Общий вид линейного уравнения парной регрессии. Линейная парная регрессия

Парная линейная регрессия

Предварительные расчеты :

;
;
;
;
;

;
.

Построение таблицы вида

Среднее значение

Формулы для расчетов параметров:

,
.

Линейн

Оценка тесноты связи :

а) коэффициент корреляции
, или
;

При компьютерном подборе использовать встроенную функцию Коррел

б) коэффициент эластичности
;

в) коэффициент детерминации .

Оценка значимости уравнения регрессии в целом:

Предварительные расчеты с построением таблицы вида

а) F -критерий Фишера при числе степеней свободы
и
и уровне значимости 0,05 смотреть в таблице. Расчетное значение критерия:

.

Если расчетное значение F- критерия больше табличного, нулевая гипотеза об отсутствии значимой связи признаков x и y отклоняется, и делается вывод о существенности этой связи.

б) Средняя ошибка аппроксимации

.

Оценка значимости параметров регрессии:

а) Стандартная ошибка параметра a рассчитывается по формуле

, где
.

б) Стандартная ошибка коэффициента регрессии b рассчитывается по формуле

.

в) Стандартная ошибка коэффициента корреляции рассчитывается по формуле

.

t -критерий Стъюдента при числе степеней свободы
и уровне значимости 0,05 смотреть в таблице.

Фактические значения t -статистики:

,
,
.

Если фактическое значение по абсолютной величине превышает табличное, гипотезу о несущественности параметра регрессии можно отклонить, параметр признается значимым.

Связь между F -критерием Фишера и t -критерием Стъюдента выражается равенством

.

Расчет доверительных интервалов для параметров регрессии:

Доверительный интервал для параметра a определяется как
;

доверительный интервал для коэффициента регрессии определяется как
.

При компьютерном анализе использовать в Excel Сервис/Анализ данных/Регрессия.

Интервальный прогноз на основе линейного уравнения регрессии:

Пусть – прогнозное значение факторного признака;
– точечный прогноз результативного признака. Тогда

а) средняя ошибка прогноза :

;

б) доверительный интервал прогноза

с помощью табличного редактора MS Excel

Активизация надстройки Пакет анализа

Для активизации надстройки Пакет анализа необходимо выполнить следующие действия:

1. Выбрать команду Сервис/Надстройки.

2. В появившемся диалоговом окне установить флажок Пакет анализа.

В соответствии с вариантом задания, используя статистический материал, необходимо :

2. Оценить тесноту связи зависимой переменной (результативного фактора) с объясняющей переменной с помощью показателей корреляции и детерминации.

3. Оценить с помощью F -критерия Фишера статистическую надежность моделирования.

4. Оценить статистическую значимость параметров регрессии и корреляции.

5. Определить среднюю ошибку аппроксимации.

6. Используя коэффициент эластичности, выполнить количественную оценку влияния объясняющего фактора на результат.

7. Выполнить точечный и интервальный прогноз результативного признака при увеличении объясняющего признака на 25% от его среднего значения (достоверность прогноза 95%).

8. На одной диаграмме изобразить поле корреляции исходных данных и прямую регрессии.

Пример

Имеются данные о годовой цене программы «Мастер делового администрирования» и числе слушателей в образовательном учреждении.

I. Вводим исходные данные в документ Excel .

II. Вызываем надстройку Анализ данных в меню Сервис.

III. Выбираем инструмент Регрессия .

IV. Заполняем соответствующие позиции окна Регрессия.

V. После нажатия Ок получаем протокол решения задачи.

VI. Анализируем полученный протокол.

1) Коэффициент регрессии ;

Свободный член уравнения регрессии
.

Примечание . При необходимости результаты округляются с нужной точностью. Требование по округлению можно провести изначально, задав количество знаков после запятой в меню Формат ячейки.

Уравнение парной линейной регрессии имеет вид: .

2) Коэффициент корреляции
, что свидетельствует о тесной связи признаковy и x . Коэффициент детерминации
. Полученное уравнение регрессии объясняет 53% вариации признакаy , остальные 47% изменчивости этого признака обусловлены влиянием неучтенных в модели факторов.

3) Оценим статистическую значимость (надежность моделирования) уравнения в целом. Расчетное значение критерия Фишера указано в протоколе,
. Критическое значение этого критерия можно найти с помощь статистической функцииF РАСПОБР табличного редактора Е xcel .

Входными параметрами этой функции являются:

– уровень значимости (вероятность), имеется в виду вероятность ошибки отвергнуть верную гипотезу о статистической незначимости построенного уравнения регрессии. Как правило, выбирают уровень значимости, равный 0,05 или 0,01;

– число степеней свободы 1 – совпадает с количеством параметров при переменной в уравнении регрессии, для парной линейной регрессии
это число равно единице;

– число степеней свободы 2 равно для парной линейной регрессии
, гдеn – объем исходных статистических данных.

Выполняем действия Вставка/Функция , выбираем нужное.

Поскольку расчетное значение F-критерия больше табличного, равного 4,84, нулевая гипотеза об отсутствии значимой связи признаков x и y отклоняется и делается вывод о существенности этой связи.

4) Оценим статистическую значимость параметров a и b в уравнении регрессии с помощью t - критерия Стъюдента.

Расчетные значения статистики Стъюдента
,
. Соответствующее табличное значение можно определить через статистическую функциюСТЪЮДРАСПОБР , число степеней свободы равно
.

Поскольку фактические значения по абсолютной величине превышают табличное, равное 2,2, гипотезу о несущественности параметров регрессии можно отклонить.

