Многоканальная смо с неограниченной очередью. Одноканальная СМО с отказами

Абсолютная пропускная способность характеризует интенсивность выходящего потока обслуженных заявок.

Пример . На станцию технического обслуживания поступает простейший поток заявок с интенсивностью 1 автомобиль за 2 ч. Во дворе в очереди может находиться не более 3 машин. Среднее время ремонта - 2 часа. Дайте оценку работы СМО и разработайте рекомендации по улучшению обслуживания.

Решение:
Определяем тип СМО. Фраза « На станцию» говорит об единственном устройстве обслуживания, т.е. для проверки решения используем сервис Одноканальные СМО .
Определяем вид одноканальной СМО. Поскольку имеется упоминание об очереди, следовательно выбираем «Одноканальная СМО с ограниченной длиной очереди».
Параметр λ необходимо выразить в часах. Интенсивность заявок 1 автомобиль за 2 ч или 0,5 за 1 час.
Интенсивность потока обслуживания μ явно не задана. Здесь приводится время обслуживания t обс = 2 часа.

Исчисляем показатели обслуживания для одноканальной СМО:
Интенсивность потока обслуживания:

1. Интенсивность нагрузки .
ρ = λ t обс = 0.5 2 = 1
Интенсивность нагрузки ρ=1 показывает степень согласованности входного и выходного потоков заявок канала обслуживания и определяет устойчивость системы массового обслуживания.

3. Вероятность, что канал свободен (доля времени простоя канала).


Следовательно, 20% в течение часа канал будет не занят, время простоя равно t пр = 12 мин.

4. Доля заявок, получивших отказ .
Заявки не получают отказ. Обслуживаются все поступившие заявки, p отк = 0.

5. Относительная пропускная способность .
Доля обслуживаемых заявок, поступающих в единицу времени:
Q = 1 - p отк = 1 - 0 = 1
Следовательно, 100% из числа поступивших заявок будут обслужены. Приемлемый уровень обслуживания должен быть выше 90%.

6. Абсолютная пропускная способность .
A = Q λ = 1 0.5 = 0.5 заявок/час.

8. Среднее число заявок в очереди (средняя длина очереди).

ед.

9. Среднее время простоя СМО (среднее время ожидания обслуживания заявки в очереди).
час.

10. Среднее число обслуживаемых заявок .
L обс = ρ Q = 1 1 = 1 ед.

12. Среднее число заявок в системе .
L CMO = L оч + L обс = 1.2 + 1 = 2.2 ед.

13. Среднее время пребывания заявки в СМО .
час.

Число заявок, получивших отказ в течение час: λ p 1 = 0 заявок в час.
Номинальная производительность СМО: 1 / 2 = 0.5 заявок в час.
Фактическая производительность СМО: 0.5 / 0.5 = 100% от номинальной производительности.

Вывод: станция загружена на 100%. При этом отказов не наблюдается.

4. ТЕОРИЯ МАССОВОГО ОБСЛУЖИВАНИЯ

4.1. Классификация систем массового обслуживания и их показатели эффективности

Системы, в которых в случайные моменты времени возникают заявки на обслуживание и имеются устройства для обслуживания этих заявок, называются системами массового обслуживания (СМО).

СМО могут быть классифицированы по признаку организации обслуживания следующим образом:

Системы с отказами не имеют очередей.

Системы с ожиданием имеют очереди.

Заявка, поступившая в момент, когда все каналы обслуживания заняты:

Покидает систему с отказами;

Становится в очередь на обслуживание в системах с ожиданием при неограниченной очереди или на свободное место при ограниченной очереди;

Покидает систему с ожиданием при ограниченной очереди, если в этой очереди нет свободного места.

В качестве меры эффективности экономической СМО рассматривают сумму потерь времени:

На ожидание в очереди;

На простои каналов обслуживания.

Для всех видов СМО используются следующие показатели эффективности :

- относительная пропускная способность - это средняя доля поступающих заявок, обслуживаемых системой;

- абсолютная пропускная способность - это среднее число заявок, обслуживаемых системой в единицу времени;

- вероятность отказа - это вероятность того, что заявка покинет систему без обслуживания;

- среднее число занятых каналов - для многоканальных СМО.

Показатели эффективности СМО рассчитываются по формулам из специальных справочников (таблиц). Исходными данными для таких расчетов являются результаты моделирования СМО.

4.2. Моделирование системы массового обслуживания:

основ­ные параметры, граф состояний

При всем многообразии СМО они имеют общие черты , которые позволяют унифицировать их моделирование для нахождения наиболее эффективных вариантов организации таких систем .

Для моделирования СМО необходимо иметь следующие исходные данные:

Основные параметры;

Граф состояний.

Результатами моделирования СМО являются вероятности ее состояний, через которые выражаются все показатели ее эффективности.

Основные параметры для моделирования СМО включают:

Характеристики входящего потока заявок на обслуживание;

Характеристики механизма обслуживания.

Рассмотрим характеристики потока заявок .

Поток заявок - последовательность заявок, поступающих на обслуживание.

Интенсивность потока заявок - среднее число заявок, поступающих в СМО в единицу времени.

Потоки заявок бывают простейшими и отличными от простейших.

Для простейших потоков заявок используются модели СМО.

Простейшим , или пуассоновским называется поток, являющийся стационарным , одинарным и в нем отсутствуют последействия .

Стационарность означает неизменность интенсивности поступления заявок с течением времени.

Одинарным поток заявок является в том случае, когда за малый промежуток времени вероятность поступления более чем одной заявки близка к нулю.

Отсутствие последействия заключается в том, что число заявок, поступивших в СМО за один интервал времени, не влияет на количество заявок, полученных за другой интервал времени.

Для отличных от простейших потоков заявок используются имитационные модели.

Рассмотрим характеристики механизма обслуживания .

