ОДУ. Метод вариации произвольной постоянной. Метод вариации произвольной постоянной решения линейных неоднородных уравнений

Рассмотрим линейное неоднородное дифференциальное уравнение первого порядка:
(1) .
Существует три способа решения этого уравнения:

  • метод вариации постоянной (Лагранжа).

Рассмотрим решение линейного дифференциального уравнения первого порядка методом Лагранжа.

Метод вариации постоянной (Лагранжа)

В методе вариации постоянной мы решаем уравнение в два этапа. На первом этапе мы упрощаем исходное уравнение и решаем однородное уравнение. На втором этапе мы заменим постоянную интегрирования, полученную на первой стадии решения, на функцию. После чего ищем общее решение исходного уравнения.

Рассмотрим уравнение:
(1)

Шаг 1 Решение однородного уравнения

Ищем решение однородного уравнения:

Это уравнение с разделяющимися переменными

Разделяем переменные - умножаем на dx , делим на y :

Интегрируем:

Интеграл по y - табличный :

Тогда

Потенцируем:

Заменим постоянную e C на C и уберем знак модуля, что сводится к умножению на постоянную ±1 , которую включим в C :

Шаг 2 Заменим постоянную C на функцию

Теперь заменим постоянную C на функцию от x :
C → u(x)
То есть, будем искать решение исходного уравнения (1) в виде:
(2)
Находим производную.

По правилу дифференцирования сложной функции:
.
По правилу дифференцирования произведения:

.
Подставляем в исходное уравнение (1) :
(1) ;

.
Два члена сокращаются:
;
.
Интегрируем:
.
Подставляем в (2) :
.
В результате получаем общее решение линейного дифференциального уравнения первого порядка:
.

Пример решения линейного дифференциального уравнения первого порядка методом Лагранжа

Решить уравнение

Решение

Решаем однородное уравнение:

Разделяем переменные:

Умножим на :

Интегрируем:

Интегралы табличные :

Потенцируем:

Заменим постоянную e C на C и убираем знаки модуля:

Отсюда:

Заменим постоянную C на функцию от x :
C → u(x)

Находим производную:
.
Подставляем в исходное уравнение:
;
;
Или:
;
.
Интегрируем:
;
Решение уравнения:
.

Метод вариации произвольной постоянной, или метод Лагранжа — еще один способ решения линейных дифференциальных уравнений первого порядка и уравнения Бернулли.

Линейные дифференциальные уравнения первого порядка - это уравнения вида y’+p(x)y=q(x). Если в правой части стоит нуль: y’+p(x)y=0, то это — линейное однородное уравнение 1го порядка. Соответственно, уравнение с ненулевой правой частью, y’+p(x)y=q(x), — неоднородное линейное уравнение 1го порядка.

Метод вариации произвольной постоянной (метод Лагранжа) состоит в следующем:

1) Ищем общее решение однородного уравнения y’+p(x)y=0: y=y*.

2) В общем решении С считаем не константой, а функцией от икса: С=С(x). Находим производную общего решения (y*)’ и в первоначальное условие подставляем полученное выражение для y* и (y*)’. Из полученного уравнения находим функцию С(x).

3) В общее решение однородного уравнения вместо С подставляем найденное выражение С(x).

Рассмотрим примеры на метод вариации произвольной постоянной. Возьмем те же задания, что и в , сравним ход решения и убедимся, что полученные ответы совпадают.

1) y’=3x-y/x

Перепишем уравнение в стандартном виде (в отличие от метода Бернулли, где форма записи нам нужна была только для того, чтобы увидеть, что уравнение — линейное).

y’+y/x=3x (I). Теперь действуем по плану.

1) Решаем однородное уравнение y’+y/x=0. Это уравнение с разделяющимися переменными. Представляем y’=dy/dx, подставляем: dy/dx+y/x=0, dy/dx=-y/x. Обе части уравнения умножаем на dx и делим на xy≠0: dy/y=-dx/x. Интегрируем:

2) В полученном общем решении однородного уравнения будем считать С не константой, а функцией от x: С=С(x). Отсюда

Полученные выражения подставляем в условие (I):

Интегрируем обе части уравнения:

здесь С — уже некоторая новая константа.

