической точки зрения на каждой итерации необходимо решать задачу одномерной минимизации по а функции

j(a) = f(x [k ] - af"(x [k ])) .

Алгоритм метода наискорейшего спуска состоит в следующем.

  • 1. Задаются координаты начальной точки х .
  • 2. В точке х [k ], k = 0, 1, 2, ... вычисляется значение градиента f"(x [k ]) .
  • 3. Определяется величина шага a k , путем одномерной минимизации по а функции j(a) = f(x [k ] - af"(x [k ])).
  • 4. Определяются координаты точки х [k+ 1]:

х i [k+ 1] = x i [k ] - а k f" i [k ]), i = 1 ,..., п.

5. Проверяются условия останова стерационного процесса. Если они выполняются, то вычисления прекращаются. В противном случае осуществляется переход к п. 1.

В рассматриваемом методе направление движения из точки х [k ] касается линии уровня в точке x [k+ 1] (Рис. 2.9). Траектория спуска зигзагообразная, причем соседние звенья зигзага ортогональны друг другу. Действительно, шаг a k выбирается путем минимизации по а функции?(a) = f(x [k] - af"(x [k ])) . Необходимое условие минимума функции d j(a)/da = 0. Вычислив производную сложной функции, получим условие ортогональности векторов направлений спуска в соседних точках:

d j(a)/da = -f"(x [k+ 1]f"(x [k ]) = 0.

Рис. 2.9.

Градиентные методы сходятся к минимуму с высокой скоростью (со скоростью геометрической прогрессии) для гладких выпуклых функций. У таких функций наибольшее М и наименьшее m собственные значения матрицы вторых производных (матрицы Гессе)

мало отличаются друг от друга, т. е. матрица Н(х) хорошо обусловлена. Напомним, что собственными значениями l i , i =1, …, n , матрицы являются корни характеристического уравнения

Однако на практике, как правило, минимизируемые функции имеют плохо обусловленные матрицы вторых производных (т/М << 1). Значения таких функций вдоль некоторых направлений изменяются гораздо быстрее (иногда на несколько порядков), чем в других направлениях. Их поверхности уровня в простейшем случае сильно вытягиваются (Рис. 2.10), а в более сложных случаях изгибаются и представляют собой овраги. Функции, обладающие такими свойствами, называют овражными. Направление антиградиента этих функций (см. Рис. 2.10) существенно отклоняется от направления в точку минимума, что приводит к замедлению скорости сходимости.

Рис. 2.10.

Скорость сходимости градиентных методов существенно зависит также от точности вычислений градиента. Потеря точности, а это обычно происходит в окрестности точек минимума или в овражной ситуации, может вообще нарушить сходимость процесса градиентного спуска. Вследствие перечисленных причин градиентные методы зачастую используются в комбинации с другими, более эффективными методами на начальной стадии решения задачи. В этом случае точка х находится далеко от точки минимума, и шаги в направлении антиградиента позволяют достичь существенного убывания функции.