Механизм обслуживания характеризуется:

- числом каналов обслуживания ;

Производительностью канала, или интенсивностью обслуживания - средним числом заявок, обслуживаемых одним каналом в единицу времени;

Дисциплиной очереди (например, объемом очереди , порядком отбора из очереди в механизм обслуживания и т. п.).

Граф состояний описывает функционирование системы обслуживания как переходы из одного состояния в другое под действием потока заявок и их обслуживания.

Для построения графа состояний СМО необходимо:

Составить перечень всех возможных состояний СМО;

Представить перечисленные состояния графически и отобразить возможные переходы между ними стрелками;

Взвесить отображенные стрелки, т. е. приписать им числовые значения интенсивностей переходов, определяемые интенсивностью потока заявок и интенсивностью их обслуживания.

4.3. Вычисление вероятностей состояний

системы массового обслуживания


Граф состояний СМО со схемой "гибели и рождения" представляет собой линейную цепочку, где каждое из средних состояний имеет прямую и обратную связь с каждым из соседних состояний, а крайние состояния только с одним соседним:

Число состояний в графе на единицу больше, чем суммарное число каналов обслуживания и мест в очереди.

СМО может быть в любом из своих возможных состояний, поэтому ожидаемая интенсивность выхода из какого-либо состояния равна ожидаемой интенсивности входа системы в это состояние. Отсюда система уравнений для определения вероятностей состояний при простейших потоках будет иметь вид:

где - вероятность того, что система находится в состоянии

- интенсивность перехода, или среднее число переходов системы в единицу времени из состояния в состояние .

Используя эту систему уравнений, а также уравнение

вероятность любого -ого состояния можно вычислить по следующему общему правилу :

вероятность нулевого состояния рассчитывается как

а затем берется дробь, в числителе которой стоит произведение всех интенсивностей потоков по стрелкам, ведущим слева направо от состояния до состояния а в знаменателе - произведение всех интенсивностей по стрелкам, идущим справа налево от состояния до состояния , и эта дробь умножается на рассчитанную вероятность

Выводы по четвертому разделу

Системы массового обслуживания имеют один или несколько каналов обслуживания и могут иметь ограниченную или неограниченную очередь (системы с ожиданием) заявок на обслуживание, не иметь очереди (системы с отказами). Заявки на обслуживание возникают в случайные моменты времени. Системы массового обслуживания характеризуются следующими показателями эффективности: относительная пропускная способность, абсолютная пропускная способность, вероятность отказа, среднее число занятых каналов.

Моделирование систем массового обслуживания осуществляется для нахождения наиболее эффективных вариантов их организации и предполагает следующие исходные данные для этого: основные параметры, граф состояний. К таким данным относятся следующие: интенсивность потока заявок, количество каналов обслуживания, интенсивность обслуживания и объем очереди. Число состояний в графе на единицу больше, чем сумма числа каналов обслуживания и мест в очереди.

Вычисление вероятностей состояний системы массового обслуживания со схемой «гибели и рождения» осуществляется по общему правилу.

Вопросы для самопроверки

Какие системы называются системами массового обслуживания?

Как классифицируются системы массового обслуживания по признаку их организации?

Какие системы массового обслуживания называются системами с отказами, а какие – с ожиданием?

Что происходит с заявкой, поступившей в момент времени, когда все каналы обслуживания заняты?

Что рассматривают в качестве меры эффективности экономической системы массового обслуживания?

Какие используются показатели эффективности системы массового обслуживания?

Что служит исходными данными для расчетов показателей эффективности систем массового обслуживания?

Какие исходные данные необходимы для моделирования систем массового обслуживания?

Через какие результаты моделирования системы массового обслуживания выражают все показатели ее эффективности?

Что включают основные параметры для моделирования систем массового обслуживания?

Чем характеризуются потоки заявок на обслуживание?

Чем характеризуются механизмы обслуживания?

Что описывает граф состояний системы массового обслуживания

Что необходимо для построения графа состояний системы массового обслуживания?

Что представляет собой граф состояний системы массового обслуживания со схемой «гибели и рождения»?

Чему равно число состояний в графе состояний системы массового обслуживания?

Какой вид имеет система уравнений для определения вероятностей состояний системы массового обслуживания?

По какому общему правилу вычисляется вероятность любого состояния системы массового обслуживания?

Примеры решения задач

1. Построить граф состояний системы массового обслуживания и привести основные зависимости ее показателей эффективности.

а) n-канальная СМО с отказами (задача Эрланга)

Основные параметры:

Каналов ,

Интенсивность потока ,

Интенсивность обслуживания .

Возможные состояния системы:

Все каналов заняты ( заявок в системе).

Граф состояний:

Относительная пропускная способность ,

Вероятность отказа ,

Среднее число занятых каналов .

б) n-канальная СМО с m-ограниченной очередью

Возможные состояния системы:

Все каналы свободны (ноль заявок в системе);

Один канал занят, остальные свободны (одна заявка в системе);

Два канала заняты, остальные свободны (две заявки в системе);

...................................................................................

Все каналы заняты, две заявки в очереди;

Все каналы заняты, заявок в очереди.

Граф состояний:

в) Одноканальная СМО с неограниченной очередью

Возможные состояния системы:

Все каналы свободны (ноль заявок в системе);

Канал занят, ноль заявок в очереди;

Канал занят, одна заявка в очереди;

...................................................................................

Канал занят, заявка в очереди;

....................................................................................

Граф состояний:

Показатели эффективности системы:

,

Среднее время пребывания заявки в системе ,

,

,

Абсолютная пропускная способность ,

Относительная пропускная способность .

г) n-канальная СМО с неограниченной очередью

Возможные состояния системы:

Все каналы свободны (ноль заявок в системе);

Один канал занят, остальные свободны (одна заявка в системе);

Два канала заняты, остальные свободны (две заявки в системе);

...................................................................................