3) В общее решение однородного уравнения y=C/x, где мы считали С=С(x), то есть y=C(x)/x, вместо С(x) подставляем найденное выражение x³+C: y=(x³+C)/x или y=x²+C/x. Получили такой же ответ, как и при решении методом Бернулли.

Ответ: y=x²+C/x.

2) y’+y=cosx.

Здесь уравнение уже записано в стандартном виде, преобразовывать не надо.

1) Решаем однородное линейное уравнение y’+y=0: dy/dx=-y; dy/y=-dx. Интегрируем:

Чтобы получить более удобную форму записи, экспоненту в степени С примем за новую С:

Это преобразование выполнили, чтобы удобнее было находить производную.

2) В полученном общем решении линейного однородного уравнения считаем С не константой, а функцией от x: С=С(x). При этом условии

Полученные выражения y и y’ подставляем в условие:

Умножим обе части уравнения на

Интегрируем обе части уравнения по формуле интегрирования по частям, получаем:

Здесь С уже не функция, а обычная константа.

3) В общее решение однородного уравнения

подставляем найденную функцию С(x):

Получили такой же ответ, как и при решении методом Бернулли.

Метод вариации произвольной постоянной применим и для решения .

y’x+y=-xy².

Приводим уравнение к стандартному виду: y’+y/x=-y² (II).

1) Решаем однородное уравнение y’+y/x=0. dy/dx=-y/x. Умножаем обе части уравнения на dx и делим на y: dy/y=-dx/x. Теперь интегрируем:

Подставляем полученные выражения в условие (II):

Упрощаем:

Получили уравнение с разделяющимися переменными относительно С и x:

Здесь С — уже обычная константа. В процессе интегрирования писали вместо С(x) просто С, чтобы не перегружать запись. А в конце вернулись к С(x), чтобы не путать С(x) с новой С.

3) В общее решение однородного уравнения y=C(x)/x подставляем найденную функцию С(x):

Получили такой же ответ, что и при решении способом Бернулли.

Примеры для самопроверки:

1. Перепишем уравнение в стандартном виде:y’-2y=x.

1) Решаем однородное уравнение y’-2y=0. y’=dy/dx, отсюда dy/dx=2y, умножаем обе части уравнения на dx, делим на y и интегрируем:

Отсюда находим y:

Выражения для y и y’ подставляем в условие (для краткости будем питать С вместо С(x) и С’ вместо C"(x)):

Для нахождения интеграла в правой части применяем формулу интегрирования по частям:

Теперь подставляем u, du и v в формулу:

Здесь С =const.

3) Теперь подставляем в решение однородного

Лекция 44. Линейные неоднородные уравнения второго порядка. Метод вариации произвольных постоянных. Линейные неоднородные уравнения второго порядка с постоянными коэффициентами. (специальная правая часть).

Социальные преобразования. Государство и церковь.

Социальная политика большевиков во многом диктовалась их классовым подходом. Декретом от 10 ноября 1917 г. уничтожена сословная система, от­менены дореволюционные чины, титулы и награды. Установлена выборность судей; проведена секуляризация гражданских состояний. Установлено бес­платное образование и медицинское обслуживание (декрет от 31 октября 1918 г.). Женщины уравнивались в правах с мужчинами (декреты от 16 и 18 декабря 1917 г.). Декрет о браке вводил институт гражданского брака.

Декретом СНК от 20 января 1918 года церковь отделена от государства и от системы образования. Большая часть церковного имущества конфискована. Патриарх Московский и всея Руси Тихон (избран 5 ноября 1917 года) 19 января 1918 года предал анафеме Советскую власть и призвал к борьбе против большевиков.

Рассмотрим линейное неоднородное уравнение второго порядка

Структура общего решения такого уравнения определяется следующей теоремой:

Теорема 1. Общее решение неоднородного уравнения (1) представляется как сумма какого-нибудь частного решения этого уравнения и общего решения соответствующего однородного уравнения

(2)

Доказательство . Нужно доказать, что сумма

есть общее решение уравнения (1). Докажем сначала, что функция (3) есть решение уравнения (1).