5) Определим среднюю ошибку аппроксимации,
. Понадобится выполнение вспомогательных расчетов, оформленных в виде таблицы.

Таким образом, средняя ошибка аппроксимации по данному уравнению регрессии составляет 12,66%, модель парной линейной регрессии можно признать удовлетворительной и пригодной для прогнозирования.

6) Выполним количественную оценку влияния фактора x на фактор y , используя коэффициент эластичности. Для парной линейной регрессии его можно найти по формуле
. Имеем

.

Следовательно, при увеличении количества слушателей на 1% годовая цена уменьшится на 0,4%.

7) Выполним расчет прогноза y при увеличении фактора x на 25% от среднего.

Прогнозное значение .

Точечный прогноз признака y : .

Средняя ошибка прогноза равна ,

где
– остаточная дисперсия,
–дисперсия фактораx .

Численное значение суммы
в протоколе обозначено как остаточноеSS.

Тогда
,
.

Самый быстрый способ получения вспомогательных характеристик – среднего значения фактораx и - дисперсии, воспользоваться инструментомОписательная статистика в пакете Анализ данных.

Протокол вывода результатов имеет вид

Доверительный интервал прогноза: , где– соответствующее табличное значение критерия Стъюдента (найдено ранее по функцииСТЪЮДРАСПОБР ,
).

Следовательно,

т.е. можно быть уверенным на 95%, что цена годового курса при 35 слушателях будет варьироваться в указанных пределах (при точечном прогнозе цены в 3,65825 тыс. долл.).

8) Для построения диаграммы выполним следующие действия:

Шаг 1 Вставка/ Диаграмма/График

Шаг 3 Ряд/Добавить/Значения/ Выделить столбец регрессионных значений фактора – .

Шаг 4 Подписи оси X / Выделить столбец значений x .

Шаг 4 Каждому из рядов присвоить имя, подписать оси координат и название диаграммы.

Примечание.

Для построения диаграммы значения фактора x должны быть отсортированы по возрастанию с сохранением соответствующего значения y . Это может быть сделано так Данные/Сортировка/ Выделить столбец, в котором необходимо сделать сортировку. Например,

Задания для самостоятельной работы

Вариант 1

x

y

Вариант 2

x – энерговооруженность на 10-ти предприятиях, кВт;

y – производительность труда, тыс. руб.

Вариант 3

x – качество земли, баллы;

y – урожайность, ц/га.

Вариант 4

x – качество земли, баллы;

y – урожайность, ц/га.

Вариант 5

x – товарооборот;

y –издержки обращения по отношению к товарообороту.

Вариант 6

x – электровооруженность на одного рабочего;

y – выпуск готовой продукции на одного рабочего.

Вариант 7

x –уровень доходов семьи;

y – расходы на продукты питания (в расчете на 100 руб. доходов).

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Парной регрессией называется уравнение связи двух переменных

у и х Вида y = f (x ),

где у - зависимая переменная (результативный признак);

х - независимая, объясняющая переменная (признак-фактор).

Различают линейные и нелинейные регрессии.

Метод наименьших квадратов МНК

Для оценки параметров регрессий, линейных по этим параметрам, используется метод наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака у от теоретических значений ŷx при тех же значениях фактора x минимальна, т. е.

5. Оценка статистической значимости показателей корреляции, параметров уравнения парной линейной регрессии, уравнения регрессии в целом.

6. Оценка степени тесноты связи между количественными переменными. Коэффициент ковариации. Показатели корреляции: линейный коэффициент корреляции, индекс корреляции (= теоретическое корреляционное отношение).

Коэффициент ковариации

Мч(у) - Т.е. получим корреляционную зависимость.

Наличие корреляционной зависимости не может ответить на вопрос о причине связи. Корреляция устанавливает лишь меру этой связи, т.е. меру согласованного варьирования.

Меру взаимосвязи му 2 мя переменными можно найти с помощью ковариации.

, ,

Величина показателя ковариации зависит от единиц в γ измеряется переменная. Поэтому для оценки степени согласованного варьирования используют коэффициент корреляции - безразмерную характеристику имеющую определенный пределы варьирования..

7. Коэффициент детерминации. Стандартная ошибка уравнения регрессии.

Коэффициент детерминации (rxy2) - характеризует долю дисперсии результативного признака y, объясняемую дисперсией, в общей дисперсии результативного признака. Чем ближе rxy2 к 1, тем качественнее регрессионная модель, то есть исходная модель хорошо аппроксимирует исходные данные.

8. Оценка стат значимости показателей корр-ии, параметров уравнения парной линейной регрессии, уравнения регрессии в целом: t -критерий Стьюдента, F -критерий Фишера.

9. Нелинейные модели регрессии и их линеаризация.

Нелинейные регрессии делятся на два класса: регрессии, нелинейные относительно исключенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, и регрессии, нелинейные по оцениваемым параметрам.

Примеры регрессий, нелинейных по объясняющим переменным , но линейных по оцениваемым параметрам:


Нелинейные модели регрессии и их линеаризация

При нелинейной зависимости признаков, приводимой к линейному виду, параметры множественной регрессии также определяются по МНК с той лишь разницей, что он используется не к исходной информации, а к преобразованным данным. Так, рассматривая степенную функцию

,

мы преобразовываем ее в линейный вид:

где переменные выражены в логарифмах.

Далее обработка МНК та же: строится система нормальных уравнений и определяются неизвестные параметры. Потенцируя значение , находим параметр a и соответственно общий вид уравнения степенной функции.