Все каналов заняты ( заявок в системе), ноль заявок в очереди;

Все каналы заняты, одна заявка в очереди;

....................................................................................

Все каналы заняты, заявок в очереди;

....................................................................................

Граф состояний:

Показатели эффективности системы:

Среднее число занятых каналов ,

Среднее число заявок в системе ,

Среднее число заявок в очереди ,

Среднее время пребывания заявки в очереди .

2. Вычислительный центр имеет три ЭВМ. В центр поступает на решение в среднем четыре задачи в час. Среднее время решения одной задачи - полчаса. Вычислительный центр принимает и ставит в очередь на решение не более трех задач. Необходимо оценить эффективность центра.

РЕШЕНИЕ. Из условия ясно, что имеем многоканальную СМО с ограниченной очередью:

Число каналов ;

Интенсивность потока заявок (задача / час);

Время обслуживания одной заявки (час / задача), интенсивность обслуживания (задача / час);

Длина очереди .

Перечень возможных состояний:

Заявок нет, все каналы свободны;

Один канал занят, два свободны;

Два канала заняты, один свободен;

Три канала заняты;

Три канала заняты, одна заявка в очереди;

Три канала заняты, две заявки в очереди;

Три канала заняты, три заявки в очереди.

Граф состояний:

Рассчитаем вероятность состояния :

Показатели эффективности:

Вероятность отказа (все три ЭВМ заняты и три заявки стоят в очереди)

Относительная пропускная способность

Абсолютная пропускная способность

Среднее число занятых ЭВМ

3. (Задача с использованием СМО с отказами.) В ОТК цеха работают три контролера. Если деталь поступает в ОТК, когда все контролеры заняты обслуживанием ранее поступивших деталей, то она проходит непроверенной. Среднее число деталей, поступающих в ОТК в течение часа, равно 24, среднее время, которое затрачивает один контролер на обслуживание одной детали, равно 5 мин. Определить вероятность того, деталь пройдет ОТК необслуженной, насколько загружены контролеры и сколько их необходимо поставить, чтобы (* - заданное значение ).

РЕШЕНИЕ. По условию задачи , тогда .

1) Вероятность простоя каналов обслуживания:

,

3) Вероятность обслуживания:

4) Среднее число занятых обслуживанием каналов:

.

5) Доля каналов, занятых обслуживанием:

6) Абсолютная пропускная способность:

При . Произведя аналогичные расчеты для , получим

Так как , то произведя расчеты для , получим

ОТВЕТ. Вероятность того, что при деталь пройдет ОТК необслуженной, составляет 21%, и контролеры будут заняты обслуживанием на 53%.

Чтобы обеспечить вероятность обслуживания более 95%, необходимо не менее пяти контролеров.

4. (Задача с использованием СМО с неограниченным ожиданием.) Сберкасса имеет трех контролеров-кассиров () для обслуживания вкладчиков . Поток вкладчиков поступает в сберкассу с интенсивностью чел./ч. Средняя продолжительность обслуживания контролером-кассиром одного вкладчика мин.

Определить характеристики сберкассы как объекта СМО.

РЕШЕНИЕ. Интенсивность потока обслуживания , интенсивность нагрузки .

1) Вероятность простоя контролеров-кассиров в течение рабочего дня (см. предыдущую задачу №3):

.

2) Вероятность застать всех контролеров-кассиров занятыми:

.

3) Вероятность очереди:

.

4) Среднее число заявок в очереди:

.

5) Среднее время ожидания заявки в очереди:

мин.

6) Среднее время пребывания заявки в СМО:

7) Среднее число свободных каналов:

.

8) Коэффициент занятости каналов обслуживания:

.

9) Среднее число посетителей в сберкассе:

ОТВЕТ. Вероятность простоя контролеров-кассиров равна 21% рабочего времени , вероятность посетителю оказаться в очереди составляет 11,8%, среднее число посетителей в очереди 0,236 чел., среднее время ожидания посетителями обслуживания 0,472 мин.

5. (Задача с применением СМО с ожиданием и с ограниченной длиной очереди.) Магазин получает ранние овощи из пригородных теплиц. Автомобили с грузом прибывают в разное время с интенсивностью машин в день. Подсобные помещения и оборудование для подготовки овощей к продаже позволяют обрабатывать и хранить товар, привезенный двумя автомашинами (). В магазине работают три фасовщика (), каждый из которых в среднем может обрабатывать товар с одной машины в течение ч. Продолжительность рабочего дня при сменной работе составляет 12 ч.

Определить, какова должна быть емкость подсобных помещений, чтобы вероятность полной обработки товаров была .

РЕШЕНИЕ. Определим интенсивность загрузки фасовщиков:

Авт./дн.

1) Найдем вероятность простоя фасовщиков при отсутствии машин (заявок):

причем 0!=1,0.

2) Вероятность отказа в обслуживании:

.

3) Вероятность обслуживания:

Так как , произведем аналогичные вычисления для , получим), при этом вероятность полной обработки товара будет .

Задания для самостоятельной работы

Для каждой из следующих ситуаций определить:

a) к какому классу относится объект СМО;

b) число каналов ;

c) длину очереди ;

d)интенсивность потока заявок ;

e) интенсивность обслуживания одним каналом;

f) количество всех состояний объекта СМО.

В ответах указать значения по каждому пункту, используя следующие сокращения и размерности:

a) ОО – одноканальная с отказами; МО – многоканальная с отказами; ОЖО – одноканальная с ожиданием с ограниченной очередью; ОЖН - одноканальная с ожиданием с неограниченной очередью; МЖО – многоканальная с ожиданием с ограниченной очередью; МЖН - многоканальная с ожиданием с неограниченной очередью;

b) =… (единиц);

c) =… (единиц);

d) =ххх/ххх (единиц /мин);

e) =ххх/ххх (единиц /мин);

f) (единиц).