Подставляя сумму в уравнение (1) вместо у , будем иметь

Так как есть решение уравнение (2), то выражение, стоящее в первых скобках, тождественно равно нулю. Так как есть решение уравнения (1), то выражение, стоящее во вторых скобках, равно f(x) . Следовательно, равенство (4) является тождеством. Таким образом, первая часть теоремы доказана.

Докажем второе утверждение: выражение (3) есть общее решение уравнения (1). Мы должны доказать, что входящие в это выражение произвольные постоянные можно подобрать так, чтобы удовлетворялись начальные условия:

(5)

каковы бы ни были числа х 0 , y 0 и (лишь бы х 0 было взято из той области, где функции а 1 , а 2 и f(x) непрерывны).

Заметив, что можно представить в форме . Тогда на основании условий (5) будем иметь

Решим эту систему и определим С 1 и С 2 . Перепишем систему в виде:

(6)

Заметим, что определитель этой системы есть определитель Вронского для функций у 1 и у 2 в точке х=х 0 . Так как эти функции по условию линейно независимы, то определитель Вронского не равен нулю; следовательно система (6) имеет определенное решение С 1 и С 2 , т.е. существуют такие значения С 1 и С 2 , при которых формула (3) определяет решение уравнения (1), удовлетворяющее данным начальным условиям. Что и требовалось доказать.



Перейдем к общему методу нахождения частных решений неоднородного уравнения.

Напишем общее решение однородного уравнения (2)

. (7)

Будем искать частное решение неоднородного уравнения (1) в форме (7), рассматривая С 1 и С 2 как некоторые пока неизвестные функции от х.

Продифференцируем равенство (7):

Подберем искомые функции С 1 и С 2 так, чтобы выполнялось равенство

. (8)

Если учесть это дополнительное условие, то первая производная примет вид

.

Дифференцируя теперь это выражение, найдем :

Подставляя в уравнение (1), получим

Выражения, стоящие в первых двух скобках, обращаются в нуль, так как y 1 и y 2 – решения однородного уравнения. Следовательно, последнее равенство принимает вид

. (9)

Таким образом, функция (7) будет решением неоднородного уравнения (1) в том случае, если функции С 1 и С 2 удовлетворяют уравнениям (8) и (9). Составим систему уравнений из уравнений (8) и (9).

Так как определителем этой системы является определитель Вронского для линейно независимых решений y 1 и y 2 уравнения (2), то он не равен нулю. Следовательно, решая систему, мы найдем как определенные функции от х .

Рассмотрим теперь линейное неоднородное уравнение
. (2)
Пусть y 1 ,y 2 ,.., y n - фундаментальная система решений, а - общее решение соответствующего однородного уравнения L(y)=0 . Аналогично случаю уравнений первого порядка, будем искать решение уравнения (2) в виде
. (3)
Убедимся в том, что решение в таком виде существует. Для этого подставим функцию в уравнение. Для подстановки этой функции в уравнение найдём её производные. Первая производная равна
. (4)
При вычислении второй производной в правой части (4) появится четыре слагаемых, при вычислении третьей производной - восемь слагаемых и так далее. Поэтому, для удобства дальнейшего счёта, первое слагаемое в (4) полагают равным нулю. С учётом этого, вторая производная равна
. (5)
По тем же, что и раньше, соображениям, в (5) также полагаем первое слагаемое равным нулю. Наконец, n-я производная равна
. (6)
Подставляя полученные значения производных в исходное уравнение, имеем
. (7)
Второе слагаемое в (7) равно нулю, так как функции y j , j=1,2,..,n, являются решениями соответствующего однородного уравнения L(y)=0. Объединяя с предыдущим, получаем систему алгебраических уравнений для нахождения функций C" j (x)
(8)
Определитель этой системы есть определитель Вронского фундаментальной системы решений y 1 ,y 2 ,..,y n соответствующего однородного уравнения L(y)=0 и поэтому не равен нулю. Следовательно, существует единственное решение системы (8). Найдя его, получим функции C" j (x), j=1,2,…,n, а, следовательно, и C j (x), j=1,2,…,n Подставляя эти значения в (3), получаем решение линейного неоднородного уравнения.
Изложенный метод называется методом вариации произвольной постоянной или методом Лагранжа.