Вообще говоря, нелинейная регрессия по включенным переменным не таит каких-либо сложностей в оценке ее параметров. Эта оценка определяется, как и в линейной регрессии, МНК. Так, в двухфакторном уравнении нелинейной регрессии

может быть проведена линеаризация, введением в него новых переменных . В результате получается четырехфактороное уравнение линейной регрессии

10.Мультиколлинеарность. Методы устранения мультиколлинеарности.

Наибольшие трудности в использовании аппарата множественной регрессии возникают при наличии мультиколлинеарности факторов, когда более чем два фактора связаны между собой линейной зависимостью . Наличие мультиколлинеарности факторов может означать, что некоторые факторы будут всегда действовать в унисон. В результате вариация в исходных данных перестает быть полностью независимой, и нельзя оценить воздействие каждого фактора в отдельности.

Чем сильнее мультиколлинеарность факторов, тем менее надежна оценка распределения суммы объясненной вариации по отдельным факторам с помощью метода наименьших квадратов (МНК).

Включение в модель мультиколлинеарных факторов нежелательно по следующим причинам:

ü затрудняется интерпретация параметров множественной регрессии; параметры линейной регрессии теряют экономический смысл;

ü оценки параметров ненадежны, обнаруживают большие стандартные ошибки и меняются с изменением объема наблюдений, что делает модель непригодной для анализа и прогнозирования

Методы устранения мультиколлинеарности

- исключение переменной (ых) из модели;

Однако нужна определенная осмотрительность при применении данного метода. В этой ситуации возможны ошибки спецификации.

- получение дополнительных данных или построение новой выборки;

Иногда для уменьшения мультиколлинеарности достаточно величить объем выборки. Например, при использовании ежегодных данных можно перейти к поквартальным данным. Увеличение количества данных уменьшает дисперсии коэффициентов регрессии и тем самым увеличивает их статистическую значимость. Однако получение новой выборки или расширение старой не всегда возможно или связано с серъезными издержками. Кроме того, такой подход может увеличить

автокорреляцию.

- изменение спецификации модели;

В ряде случаев проблема мультиколлинеарности может быть решена путем изменения спецификации модели: либо меняется форма модели, либо добавляются новые объясняющие переменные, не учтенные в модели.

- использование предварительной информации о некоторых параметрах;

11.Классическая линейная модель множественной регр-ии (КЛММР). Определение параметров ур-я множественной регр-ии методом наим квадратов.

1. Основные определения и формулы

Парная регрессия - регрессия (связь) между двумя переменными и т.е. модель вида:

где - зависимая переменная (результативный признак);

- независимая объясняющая переменная (признак-фактор);

Возмущение или стохастическая переменная, включающая влияние неучтенных в модели факторов.

Практически в каждом отдельном случае величина складывается из двух слагаемых:

где - фактическое значение результативного признака;

Теоретическое значение результативного признака, найденное исходя из уравнения регрессии. Знак «^» означает, что между переменными и нет строгой функциональной зависимости.

Различают линейные и нелинейные регрессии.

Линейная регрессия описывается уравнением прямой

Нелинейные регрессии делятся на два класса:

1) регрессии, нелинейные по объясняющим переменным, но линейные по оцениваемым параметрам , например:

Полиномы разных степеней

Равносторонняя гипербола

2) регрессии, нелинейные по оцениваемым параметрам , например:

Степенная

Показательная

Экспоненциальная

Для построения парной линейной регрессии вычисляют вспомогательные величины ( - число наблюдений).

Выборочные средние : и

Выборочная ковариация между и

или

Ковариация - это числовая характеристика совместного распределения двух случайных величин.

Выборочная дисперсия для

или

Выборочная дисперсия для

или

Выборочная дисперсия характеризует степень разброса значений случайной величины вокруг среднего значения (вариабельность, изменчивость).

Тесноту связи изучаемых явлений оценивает выборочный коэффициент корреляции между и

Коэффициент корреляции изменяется в пределах от -1 до +1. Чем ближе от по модулю к 1, тем ближе статистическая зависимость между и к линейной функциональной.

Если =0, то линейная связь между и отсутствует; <0,3 - связь слабая; 0,3<0,7 - связь умеренная; 0,7<0,9 - связь сильная; 0,9<0,99 - связь весьма сильная.

Положительное значение коэффициента свидетельствует о том, то связь между признаками прямая (с ростом увеличивается значение ), отрицательное значение - связь обратная (с ростом значение уменьшается).

Построение линейной регрессии сводится к оценке ее параметров и Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака от теоретических минимальна, т.е.

Для линейной регрессии параметры и находятся из системы нормальных уравнений:

Решая систему, находим в на

и параметр

Коэффициент при факторной переменной показывает, насколько изменится в среднем величина при изменении фактора на единицу измерения.

Параметр когда Если не может быть равен 0, то не имеет экономического смысла. Интерпретировать можно только знак при если то относительное изменение результата происходит медленнее, чем изменение фактора, т.е. вариация результата меньше вариации фактора и наоборот.

Для оценки качества построенной модели регрессии можно использовать коэффициент детерминации либо среднюю ошибку аппроксимации .

К оэффициент детерминации

Или

показывает долю дисперсии, объясняемую регрессией, в общей дисперсии результативного признака Соответственно, величина характеризует долю дисперсии показателя вызванную влиянием неучтенных в модели факторов и прочих причин.

Чем ближе к 1, тем качественнее регрессионная модель, т.е. построенная модель хорошо аппроксимирует исходные данные.