1. Дежурный по администрации города имеет пять телефонов. Телефонные звонки поступают с интенсивностью 90 заявок в час, средняя продолжительность разговора составляет 2 мин.

2. На стоянке автомобилей возле магазина имеются 3 места, каждое из которых отводится под один автомобиль. Автомобили прибывают на стоянку с интенсивностью 20 автомобилей в час. Продолжительность пребывания автомобилей на стоянке составляет в среднем 15 мин. Стоянка на проезжей части не разрешается.

3. АТС предприятия обеспечивает не более 5 переговоров одновременно. Средняя продолжительность разговоров составляет 1 мин. На станцию поступает в среднем 10 вызовов в сек.

4. В грузовой речной порт поступает в среднем 6 сухогрузов в сутки. В порту имеются 3 крана, каждый из которых обслуживает 1 сухогруз в среднем за 8 ч. Краны работают круглосуточно. Ожидающие обслуживания сухогрузы стоят на рейде.

5. В службе «Скорой помощи» поселка круглосуточно дежурят 3 диспетчера, обслуживающие 3 телефонных аппарата. Если заявка на вызов врача к больному поступает, когда диспетчеры заняты, то абонент получает отказ. Поток заявок составляет 4 вызова в минуту. Оформление заявки длится в среднем 1,5 мин.

6. Салон-парикмахерская имеет 4 мастера. Входящий поток посетителей имеет интенсивность 5 человек в час. Среднее время обслуживания одного клиента составляет 40 мин. Длина очереди на обслуживание считается неограниченной.

7. На автозаправочной станции установлены 2 колонки для выдачи бензина. Около станции находится площадка на 2 автомашины для ожидания заправки. На станцию прибывает в среднем одна машина в 3 мин. Среднее время обслуживания одной машины составляет 2 мин.

8. На вокзале в мастерской бытового обслуживания работают три мастера. Если клиент заходит в мастерскую, когда все мастера заняты, то он уходит из мастерской, не ожидая обслуживания. Среднее число клиентов, обращающихся в мастерскую за 1 ч, равно 20. Среднее время, которое затрачивает мастер на обслуживание одного клиента, равно 6 мин.

9. АТС поселка обеспечивает не более 5 переговоров одновременно. Время переговоров в среднем составляет около 3 мин. Вызовы на станцию поступают в среднем через 2 мин.

10. На автозаправочной станции (АЗС) имеются 3 колонки. Площадка при станции, на которой машины ожидают заправку, может вместить не более одной машины, и если она занята, то очередная машина, прибывшая к станции, в очередь не становится, а проезжает на соседнюю станцию. В среднем машины прибывают на станцию каждые 2 мин. Процесс заправки одной машины продолжается в среднем 2,5 мин.

11. В небольшом магазине покупателей обслуживают два продавца. Среднее время обслуживания одного покупателя – 4 мин. Интенсивность потока покупателей – 3 человека в минуту. Вместимость магазина такова, что одновременно в нем в очереди могут находиться не более 5 человек. Покупатель, пришедший в переполненный магазин, когда в очереди уже стоят 5 человек, не ждет снаружи и уходит.

12. Железнодорожную станцию дачного поселка обслуживает касса с двумя окнами. В выходные дни, когда население активно пользуется железной дорогой, интенсивность потока пассажиров составляет 0,9 чел./мин. Кассир затрачивает на обслуживание пассажира в среднем 2 мин.

Для каждой из указанных в вариантах СМО интенсивность потока заявок равна и интенсивность обслуживания одним каналом . Требуется:

Составить перечень возможных состояний;

Построить граф состояний по схеме "гибели и размножения".

В ответе указать для каждой задачи:

Количество состояний системы;

Интенсивность перехода из последнего состояния в предпоследнее.

Вариант № 1

1. одноканальная СМО с очередью длиной в 1 заявку

2. 2-канальная СМО с отказами (задача Эрланга)

3. 31-канальная СМО с 1-ограниченной очередью

5. 31-канальная СМО с неограниченной очередью

Вариант № 2

1. одноканальная СМО с очередью длиной в 2 заявки

2. 3-канальная СМО с отказами (задача Эрланга)

3. 30-канальная СМО с 2-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 30-канальная СМО с неограниченной очередью

Вариант № 3

1. одноканальная СМО с очередью длиной в 3 заявки

2. 4-канальная СМО с отказами (задача Эрланга)

3. 29-канальная СМО с 3-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 29-канальная СМО с неограниченной очередью

Вариант № 4

1. одноканальная СМО с очередью длиной в 4 заявки

2. 5-канальная СМО с отказами (задача Эрланга)

3. 28-канальная СМО с 4-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 28-канальная СМО с неограниченной очередью

Вариант № 5

1. одноканальная СМО с очередью длиной в 5 заявок

2. 6-канальная СМО с отказами (задача Эрланга)

3. 27-канальная СМО с 5-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 27-канальная СМО с неограниченной очередью

Вариант № 6

1. одноканальная СМО с очередью длиной в 6 заявок

2. 7-канальная СМО с отказами (задача Эрланга)

3. 26-канальная СМО с 6-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 26-канальная СМО с неограниченной очередью

Вариант № 7

1. одноканальная СМО с очередью длиной в 7 заявок

2. 8-канальная СМО с отказами (задача Эрланга)

3. 25-канальная СМО с 7-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 25-канальная СМО с неограниченной очередью

Вариант № 8

1. одноканальная СМО с очередью длиной в 8 заявок

2. 9-канальная СМО с отказами (задача Эрланга)

3. 24-канальная СМО с 8-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 24-канальная СМО с неограниченной очередью

Вариант № 9

1. одноканальная СМО с очередью длиной в 9 заявок

2. 10-канальная СМО с отказами (задача Эрланга)

3. 23-канальная СМО с 9-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 23-канальная СМО с неограниченной очередью

Вариант № 10

1. одноканальная СМО с очередью длиной в 10 заявок

2. 11-канальная СМО с отказами (задача Эрланга)

3. 22-канальная СМО с 10-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 22-канальная СМО с неограниченной очередью

1) одноканальная СМО

В предельном (стационарном) режиме система уравнений Колмогорова:

Учитывая нормировочное условие p 0 + p 1 = 1, найдем:

которые выражают среднее относительное время пребывания системы в состоянии S 0 (когда канал свободен) и S 1 (когда канал занят), т.е. определяют соответственно относительную пропускную способность системы q и вероятность отказа P отк:

Абсолютная пропускная способность: .

