Описание корреляции спирмена. Применение корреляции Спирмена и Пирсона

This calculator below calculates Spearman"s rank correlation coefficient between two random variables. The theoretical part is traditional below the calculator.

add import_export mode_edit delete

Changes of random variables

arrow_upward arrow_downward arrow_upward arrow_downward
Items per page: 5 10 20 50 100 chevron_left chevron_right

Changes of random variables

Import data Import error

"One of the following characters is used to separate data fields: tab, semicolon (;) or comma(,)" Sample: -50.5;-50.5

Import Back Cancel

Digits after the decimal point: 4

Calculate

Spearman"s correlation coefficient

Save share extension

The method of Spearman"s rank correlation coefficient calculation is actually pretty simple. It"s like the Pearson correlation coefficient , but designed not for measurements of random variables only but for their ranking values .

We have only to understand what is the rank value and why all this is necessary.

If the elements of a variational series arranged in ascending or descending order, that rank of the element will be his number in ordered series.

For example, we have a variational series {17,26,5,14,21}. Let"s sort it"s elements in a descending order {26,21,17,14,5}. 26 has a rank of 1, 21 - rank of 2 and so on, Variational series of ranking values will look like this {3,1,5,4,2}.

I.e. when calculating Spearman"s coefficient initial variation series are converted into variational series of ranking values and then Pearson"s formula is applied to them.
.
There is one subtlety - the rank of the repeating values is taken as the average of the ranks. That is, for a series {17, 15, 14, 15}ranking series will look like {1, 2.5, 4, 2.5}, as the first element is 15 has a rank of 2, and the second - rank of 3, and.

If you don"t have the repeating values, that is, all the values of ranking series - the numbers between 1 and n, the Pearson"s formula can be simplified to

By the way, this formula is often given as the formula for calculating the Spearman"s coefficient.

What is the essence of the transition from the values themselves to their rank value?
When investigating the correlation of ranking values you can find how well the dependence of the two variables is described by a monotonic function.

The sign of the coefficient indicates the direction of the relationship between variables. If the sign is positive the values of Y has a tendency to increase with the increasement of X. If the sign is negative the values of Y has a tendency to decrease with the increasement of X. If the coefficient is 0 there is no tendency then. If the coefficient equals 1 or -1, the relationship between X and Y has an appearance of monotonic function, i.e. with the increasement of X, Y also increases and vice versa.

That is, unlike the Pearson"s correlation coefficient, which can detect only the linear relationship of one variable from another, Spearman"s correlation coefficient can detect monotonic dependence, where the direct linear relationship cannot be revealed.

Here"s an example.
Поясню на примере. Let"s suppose,we examine the function y=10/x.
We have the following measurements of X and Y
{{1,10}, {5,2}, {10,1}, {20,0.5}, {100,0.1}}
For this data, Pearson correlation coefficient is equal to -0.4686, i.e. the relationship is weak or absent. And Spearman"s correlation coefficient is strictly equal to -1, as if it"s hints to the researcher that Y has strongly negative monotonic dependence from X.

Коэффициент корреляции Пирсона

Коэффициентr- Пирсона применяется для изучения взаимосвязи двух метрических переменных, измеренных на одной и той же выборке. Существует множество ситуаций, в которых уместно его применение. Влияет ли интеллект на успеваемость на старших курсах университета? Связан ли размер заработной платы работника с его доброжелательностью к коллегам? Влияет ли настроение школьника на успешность решения сложной арифметической задачи? Для ответа на подобные вопросы исследователь должен измерить два интересующих его показателя у каждого члена выборки.

На величину коэффициента корреляции не влияет то, в каких единицах измерения представлены признаки. Следовательно, любые линейные преобразования признаков (умножение на константу, прибавление константы) не меняют значения коэффициента корреляции. Исключением является умножение одного из признаков на отрицательную константу: коэффициент корреляции меняет свой знак на противоположный.

Применение корреляции Спирмена и Пирсона.

Корреляция Пирсона есть мера линейной связи между двумя переменными. Она позволяет определить, насколько пропорциональна изменчивость двух переменных. Если переменные пропорциональны друг другу, то графически связь между ними можно представить в виде прямой линии с положительным (прямая пропорция) или отрицательным (обратная пропорция) наклоном.