Средняя ошибка аппроксимации - это среднее относительное отклонение теоретических значений от фактических т.е.

Построенное уравнение регрессии считается удовлетворительным, если значениене превышает 10-12%.

Для линейной регрессии средний коэффициент эластичности находится по формуле:

Средний коэффициент эластичности показывает на сколько процентов в среднем по совокупности изменится результат от своей величины при изменении фактора на 1% от своего значения.

Оценка з начимост и уравнения регрессии в целом дается с помощью -критерия Фишера, который заключается в проверке гипотезы о статистической незначимости уравнения регрессии. Для этого выполняется сравнениефактич е ского и критического (табличного) значений - критерия Фишера.

определяется из соотношения значений факторной и остаточной дисперсий, рассчитанных на одну степень свободы, т.е.

- максимально возможное значение критерия под влиянием случайных факторов при степенях свободы =1, =-2 и уровне значимости находится из таблицы -критерия Фишера (таблица 1 приложения).

Уровень значимости - это вероятность отвергнуть правильную гипотезу при условии, что она верна.

Если то гипотеза об отсутствии связи изучаемого показателя с фактором отклоняется и делается вывод о существенности этой связи с уровнем значимости (т.е. уравнение регрессии значимо).

Если то гипотеза принимается и признается статистическая незначимость и ненадежность уравнения регрессии.

Для линейной регрессии значимость коэффициентов регрессии оценивают с помощью - критерия Стьюдента, согласно которому выдвигается гипотеза о случайной природе показателей, т.е. о незначимом их отличии от нуля. Далее рассчитываются фактические значения критерия для каждого из оцениваемых коэффициентов регрессии, т.е.

где и - стандартные ошибки параметров линейной регрессии определяются по формулам:

- максимально возможное значение критерия Стьюдента под влиянием случайных факторов при данной степени свободы =-2 и уровне значимости находится из таблицы критерия Стьюдента (таблица 2 приложения).

Если то гипотеза о несущественности коэффициента регрессии отклоняется с уровнем значимости т.е. коэффициент ( или )не случайно отличается от нуля и сформировался под влиянием систематически действующего фактора

Если то гипотеза не отклоняется и признается случайная природа формирования параметра.

Значимость линейного коэффициента корреляции также проверяется с помощью - критерия Стьюдента, т.е.

Гипотеза о несущественности коэффициента корреляции отклоняется с уровнем значимости если

Замечание. Для линейной парной регрессии проверки гипотез о значимости коэффициента и коэффициента корреляции равносильны проверке гипотезы о существенности уравнения регрессии в целом, т.е.

Для расчета доверительного интервала определяют предельную ошибку для каждого показателя, т.е.

Доверительные интервалы для коэффициентов линейной регрессии:

Если в границы доверительного интервала попадает ноль, т.е. нижняя граница отрицательна, а верхняя положительна, то оцениваемый параметр принимается нулевым, т.к. он не может одновременно принимать и положительное, и отрицательное значения.

Прогнозное значение определяется путем подстановки в уравнение регрессии соответствующего прогнозного значения Затем вычисляется средняя стандартная ошибка прогноза

где

и строится доверительный интервал прогноза

Интервал может быть достаточно широк за счет малого объема наблюдений.

Регрессии, нелинейные по включенным переменным , приводятся к линейному виду простой заменой переменных, а дальнейшая оценка параметров производится с помощью МНК.

Г ипербол ическая регрессия:

Р егрессии , нелинейны е по оцениваемым параметрам , делятся на два типа: внутренне нелинейные и т.п. (к линейному виду не приводятся) и внутренне линейные (приводятся к линейному виду с помощью соответствующих преобразований), например:

Экспоненциальная регрессия:

Линеаризующее преобразование:

Степенная регрессия:

Линеаризующее преобразование:

Показатель ная регрессия:

Линеаризующее преобразование:

Логарифмическ ая регрессия:

Линеаризующее преобразование:

2. Решение типовых задач

Пример 9 .1 . По 15 сельскохозяйственным предприятиям (табл. 9.1) известны: - количество техники на единицу посевной площади (ед/га) и - объем выращенной продукции (тыс. ден. ед.). Необходимо:

1) определить зависимость от

2) построить корреляционные поля и график уравнения линейной регрессии на

3) сделать вывод о качестве модели и рассчитать прогнозное значение при прогнозном значении составляющем 112% от среднего уровня.

Таблица 9.1

Решение:

1) В Excel составим вспомогательную таблицу 9.2.

Таблица 9.2

Рис. 9 .1. Таблица для расчета промежуточных значений

Вычислим количество измерений Для этого в ячейку В19 поместим =СЧЁТ(A2:A 16 ) .

С помощью функции ∑ (Автосумма) на панели инструментов Стандар т ная найдем сумму всех (ячейка В17 ) и (ячейка С17 ).

Рис. 9.2. Расчет суммы значений и средних

Для вычисления средних значений используем встроенную функцию MS Excel СРЗНАЧ(), в скобках указывается диапазон значений для определения средней. Таким образом, средний объем выращенной продукции по 15 хозяйствамсоставляет 210,833 тыс.ден. ед., а средние количество техники - 6,248ед/га.

Для заполнения столбцов D , E , F введем формулувычисления произведения: в ячейку D 2 поместим =B2*C2 , затем на клавиатуре нажмем ENTER. Щелкнем левой кнопкой мыши по ячейке D 2 и, ухватив за правый нижний угол этой ячейки (черный плюсик), потянем вниз до ячейки D 16 . Произойдет автоматическое заполнение диапазона D 3 - D 16 .