Задача 1. Известно, что заявки в ателье поступают с интенсивностью?=90 (заявок в час), а средняя продолжительность разговора по телефону t об = 2 мин. Определить показатели эффективности работы СМО (телефонной связи) при наличии одного телефонного номера.

Решение.

Интенсивность потока обслуживания?= 1/ t об =1/2 = 0,5(1/мин) = 30 (1/ч).

Относительная пропускная способность СМО q = 30/(30+90) = 0,25, т.е. в среднем только 25% поступающих заявок осуществят переговоры по телефону. Соответственно вероятность отказа в обслуживании составит P отк = 0,75. Абсолютная пропускная способность СМО: Q = 90*0,25 = 22,5, т.е. в среднем в час будут обслужены 22,5 заявки.

Очевидно, что при наличии только одного телефонного номера СМО будет плохо справляться с потоком заявок.

2) многоканальная СМО

Система уравнений Колмогорова имеет вид:


В стационарном режиме:

Разрешим систему (1) относительно неизвестных p 0 , p 1 ,..., p m . Из первого уравнения:

Из второго с учетом (2):

Аналогично из третьего, с учетом (2) и (3):

и вообще, для любого k ? m:

Введем обозначение:

Определяет среднее число требований, поступающих в СМО за среднее время обслуживания одной заявки (приведенная плотность потока заявок).

Формула (6) выражает все вероятности p k через p 0 . Воспользуемся условием:

Подставляя (7) в (6), получим, 0 ? k ? m. (8)

Формулы (7) и (8) называют формулами Эрланга. Полагая в формуле (8) k = m, получим вероятность отказа

Относительная пропускная способность (вероятность того, что заявка будет обслужена):

Формулы Эрланга и их следствия (9), (10) выведены для случая показательного закона распределения времени обслуживания. Но исследования последних лет показали, что эти формулы остаются справедливыми при любом законе распределения времени обслуживания, лишь бы входной поток был простейшим. Также формулами Эрланга можно пользоваться (с известным приближением) и в случае, когда поток заявок отличается от простейшего (например, является стационарным потоком с ограниченным последействием). Наконец, формулами Эрланга можно приближенно пользоваться и в случае, когда СМО допускает ожидание заявки в очереди, но когда срок ожидания мал по сравнению со средним временем обслуживания одной заявки.

Абсолютная пропускная способность:

Среднее число занятых каналов есть математическое ожидание числа занятых каналов:

или или, учитывая (11) и (5)

При большом числе каналов обслуживания применяют следующие формулы, которые также называются формулами Эрланга:

При больших значениях i:

функция Лапласа.

Вероятность отказа: (9")

Относительная пропускная способность

Среднее число занятых каналов:

Задача 2. В условиях предыдущей задачи определить оптимальное число телефонных номеров в ателье, если условием оптимальности считать удовлетворение в среднем из каждых 100 заявок не менее 90 заявок на переговоры.

Решение. Интенсивность нагрузки канала по формуле (5) ? = 90/30 = 3, т.е. за время среднего (по продолжительности) телефонного разговора t об = 2 мин. поступает в среднем 3 заявки на переговоры.

Будем постепенно увеличивать число каналов (телефонных номеров) n = 2, 3, 4,... и определим по формулам (7), (10), (11) для получаемой n-канальной СМО характеристики обслуживания. Например, при n = 2

Значения характеристик СМО представим в таблице:

По условию оптимальности q ? 0,9, следовательно, в ателье необходимо установить 5 телефонных номеров (в этом случае q = 0,9). При этом в час будут обслуживаться в среднем 80 заявок (Q = 80,1), а среднее число занятых телефонных номеров (каналов)

Задача 3. Автоматическая телефонная станция обеспечивает не более 120 переговоров одновременно. Средняя продолжительность разговора 60 секунд, а вызовы поступают в среднем через 0,5 секунды. Рассматривая такую станцию как многоканальную систему обслуживания с отказами и простейшим входным потоком, определить: а) среднее число занятых каналов, б) относительную пропускную способность, в) среднее время пребывания вызова на станции с учетом того, что разговор может и не состояться.

Решение. Имеем: m = 120; ? = 1/0,5 = 2; ? = 1/60; ? = ?/? = 120.

Используя таблицы функции Лапласа, получаем:

так как? есть интенсивность входного потока (число заявок в единицу времени), то?t ср = и.

2 . СМО с ожиданием и ограниченным временем ожидания.

Имеется m каналов обслуживания, входной поток - простейший с интенсивностью?, время обслуживания и время ожидания - СВ, распределенные по экспоненциальному закону с параметрами? и? соответственно.

Если занято i каналов и i ? m, то в силу независимости их функционирования интенсивность обслуживания возрастает в i раз: ? i,i-1 = i?. При возникновении очереди каждое состояние рассматриваемой СМО характеризуется занятостью каналов обслуживания. Поэтому интенсивность освобождения каналов становится постоянной u = m?.