На практике связь между двумя переменными, если она есть, является вероятностной и графически выглядит как облако рассеивания эллипсоидной формы. Этот эллипсоид, однако, можно представить (аппроксимировать) в виде прямой линии, или линии регрессии. Линия регрессии - это прямая, построенная методом наименьших квадратов: сумма квадратов расстояний (вычисленных по оси Y) от каждой точки графика рассеивания до прямой является минимальной.

Особое значение для оценки точности предсказания имеет дисперсия оценок зависимой переменной. По сути, дисперсия оценок зависимой переменной Y - это та часть ее полной дисперсии, которая обусловлена влиянием независимой переменной X. Иначе говоря, отношение дисперсии оценок зависимой переменной к ее истинной дисперсии равно квадрату коэффициента корреляции.

Квадрат коэффициента корреляции зависимой и независимой переменных представляет долю дисперсии зависимой переменной, обусловленной влиянием независимой переменной, и называется коэффициентом детерминации. Коэффициент детерминации, таким образом, показывает, в какой степени изменчивость одной переменной обусловлена (детерминирована) влиянием другой переменной.

Коэффициент детерминации обладает важным преимуществом по сравнению с коэффициентом корреляции. Корреляция не является линейной функцией связи между двумя переменными. Поэтому, среднее арифметическое коэффициентов корреляции для нескольких выборок не совпадает с корреляцией, вычисленной сразу для всех испытуемых из этих выборок (т.е. коэффициент корреляции не аддитивен). Напротив, коэффициент детерминации отражает связь линейно и поэтому является аддитивным: допускается его усреднение для нескольких выборок.

Дополнительную информацию о силе связи дает значение коэффициента корреляции в квадрате - коэффициент детерминации: это часть дисперсии одной переменной, которая может быть объяснена влиянием другой переменной. В отличие от коэффициента корреляции коэффициент детерминации линейно возрастает с увеличением силы связи.

Коэффициенты корреляции Спирмена и τ- Кендалла (ранговые корреляции)

Если обе переменные, между которыми изучается связь, представлены в порядковой шкале, или одна из них - в порядковой, а другая - в метрической, то применяются ранговые коэффициенты корреляции: Спирмена или τ- Кенделла. И тот, и другой коэффициент требует для своего применения предварительного ранжирования обеих переменных.

Коэффициент ранговой корреляции Спирмена - это непараметрический метод, который используется с целью статистического изучения связи между явлениями. В этом случае определяется фактическая степень параллелизма между двумя количественными рядами изучаемых признаков и дается оценка тесноты установленной связи с помощью количественно выраженного коэффициента.

Если члены группы численностью были ранжированы сначала по переменной x, затем - по переменной y, то корреляцию между переменными x и y можно получить, просто вычислив коэффициент Пирсона для двух рядов рангов. При условии отсутствия связей в рангах (т.е. отсутствия повторяющихся рангов) по той и другой переменной, формула для Пирсона может быть существенно упрощена в вычислительном отношении и преобразована в формулу, известную как Спирмена.

Мощность коэффициента ранговой корреляции Спирмена несколько уступает мощности параметрического коэффициента корреляции.

Коэффицент ранговой корреляции целесообразно применять при наличии небольшого количества наблюдений. Данный метод может быть использован не только для количественно выраженных данных, но также и в случаях, когда регистрируемые значения определяются описательными признаками различной интенсивности.

Коэффициент ранговой корреляции Спирмена при большом количестве одинаковых рангов по одной или обеим сопоставляемым переменным дает огрубленные значения. В идеале оба коррелируемых ряда должны представлять собой две последовательности несовпадающих значений

Альтернативу корреляции Спирмена для рангов представляет корреляция τ- Кендалла. В основе корреляции, предложенной М.Кендаллом, лежит идея о том, что о направлении связи можно судить, попарно сравнивая между собой испытуемых: если у пары испытуемых изменение по x совпадает по направлению с изменением по y, то это свидетельствует о положительной связи, если не совпадает - то об отрицательной связи.