Для вычисления выборочн ой ковариации между и используем формулу т.е. в ячейку B 21 поместим =D 18- B 18* C 18 и получим 418,055 (рис. 9.3).

Рис. 9 .3. Вычисление

Выборочн ую дисперси ю для найдем по формуле для этого в ячейку B 22 поместим =E18-B18 ^2 (^- знак указывающий возведение в степень) и получим 11,337. Аналогично определяем =16745,05556 (рис. 9.4)

Рис. 9 .4. Вычисление Var (x ) и Var (y )

Далее используя стандартную функцию MS Excel «КОРРЕЛ» вычисляем значение линейного коэффициента корреляции для нашей задачи функция будет иметь вид «=КОРРЕЛ(B2:B16;C2:C16)», а значение rxy=0,96. Полученное значение коэффициента корреляции указывает на прямую и сильную связь наличия техники и объемов выращенной продукции.

Находим в ыборочный коэффициент линейной регрессии =36,87; параметр =-17,78. Значит, уравнение парной линейной регрессии имеет вид =-17,78+36,87

Коэффициент показывает, что при увеличении количества техники на 1 ед/га объем выращенной продукции в среднем увеличится на 36,875 тыс. ден. ед. (рис. 9.5)

Рис. 9 .5. Расчет параметров уравнения регрессии.

Таким образом, уравнение регрессии будет иметь вид: .

Подставляем в полученное уравнение фактические значения x (количество техники) находим теоретические значения объемов выращенной продукции (рис. 9.6).

Рис. 9 .6. Расчет теоретических значений объемов выращенной продукции

Используя Мастер диаграмм строим корреляционные поля (выделяя столбцы со значениями и ) и уравнение линейной регрессии (выделяя столбцы со значениями и ). Выбираем тип диаграммы - Т очечная В полученной диаграмме заполняем нужные параметры (название, подписи к осям, легенду и т.п.). В результате получим график представленный на рис. 9.7.

Рис. 9 .7. График зависимости объема выращенной продукции от количества техники

Для оценки качества построенной модели регрессии вычислим:

. к оэффициент детерминации =0,92, который показывает, что изменение затрат на выпуск продукции на 92% объясняется изменением объема произведенной продукции а 8% приходится на долю неучтенных в модели факторов, что указывает на качественность построенной регрессионной модели;

. с редн юю ошибк у аппроксимации . Для этого в столбце H вычислим разность фактического и теоретического значений а в столбце I - выражение . Обращаем Ваше внимание, что для вычисления значения по модулю используется стандартная функция MS Excel «ABS». При умножении среднего значения (ячейка I 18 ) на 100% получим 18,2%. Следовательно, в среднем теоретические значенияотклоняются от фактических на 18,2%(рис. 1.8).

С помощью -критерия Фишераоценим з начимост ь уравнения регре с сии в целом : 150,74.

На уровне значимости 0,05 =4,67 определяем c помощью встроенной статистической функции FРАСПОБР (рис. 1.9). При этом необходимо помнить, что «Степени_свободы1» это знаменатель , а «Степени_свободы2» - числитель , где - число параметров в уравнении регрессии (у нас 2), n - число исходных пар значений (у нас 15).

Так как то уравнение регрессии значимо при =0,05.

Рис. 9 .8. Определение коэффициента детерминации и средней ошибки апроксимации

Рис. 9 . 9 . Диалоговое окно функции FРАСПОБР

Далее определяем с редний коэффициент эластичности по формуле. Найденное показывает, что с ростом объема произведенной продукции на 1% затраты на выпуск этой продукции в среднем по совокупности возрастут на 1,093%.

Рассчитаем прогнозное значение путем подстановки в уравнение регрессии =-19,559+36,8746 прогнозного значения фактора =1,12=6,248*1,12=6,9978. Получим =238,48. Следовательно, при количестве техники в количестве 6,9978ед/гаобъем выпущенной продукции составит 238,48 тыс. ден. ед.

Найдем остаточную дисперсию, для этого вычислим сумму квадратов разности фактического и теоретического значений. =39,166 поместив следующую формулу =КОРЕНЬ(J17/(B19-2)) в ячейку H 2 1 (рис. 9.10).

Рис. 9 .10. Определение остаточной дисперсии

С редн яя стандартн ая ошибка прогноза :

На уровне значимости =0,05 с помощью встроенной статистической функции СТЬЮДРАСПОБР определим =2,1604 и вычислим предельную ошибку прогноза, которая в 95% случаев не будет превышать .

Д оверительный интервал прогноза :

Или .

Выполненный прогноз затрат на выпуск продукции оказался надежным (1-0,05=0,95), но неточным, так как диапазон верхней и нижней границ доверительного интервала составляет раза. Это произошло за счет малого объема наблюдений.

Необходимо отменить, что в MS Excel встроены статистические функции позволяющие значительно снизить количество промежуточных вычислений, например (рис. 9.11.):

Для вычисления в ыборочны х средни х используем функцию СРЗНАЧ(число1:число N ) из категории Статистические .

Выборочная ковариация между и находится с помощью функции КОВАР(массив X ;массив Y ) из категории Статистические .

Выборочн ые дисперси и определяются статистической функцией ДИСПР(число1:число N ) .

Рис. 9 .11. Вычисление п оказателей встроенными функциями MS Excel

П араметр ы линейной регрессии в Excel можно определить несколькими способами.