Закон распределения времени ожидания определяется интенсивностью? ухода из очереди при наличии в ней одной заявки. В силу независимости поступления заявок (см. определение простейшего потока) интенсивность, с которой заявки отказываются от обслуживания и уходят из очереди, равна r? (для очереди длины r ? 1). Т.о., плотность вероятности перехода системы из состояния S m+r в состояние S m+r-1 равна сумме интенсивностей освобождения каналов обслуживания и отказа от обслуживания: ? m+r,m+r-1 = m? + r?.

Составим уравнения Колмогорова:


i=1,..., m-1, r ? 0.

Если на длину очереди не накладывать ограничений, то система обыкновенных дифференциальных уравнений (1) является бесконечной.

Если в начальный момент времени t = 0 рассматриваемая система находилась в одном из своих возможных состояний S j , то начальные условия для нее выглядят следующим образом.

В качестве показателей эффективности СМО с отказами будем рассматривать:

1) A - абсолютную пропускную способность СМО , т.е. среднее число заявок, обслуживаемых в единицу времени;

2) Q - относительную пропускную способность , т.е. среднюю долю пришедших заявок, обслуживаемых системой;

3) P_{\text{otk}} - вероятность отказа , т.е. того, что заявка покинет СМО необслуженной;

4) \overline{k} - среднее число занятых каналов (для многоканальной системы).

Одноканальная система (СМО) с отказами

Рассмотрим задачу. Имеется один канал, на который поступает поток заявок с интенсивностью \lambda . Поток обслуживании имеет интенсивность \mu . Найти предельные вероятности состояний системы и показатели ее эффективности.


Примечание. Здесь и в дальнейшем предполагается, что все потоки событий, переводящие СМО из состояния в состояние, будут простейшими. К ним относится и поток обслуживании - поток заявок, обслуживаемых одним непрерывно занятым каналом. Среднее время обслуживания обратно по величине интенсивности \mu , т.е. \overline{t}_{\text{ob.}}=1/\mu .

Система S (СМО) имеет два состояния: S_0 - канал свободен, S_1 - канал занят. Размеченный граф состояний представлен на рис. 6.

В предельном, стационарном режиме система алгебраических уравнений для вероятностей состояний имеет вид (см. выше правило составления таких уравнений)

\begin{cases}\lambda\cdot p_0=\mu\cdot p_1,\\\mu\cdot p_1=\lambda\cdot p_0,\end{cases}


т.е. система вырождается в одно уравнение. Учитывая нормировочное условие p_0+p_1=1 , найдем из (18) предельные вероятности состояний

P_0=\frac{\mu}{\lambda+\mu},\quad p_1=\frac{\lambda}{\lambda+\mu}\,


которые выражают среднее относительное время пребывания системы в состоянии S_0 (когда канал свободен) и S_1 (когда канал занят), т.е. определяют соответственно относительную пропускную способность Q системы и вероятность отказа P_{\text{otk}}:

Q=\frac{\mu}{\lambda+\mu}\,

P_{\text{otk}}=\frac{\lambda}{\lambda+\mu}\,.

Абсолютную пропускную способность найдем, умножив относительную пропускную способность Q на интенсивность потока отказов

A=\frac{\lambda\mu}{\lambda+\mu}\,.

Пример 5. Известно, что заявки на телефонные переговоры в телевизионном ателье поступают с интенсивностью \lambda , равной 90 заявок в час, а средняя продолжительность разговора по телефону мин. Определить показатели эффективности работы СМО (телефонной связи) при наличии одного телефонного номера.

Решение. Имеем \lambda=90 (1/ч), \overline{t}_{\text{ob.}}=2 мин. Интенсивность потока обслуживании \mu=\frac{1}{\overline{t}_{\text{ob.}}}=\frac{1}{2}=0,\!5 (1/мин) =30 (1/ч). По (20) относительная пропускная способность СМО Q=\frac{30}{90+30}=0,\!25 , т.е. в среднем только 25% поступающих заявок осуществят переговоры по телефону. Соответственно вероятность отказа в обслуживании составит P_{\text{otk}}=0,\!75 (см. (21)). Абсолютная пропускная способность СМО по (29) A=90\cdot0.\!25=22,\!5 , т.е. в среднем в час будут обслужены 22,5 заявки на переговоры. Очевидно, что при наличии только одного телефонного номера СМО будет плохо справляться с потоком заявок.

Многоканальная система (СМО) с отказами

Рассмотрим классическую задачу Эрланга . Имеется n каналов, на которые поступает поток заявок с интенсивностью \lambda . Поток обслуживании имеет интенсивность \mu . Найти предельные вероятности состояний системы и показатели ее эффективности.

Система S (СМО) имеет следующие состояния (нумеруем их по числу заявок, находящихся в системе): S_0,S_1,S_2,\ldots,S_k,\ldots,S_n , где S_k - состояние системы, когда в ней находится k заявок, т.е. занято k каналов.

Граф состояний СМО соответствует процессу гибели и размножения и показан на рис. 7.

Поток заявок последовательно переводит систему из любого левого состояния в соседнее правое с одной и той же интенсивностью \lambda . Интенсивность же потока обслуживании, переводящих систему из любого правого состояния в соседнее левое состояние, постоянно меняется в зависимости от состояния. Действительно, если СМО находится в состоянии S_2 (два канала заняты), то она может перейти в состояние S_1 (один канал занят), когда закончит обслуживание либо первый, либо второй канал, т.е. суммарная интенсивность их потоков обслуживании будет 2\mu . Аналогично суммарный поток обслуживании, переводящий СМО из состояния S_3 (три канала заняты) в S_2 , будет иметь интенсивность 3\mu , т.е. может освободиться любой из трех каналов и т.д.