Максимальная степень производной 2 3 4 5 6

Пример №1 . Найдём общее решение уравнения y"" + 4y" + 3y = 9e -3 x . Рассмотрим соответствующее однородное уравнение y"" + 4y" + 3y = 0. Корни его характеристического уравнения r 2 + 4r + 3 = 0 равны -1 и -3. Поэтому фундаментальная система решений однородного уравнения состоит из функций y 1 = e - x и y 2 = e -3 x . Решение неоднородного уравнения ищем в виде y = C 1 (x)e - x + C 2 (x)e -3 x . Для нахождения производных C" 1 , C" 2 составляем систему уравнений (8)

решая которую, находим , Интегрируя полученные функции, имеем
Окончательно получим

Пример №2 . Решить линейные дифференциальные уравнения второго порядка с постоянными коэффициентами методом вариации произвольных постоянных:

y(0) =1 + 3ln3
y’(0) = 10ln3

Решение:
Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.
Решение уравнения будем искать в виде y = e rx . Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами:
r 2 -6 r + 8 = 0
D = (-6) 2 - 4 1 8 = 4

Корни характеристического уравнения: r 1 = 4, r 2 = 2
Следовательно, фундаментальную систему решений составляют функции:
y 1 = e 4x , y 2 = e 2x
Общее решение однородного уравнения имеет вид:

Поиск частного решения методом вариации произвольной постоянной.
Для нахождения производных C" i составляем систему уравнений:

C" 1 (4e 4x) + C" 2 (2e 2x) = 4/(2+e -2x)
Выразим C" 1 из первого уравнения:
C" 1 = -c 2 e -2x
и подставим во второе. В итоге получаем:
C" 1 = 2/(e 2x +2e 4x)
C" 2 = -2e 2x /(e 2x +2e 4x)
Интегрируем полученные функции C" i:
C 1 = 2ln(e -2x +2) - e -2x + C * 1
C 2 = ln(2e 2x +1) – 2x+ C * 2

Поскольку , то записываем полученные выражения в виде:
C 1 = (2ln(e -2x +2) - e -2x + C * 1) e 4x = 2 e 4x ln(e -2x +2) - e 2x + C * 1 e 4x
C 2 = (ln(2e 2x +1) – 2x+ C * 2)e 2x = e 2x ln(2e 2x +1) – 2x e 2x + C * 2 e 2x
Таким образом, общее решение дифференциального уравнения имеет вид:
y = 2 e 4x ln(e -2x +2) - e 2x + C * 1 e 4x + e 2x ln(2e 2x +1) – 2x e 2x + C * 2 e 2x
или
y = 2 e 4x ln(e -2x +2) - e 2x + e 2x ln(2e 2x +1) – 2x e 2x + C * 1 e 4x + C * 2 e 2x

Найдем частное решение при условии:
y(0) =1 + 3ln3
y’(0) = 10ln3

Подставляя x = 0, в найденное уравнение, получим:
y(0) = 2 ln(3) - 1 + ln(3) + C * 1 + C * 2 = 3 ln(3) - 1 + C * 1 + C * 2 = 1 + 3ln3
Находим первую производную от полученного общего решения:
y’ = 2e 2x (2C 1 e 2x + C 2 -2x +4 e 2x ln(e -2x +2)+ ln(2e 2x +1)-2)
Подставляя x = 0, получим:
y’(0) = 2(2C 1 + C 2 +4 ln(3)+ ln(3)-2) = 4C 1 + 2C 2 +10 ln(3) -4 = 10ln3

Получаем систему из двух уравнений:
3 ln(3) - 1 + C * 1 + C * 2 = 1 + 3ln3
4C 1 + 2C 2 +10 ln(3) -4 = 10ln3
или
C * 1 + C * 2 = 2
4C 1 + 2C 2 = 4
или
C * 1 + C * 2 = 2
2C 1 + C 2 = 2
Откуда:
C 1 = 0, C * 2 = 2
Частное решение запишется как:
y = 2 e 4x ln(e -2x +2) - e 2x + e 2x ln(2e 2x +1) – 2x e 2x + 2 e 2x