1 способ) С помощью встроенной функции ЛИНЕЙН . Порядок действий следующий:

1. Выделить область пустых ячеек 5x2 (5 строк, 2 столбца) для вывода результатов регрессионной статистики или область 1x2 - для получения только коэффициентов регрессии.

2. С помощью Мастера функций среди Статистических выбрать функцию ЛИНЕЙН и заполнить ее аргументы (рис. 9.12):

Рис. 9 . 12 . Диалоговое окно ввода аргументов функции ЛИНЕЙН

Известные_значения_ y

Известные_значения_ x

Конст - логическое значение (1 или 0), которое указывает на наличие или отсутствие свободного члена в уравнении; ставим 1;

Статистика - логическое значение (1 или 0), которое указывает, выводить дополнительную информацию по регрессионному анализу или нет; ставим 1.

3. В левой верхней ячейке выделенной области появится первое число таблицы. Для раскрытия всей таблицы нужно нажать на клавишу < F 2> , а затем - на комбинацию клавиш < CTRL > + < SHIFT > + < ENTER > .

Дополнительная регрессионная статистика будет выведена в виде (табл. 9.3):

Таблица 9.3

Значение коэффициента

Значение коэффициента

Среднеквадратическое
отклонение

Среднеквадратическое
отклонение

Коэффициент
детерминации

Среднеквадратическое
отклонение

Статистика

Число степеней свободы

Регрессионная сумма квадратов

Остаточная сумма квадратов

В результате применения функции ЛИНЕЙН получим:

( 2 способ) С помощью инструмента анализа данных Регрессия можно получить результаты регрессионной статистики, дисперсионного анализа, доверительные интервалы, остатки, графики подбора линий регрессии, графики остатков и нормальной вероятности. Порядок действий следующий:

1. Необходимо проверить доступ к Пакету анализа . Для этого в главном меню (через кнопку Microsoft Office получить доступ к параметрам MS Excel) в диалоговом окне «Параметры MS Excel » выбрать команду «Надстройки» и справа выбрать надстройку Пакета анализ а далее нажать кнопку «Перейти» (рис. 9.13). В открывшемся диалоговом окне поставить галочку напротив «Пакет анализа» и нажать «ОК» (рис. 9.14).

На вкладке «Данные» в группе «Анализ» появится доступ к установленной надстройке. (рис. 9.15).

Рис. 9 .13. Включение надстроек в MS Excel

Рис. 9 .14. Диалоговое окно «Надстройки»

Рис. 9 .15. Надстройка «Анализ данных» на ленте MS Excel 2007 .

2. Выбрать на «Данные» в группе «Анализ» выбираем команду Анализ да н ных в открывшемся диалоговом окне выбрать инструмент анализа «Регрессия» и нажать «ОК» (рис. 9.16):

Рис. 9 .16. Диалоговое окно «Анализ данных»

В появившемся диалоговом окне (рис. 9.17) заполнить поля:

Входной интервал Y - диапазон, содержащий данные результативного признака Y;

Входной интервал X - диапазон, содержащий данные объясняющего признака X;

Метки - флажок, который указывает, содержит ли первая строка названия столбцов или нет;

Конст анта-ноль - флажок, указывающий на наличие или отсутствие свободного члена в уравнении;

Выходной интервал - достаточно указать левую верхнюю ячейку будущего диапазона;

Новый рабочий лист - можно задать произвольное имя нового листа, на который будут выведены результаты.

Рис. 9 .17. Диалоговое окно «Регрессия»

Для получения информации об остатках, графиков остатков, подбора и нормальной вероятности нужно установить соответствующие флажки в диалоговом окне.

Рис. 9 . 18 . Результаты применения инструмента Регрессия

В MS Excel линия тренда может быть добавлена в диаграмму с областями гистограммы или в график. Для этого:

1. Необходимо выделить область построения диаграммы и в ленте выбрать «Макет» и в группе анализ выбрать команду «Линия тренда» (рис. 9.19.). В выпадающем пункте меню выбрать «Дополнительные параметры линии тренда».

Рис. 1.19. Лента

2. В появившемся диалоговом окне выбрать фактические значения, затем откроется диалоговое окно «Формат линии тренда» (рис. 9.20.) в котором выбирается вид линии тренда и устанавливаются соответствующие параметры.

Рис. 9 . 20 . Диалоговое окно «Формат линии тренда»

Для полиноминального тренда необходимо задать степень аппроксимирующего полинома, для линейной фильтрации - количество точек усреднения.

Выбираем Линейная для построения уравнения линейной регрессии.

В качестве дополнительной информации можно показать уравнение на ди а грамме и поместить на диаграмму величину (рис.9.21).

Рис. 9 . 21 . Линейный тренд

Нелинейные модели регрессии иллюстрируются при вычислении параметров уравнения с применением выбранной в Excel статистической функции Л ГРФПРИБЛ . Порядок вычислений аналогичен применению функции ЛИНЕЙН.

Парная регрессия характеризует связь между двумя признаками: результативным и факторным. Важным и нетривиальным этапом построения регрессионной модели является выбор уравнения регрессии. Этот выбор основывается на теоретических данных об изучаемом явлении и предварительном анализе имеющихся статистических данных.

Уравнение парной линейной регрессии имеет вид:

где - теоретические значения результативного признака, полученные по уравнению регрессии; - коэффициенты (параметры) уравнения регрессии.