В формуле (16) для схемы гибели и размножения получим для предельной вероятности состояния

P_0={\left(1+ \frac{\lambda}{\mu}+ \frac{\lambda^2}{2!\mu^2}+\ldots+\frac{\lambda^k}{k!\mu^k}+\ldots+ \frac{\lambda^n}{n!\mu^n}\right)\!}^{-1},

где члены разложения \frac{\lambda}{\mu},\,\frac{\lambda^2}{2!\mu^2},\,\ldots,\,\frac{\lambda^k}{k!\mu^k},\,\ldots,\, \frac{\lambda^n}{n!\mu^n} , будут представлять собой коэффициенты при p_0 в выражениях для предельных вероятностей p_1,p_2,\ldots,p_k,\ldots,p_n . Величина

\rho=\frac{\lambda}{\mu}


называется приведенной интенсивностью потока заявок или интенсивностью нагрузки канала . Она выражает среднее число заявок, приходящее за среднее время обслуживания одной заявки. Теперь

P_0={\left(1+\rho+\frac{\rho^2}{2!}+\ldots+\frac{\rho^k}{k!}+\ldots+\frac{\rho^n}{n!}\right)\!}^{-1},

P_1=\rho\cdot p,\quad p_2=\frac{\rho^2}{2!}\cdot p_0,\quad \ldots,\quad p_k=\frac{\rho^k}{k!}\cdot p_0,\quad \ldots,\quad p_n=\frac{\rho^n}{n!}\cdot p_0.

Формулы (25) и (26) для предельных вероятностей получили названия формул Эрланга в честь основателя теории массового обслуживания.

Вероятность отказа СМО есть предельная вероятность того, что все я каналов системы будут заняты, т.е.

P_{\text{otk}}= \frac{\rho^n}{n!}\cdot p_0.

Относительная пропускная способность - вероятность того, что заявка будет обслужена:

Q=1- P_{\text{otk}}=1-\frac{\rho^n}{n!}\cdot p_0.

Абсолютная пропускная способность:

A=\lambda\cdot Q=\lambda\cdot\left(1-\frac{\rho^n}{n!}\cdot p_0\right)\!.

Среднее число занятых каналов \overline{k} есть математическое ожидание числа занятых каналов:

\overline{k}=\sum_{k=0}^{n}(k\cdot p_k),


где p_k - предельные вероятности состояний, определяемых по формулам (25), (26).

Однако среднее число занятых каналов можно найти проще, если учесть, что абсолютная пропускная способность системы A есть не что иное, как интенсивность потока обслуженных системой заявок (в единицу времени). Так как каждый занятый канал обслуживает в среднем \mu заявок (в единицу времени), то среднее число занятых каналов

\overline{k}=\frac{A}{\mu}

Или, учитывая (29), (24):

\overline{k}=\rho\cdot\left(1-\frac{\rho^n}{n!}\cdot p_0\right)\!.

Пример 6. В условиях примера 5 определить оптимальное число телефонных номеров в телевизионном ателье, если условием оптимальности считать удовлетворение в среднем из каждых 100 заявок не менее 90 заявок на переговоры.

Решение. Интенсивность нагрузки канала по формуле (25) \rho=\frac{90}{30}=3 , т.е. за время среднего (по продолжительности) телефонного разговора \overline{t}_{\text{ob.}}=2 мин. поступает в среднем 3 заявки на переговоры.

Будем постепенно увеличивать число каналов (телефонных номеров) n=2,3,4,\ldots и определим по формулам (25), (28), (29) для получаемой n-канальной СМО характеристики обслуживания. Например, при n=2 имеем

З_0={\left(1+3+ \frac{3^2}{2!}\right)\!}^{-1}=0,\!118\approx0,\!12;\quad Q=1-\frac{3^2}{2!}\cdot0,\!118=0,\!471\approx0,\!47;\quad A=90\cdot0,\!471=42,\!4 и т.д.


Значение характеристик СМО сведем в табл. 1.

По условию оптимальности Q\geqslant0,\!9 , следовательно, в телевизионном ателье необходимо установить 5 телефонных номеров (в этом случае Q=0,\!9 - см. табл. 1). При этом в час будут обслуживаться в среднем 80 заявок (A=80,\!1) , а среднее число занятых телефонных номеров (каналов) по формуле (30) \overline{k}=\frac{80,\!1}{30}=2,\!67 .

Пример 7. В вычислительный центр коллективного пользования с тремя ЭВМ поступают заказы от предприятий на вычислительные работы. Если работают все три ЭВМ, то вновь поступающий заказ не принимается, и предприятие вынуждено обратиться в другой вычислительный центр. Среднее время работы с одним заказом составляет 3 ч. Интенсивность потока заявок 0,25 (1/ч). Найти предельные вероятности состояний и показатели эффективности работы вычислительного центра.

Решение. По условию n=3,~\lambda=0,\!25 (1/ч), \overline{t}_{\text{ob.}} =3 (ч). Интенсивность потока обслуживании \mu=\frac{1}{\overline{t}_{\text{ob.}}}=\frac{1}{3}=0,\!33 . Интенсивность нагрузки ЭВМ по формуле (24) \rho=\frac{0,\!25}{0,\!33}=0,\!75 . Найдем предельные вероятности состояний:

– по формуле (25) p_0={\left(1+0,\!75+ \frac{0,\!75^2}{2!}+ \frac{0,\!75^3}{3!}\right)\!}^{-1}=0,\!476 ;

– по формуле (26) p_1=0,!75\cdot0,\!476=0,\!357;~p_2=\frac{0,\!75^2}{2!}\cdot0,\!476=0,\!134;~p_3=\frac{0,\!75^3}{3!}\cdot0,\!476=0,\!033 ;


т.е. в стационарном режиме работы вычислительного центра в среднем 47,6% времени нет ни одной заявки, 35,7% - имеется одна заявка (занята одна ЭВМ), 13,4% - две заявки (две ЭВМ), 3,3% времени - три заявки (заняты три ЭВМ).