Модель регрессии строится на основании статистических данных, причем могут использоваться как индивидуальные значения признака, так и сгруппированные данные. Для выявления связи между признаками по достаточно большому числу наблюдений статистические данные предварительно группируют по обоим признакам и строят корреляционную таблицу. При помощи корреляционной таблицы отображается только парная корреляционная связь, т.е. связь результативного признака с одним фактором. Оценка параметров уравнения регрессии осуществляется методом наименьших квадратов, в основе которого лежит предположение о независимости наблюдений исследуемой совокупности и требование минимальности суммы квадратов отклонений эмпирических данных от выровненных значений результативного фактора :

.

Для линейного уравнения регрессии имеем:

Для нахождения минимума данной функции приравняем к нулю ее частные производные и получим систему двух линейных уравнений, которая называется системой нормальных уравнений:

где - объем исследуемой совокупности (число единиц наблюдения).

Решение системы нормальных уравнений позволяет найти параметры уравнения регрессии .

Коэффициент парной линейной регрессии является средним значением в точке , поэтому его экономическая интерпретация затруднена. Смысл этого коэффициента можно трактовать как усредненное влияние на результативный признак неучтенных (не выделенных для исследования) факторов. Коэффициент показывает, на сколько в среднем изменяется значение результативного признака при изменении факторного признака на единицу.

После получения уравнения регрессии необходимо проверить его адекватность, то есть соответствие фактическим статистическим данным. С этой целью производится проверка значимости коэффициентов регрессии: выясняется, насколько эти показатели характерны для всей генеральной совокупности, не являются ли они результатом случайного стечения обстоятельств.

Для проверки значимости коэффициентов простой линейной регрессии при объеме совокупности меньше 30 единиц используется критерий Стьюдента. Сопоставляя значение параметра с его средней ошибкой, определяют величину критерия:


где - средняя ошибка параметра .

Средняя ошибка параметров и рассчитываются по следующим формулам:

; ,

– объем выборки;

Среднеквадратическое отклонение результативного признака от выровненных значений ;

Среднеквадратическое отклонение факторного признака от общей средней :

или

Тогда расчетные (фактические) значения критерия соответственно равны:

- для параметра ;

- для параметра .

Вычисленные значения критерия сравниваются с критическими значениями , которые определяют по таблице Стьюдента с учетом принятого уровня значимости и числа степеней свободы , где - объем выборки, -1 ( - число факторных признаков). В социально-экономических исследованиях уровень значимости обычно принимают 0.05 или 0.01. Параметр признается значимым, если (отклоняется гипотеза о том, что параметр лишь в силу случайных обстоятельств оказался равным полученной величине, а в действительности равен нулю).

Адекватность регрессионной модели может быть оценена при помощи -критерия Фишера. Расчетное значение критерия определяется по формуле ,

где - число параметров модели;

Объем выборки.

По таблице определяется критическое значение -критерия Фишера для принятого уровня значимости и числа степеней свободы , . Если , то модель регрессии признается адекватной по этому критерию (отвергается гипотеза о несоответствии заложенных в уравнении и реально существующих связей).

Вторая задача корреляционно-регрессионного анализа – измерение тесноты зависимости результативного и факторного признака.

Для всех видов связи задача измерения тесноты зависимости может быть решена с помощью исчисления теоретического корреляционного отношения:

,

где - дисперсия в ряду выровненных значений результативного признака , обусловленная факторным признаком ;

- дисперсия в ряду фактических значений . Это общая дисперсия, которая слагается из дисперсии, обусловленной фактором (т.е. факторной дисперсии), и дисперсии остатка (отклонение эмпирических значений признака от выровненных теоретических).

На основании правила сложения дисперсий теоретическое корреляционное отношение может быть выражено через остаточную дисперсию :

.

Так как дисперсия отражает вариацию в ряду только за счет вариации фактора , а дисперсия отражает вариацию за счет всех факторов, то их отношение, именуемое теоретическим коэффициентом детерминации , показывает, какой удельный вес в общей дисперсии ряда занимает дисперсия, вызываемая вариацией фактора . Квадратный корень из отношения этих дисперсий дает теоретическое корреляционное отношение. При нелинейных связях теоретическое корреляционное отношение называют индексом корреляции и обозначают .

Если , то это означает, что роль других факторов в вариации отсутствует, остаточная дисперсия равна нулю и отношение означает полную зависимость вариации от . Если , то это означает, что вариация никак не влияет на вариацию , и в этом случае . Следовательно, корреляционное отношение принимает значения от 0 до 1. Чем ближе корреляционное отношение к 1, тем теснее связь между признаками.

Кроме того, при линейной форме уравнения связи применяется другой показатель тесноты связи – линейный коэффициент корреляции:

.

Линейный коэффициент корреляции принимает значения от –1 до 1. Отрицательные значения указывают на обратную зависимость, положительные – на прямую. Чем ближе модуль коэффициента корреляции к единице, тем теснее связь между признаками.

Приняты следующие граничные оценки линейного коэффициента корреляции:

Связи нет;

Связь слабая;

Связь посредственная;

Связь сильная;

Связь очень сильная.

Квадрат линейного коэффициента корреляции называют линейным коэффициентом детерминации.

Факт совпадения или несовпадения теоретического корреляционного отношения и линейного коэффициента корреляции используется для оценки формы зависимости. Их значения совпадают только при наличии линейной связи. Несовпадение этих величин свидетельствует о нелинейности связи между признаками. Принято считать, что если , то гипотезу о линейности связи можно считать подтвержденной.

Показатели тесноты связи, особенно исчисленные по данным сравнительно небольшой статистической совокупности, могут искажаться действием случайных причин. Это вызывает необходимость проверки их надежности (значимости), дающей возможность распространять выводы, полученные по выборочным данным, на генеральную совокупность.