Вероятность отказа (когда заняты все три ЭВМ), таким образом, P_{\text{otk}}=p_3=0,\!033 .

По формуле (28) относительная пропускная способность центра Q=1-0,\!033=0,\!967 , т.е. в среднем из каждых 100 заявок вычислительный центр обслуживает 96,7 заявок.

По формуле (29) абсолютная пропускная способность центра A=0,\!25\cdot0,\!967=0,\!242 , т.е. в один час в среднем обслуживается. 0,242 заявки.

По формуле (30) среднее число занятых ЭВМ \overline{k}=\frac{0,\!242}{0,\!33}=0,\!725 , т.е. каждая из трех ЭВМ будет занята обслуживанием заявок в среднем лишь на \frac{72,\!5}{3}= 24,\!2%. .

При оценке эффективности работы вычислительного центра необходимо сопоставить доходы от выполнения заявок с потерями от простоя дорогостоящих ЭВМ (с одной стороны, у нас высокая пропускная способность СМО, а с другой стороны - значительный простой каналов обслуживания) и выбрать компромиссное решение.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

СМО с отказами (одно - и многоканальная)

Простейшей одноканальной моделью с вероятностным входным потоком и процедурой обслуживания является модель, которая «может характеризоваться показательным распределением длительностей интервалов между поступлениями заявок и распределением длительностей обслуживания». При этом плотность распределения длительностей интервалов между поступлениями требований имеет вид:

f 1 (t) = л*e (-л*t) , (1)

где л - интенсивность поступления заявок в систему (среднее число заявок, поступающих в систему за единицу времени). Плотность распределения длительности обслуживания:

f 2 (t)=µ*e -µ*t , µ=1/t об, (2)

где µ-интенсивность обслуживания, t об -среднее время обслуживания одного клиента. Относительная пропускная способность обслуженных заявок относительно всех поступающих вычисляется по формуле:

Эта величина равна вероятности, что канал обслуживания свободен. Абсолютная пропускная способность (А) -- среднее число заявок, которое может обслужить система массового обслуживания в единицу времени:

Данная величина Р может быть интерпретирована как средняя доля необслуженных заявок.

Пример. Пусть одноканальная СМО с отказами представляет собой один пост ежедневного обслуживания для мойки автомобилей. Заявка -- автомобиль, прибывший в момент, когда пост занят, -- получает отказ в обслуживании. Интенсивность потока автомобилей л =1,0 (автомобиль в час). Средняя продолжительность обслуживания t об =1,8 часа. Требуется определить в установившемся режиме предельные значения: относительной пропускной способности q;

  • - абсолютной пропускной способности А;
  • - вероятности отказа Р.

Определим интенсивность потока обслуживания по формуле 2: .Вычислим относительную пропускную способность: q =.Величина q означает, что в установившемся режиме система будет обслуживать примерно 35% прибывающих на пост автомобилей. Абсолютную пропускную способность определим по формуле: А=лЧq=1Ч0,356=0,356. Это говорит о том, что система способна осуществить в среднем 0,356 обслуживания автомобилей в час. Вероятность отказа: Р отк =1-q=1-0,356=0,644. Это означает, что около 65% прибывших автомобилей на пост ЕО получат отказ в обслуживании. Определим номинальную пропускную способность данной системы А ном: А ном = (автомобилей в час).

Однако в подавляющем большинстве случаев система массового обслуживания является многоканальной, то есть параллельно может обслуживаться несколько заявок. Процесс СМО, описываемый данной моделью, характеризуется интенсивностью входного потока л, при этом параллельно может обслуживаться не более n клиентов. Средняя продолжительность обслуживания одной заявки равняется 1/м. «Режим функционирования обслуживающего канала не влияет на режим функционирования других обслуживающих каналов системы, причем длительность процедуры обслуживания каждым из каналов является случайной величиной, подчиненной экспоненциальному закону распределения. Конечная цель использования параллельно включенных обслуживающих каналов - повышение скорости обслуживания заявок за счет обслуживания одновременно n клиентов.» Решение такой системы имеет вид:

Формулы для вычисления вероятностей называются формулами Эрланга. Определим вероятностные характеристики функционирования многоканальной СМО с отказами в стационарном режиме. Вероятность отказа P отк равна:

P отк =P n =*P 0 . (7)

Заявка получает отказ, если приходит в момент, когда все каналов заняты. Величина Р отк характеризует полноту обслуживания входящего потока; вероятность того, что заявка будет принята к обслуживанию (она же - относительная пропускная способность системы) дополняет Р отк до единицы:

Абсолютная пропускная способность

Среднее число каналов, занятых обслуживанием () следующее:

Величина характеризует степень загрузки системы массового обслуживания. Пример. Пусть n-канальная СМО представляет собой вычислительный центр с тремя (n=3) взаимозаменяемыми компьютерами для решения поступающих задач. Поток задач, поступающих на ВЦ, имеет интенсивность л=1 задача в час. Средняя продолжительность обслуживания t об =1,8 час.

Требуется вычислить значения:

  • - вероятности числа занятых каналов ВЦ;
  • - вероятности отказа в обслуживании заявки;
  • - относительной пропускной способности ВЦ;
  • - абсолютной пропускной способности ВЦ;
  • - среднего числа занятых ПЭВМ на ВЦ.

Определим параметр м потока обслуживаний:

Приведенная интенсивность потока заявок:

Предельные вероятности состояний найдем по формулам Эрланга:

Вероятность отказа в обслуживании заявки:

Относительная пропускная способность ВЦ:

Абсолютная пропускная способность ВЦ:

Среднее число занятых каналов - ПЭВМ:

Таким образом, при установившемся режиме работы СМО в среднем будет занято 1,5 компьютера из трех - остальные полтора будут простаивать. Пропускную способность ВЦ при данных л и м можно увеличить только за счет увеличения числа ПЭВМ.