Для этого рассчитывается средняя ошибка коэффициента корреляции:

Где - число степеней свободы при линейной зависимости.

Затем находится отношение коэффициента корреляции к его средней ошибке, то есть , которое сравнивается с табличным значением критерия Стьюдента.

Если фактическое (расчетное) значение больше табличного (критического, порогового), то линейный коэффициент корреляции считается значимым, а связь между и - реальной.

После проверки адекватности построенной модели (уравнения регрессии) ее необходимо проанализировать. Для удобства интерпретации параметра используют коэффициент эластичности. Он показывает средние изменения результативного признака при изменении факторного признака на 1% и вычисляется по формуле:

Точность полученной модели может быть оценена на основании значения средней ошибки аппроксимации:

Кроме того, в некоторых информативными являются данные об остатках, характеризующих отклонение -х наблюдений от расчетных значений . Особый экономический интерес представляют значения, остатки которых имеют наибольшие положительные или отрицательные отклонения от ожидаемого уровня анализируемого показателя.

Назначение сервиса . С помощью сервиса в онлайн режиме можно найти:
  • параметры уравнения линейной регрессии y=a+bx , линейный коэффициент корреляции с проверкой его значимости;
  • тесноту связи с помощью показателей корреляции и детерминации, МНК-оценку, статическую надежность регрессионного моделирования с помощью F-критерия Фишера и с помощью t-критерия Стьюдента , доверительный интервал прогноза для уровня значимости α

Уравнение парной регрессии относится к уравнению регрессии первого порядка . Если эконометрическая модель содержит только одну объясняющую переменную, то она имеет название парной регрессии. Уравнение регрессии второго порядка и уравнение регрессии третьего порядка относятся к нелинейным уравнениям регрессии .

Пример . Осуществите выбор зависимой (объясняемой) и объясняющей переменной для построения парной регрессионной модели. Дайте . Определите теоретическое уравнение парной регрессии. Оцените адекватность построенной модели (интерпретируйте R-квадрат, показатели t-статистики, F-статистики).
Решение будем проводить на основе процесса эконометрического моделирования .
1-й этап (постановочный) – определение конечных целей моделирования, набора участвующих в модели факторов и показателей, их роли.
Спецификация модели - определение цели исследования и выбор экономических переменных модели.
Ситуационная (практическая) задача. По 10 предприятиям региона изучается зависимость выработки продукции на одного работника y (тыс. руб.) от удельного веса рабочих высокой квалификации в общей численности рабочих x (в %).
2-й этап (априорный) – предмодельный анализ экономической сущности изучаемого явления, формирование и формализация априорной информации и исходных допущений, в частности относящейся к природе и генезису исходных статистических данных и случайных остаточных составляющих в виде ряда гипотез.
Уже на этом этапе можно говорить о явной зависимости уровня квалификации рабочего и его выработкой, ведь чем опытней работник, тем выше его производительность. Но как эту зависимость оценить?
Парная регрессия представляет собой регрессию между двумя переменными – y и x , т. е. модель вида:

Где y – зависимая переменная (результативный признак); x – независимая, или объясняющая, переменная (признак-фактор). Знак «^» означает, что между переменными x и y нет строгой функциональной зависимости, поэтому практически в каждом отдельном случае величина y складывается из двух слагаемых:

Где y – фактическое значение результативного признака; y x – теоретическое значение результативного признака, найденное исходя из уравнения регрессии; ε – случайная величина, характеризующая отклонения реального значения результативного признака от теоретического, найденного по уравнению регрессии.
Графически покажем регрессионную зависимость между выработкой продукции на одного работника и удельного веса рабочих высокой квалификации.


3-й этап (параметризация) – собственно моделирование, т.е. выбор общего вида модели, в том числе состава и формы входящих в неё связей между переменными. Выбор вида функциональной зависимости в уравнении регрессии называется параметризацией модели. Выбираем уравнение парной регрессии , т.е. на конечный результат y будет влиять только один фактор.
4-й этап (информационный) – сбор необходимой статистической информации, т.е. регистрация значений участвующих в модели факторов и показателей. Выборка состоит из 10 предприятий отрасли.
5-й этап (идентификация модели) – оценивание неизвестных параметров модели по имеющимся статистическим данным.
Чтобы определить параметры модели, используем МНК - метод наименьших квадратов . Система нормальных уравнений будет выглядеть следующим образом:
a n + b∑x = ∑y
a∑x + b∑x 2 = ∑y x
Для расчета параметров регрессии построим расчетную таблицу (табл. 1).
x y x 2 y 2 x y
10 6 100 36 60
12 6 144 36 72
15 7 225 49 105
17 7 289 49 119
18 7 324 49 126
19 8 361 64 152
19 8 361 64 152
20 9 400 81 180
20 9 400 81 180
21 10 441 100 210
171 77 3045 609 1356

Данные берем из таблицы 1 (последняя строка), в итоге имеем:
10a + 171 b = 77
171 a + 3045 b = 1356
Эту СЛАУ решаем методом Крамера или методом обратной матрицы .
Получаем эмпирические коэффициенты регрессии: b = 0.3251, a = 2.1414
Эмпирическое уравнение регрессии имеет вид:
y = 0.3251 x + 2.1414
6-й этап (верификация модели) – сопоставление реальных и модельных данных, проверка адекватности модели, оценка точности модельных данных.
Анализ проводим с помощью