Коэффициенты корреляции были специально разработаны для численного определения силы и направления связи между двумя свойствами, измеренными в числовых шкалах (метрических или ранговых). Как уже упоминалось, максимальной силе связи соответствуют значения корреляции +1 (строгая прямая или прямо пропорциональная связь) и -1 (строгая обратная или обратно пропорциональная связь), отсутствию связи соответствует корреляция, равная нулю. Дополнительную информацию о силе связи дает значение коэффициента детерминации: это часть дисперсии одной переменной, которая может быть объяснена влиянием другой переменной.

9. Параметрические методы сравнения данных


Параметрические методы сравнения применяются в том случае, если ваши переменные были измерены в метрической шкале.

Сравнение дисперсий 2- х выборок по критерию Фишера.


Данный метод позволяет проверить гипотезу о том, что дисперсии 2-х генеральных совокупностей, из которых извлечены сравниваемые выборки, отличаются друг от друга. Ограничения метода - распределения признака в обеих выборках не должны отличаться от нормального.

Альтернативой сравнения дисперсий является критерий Ливена, для которого нет необходимости в проверке на нормальность распределения. Данный метод может применяться для проверки предположения о равенстве (гомогенности) дисперсий перед проверкой достоверности различия средних по критерию Стьюдента для независимых выборок разной численности.

Корреляционный анализ является методом, позволяющим обнаруживать зависимости между определенным количеством случайных величин. Цель корреляционного анализа, сводится к выявлению оценки силы связей между такими случайными величинами либо признаками, характеризующими определенные реальные процессы.

Сегодня мы предлагаем рассмотреть, как применяется корреляционный анализ по Спирмену, для наглядного отображения форм связи в практическом трейдинге.

Корреляция по Спирмену или основа корреляционного анализа

Для того чтобы понять, что такое корреляционный анализ, изначально следует уяснить понятие корреляции.

При этом, если цена начнет двигаться в нужном Вам направлении необходимо вовремя произвести разлокирование позиций.


Для данной стратегии в основу которой положен корреляционный анализ, наилучшим образом подходят торговые инструменты имеющие высокую степень корреляции (EUR/USD и GBP/USD, EUR/AUD и EUR/NZD, AUD/USD и NZD/USD, контракты CFD и тому подобные).

Видео: Применение корреляции Спирмена на рынке Форекс

Дисциплина "высшая математика" у некоторых вызывает неприятие, так как поистине не всем дано ее понять. Но те, кому посчастливилось изучать этот предмет и решать задачи, используя различные уравнения и коэффициенты, могут похвастаться практически полной в ней осведемленности. В психологической науке существует не только гуманитарная направленность, но и определенные формулы и способы для математической проверки выдвигаемой в ходе исследований гипотезы. Для этого применяются различные коэффициенты.

Коэффициент корреляции Спирмена

Это распространенное измерение по определению тесноты связи между какими-либо двумя признаками. Коэффициент еще называют непараметрическим методом. Он показывает статистику связи. То есть мы знаем, например, что у ребенка агрессия и раздражительность связаны между собой, а коэффициент корреляции рангов Спирмена показывает статистическую математическую связь этих двух признаков.

Как вычисляется ранговый коэффициент?

Естественно, что для всех математических определений или величин существуют свои формулы, по которым они вычисляются. Ею обладает и коэффициент корреляции Спирмена. Формула у него следующая:

С первого взгляда формула не совсем понятна, но если разобраться, все очень легко вычисляется:

  • n - это количество признаков или показателей, которые проранжированы.
  • d - разность определенных двух рангов, соответствующих конкретным двум переменным каждого испытуемого.
  • ∑d 2 - сумма всех квадратов разностей рангов признака, квадраты которых вычисляются отдельно для каждого ранга.

Область применения математической меры связи

Для применения рангового коэффициента необходимо, чтобы количественные данные признака были проранжированы, то есть им был присвоен определенный номер в зависимости от места, на котором расположен признак, и от его значения. Доказано, что два ряда признаков, выраженных в числовом виде, несколько параллельны между собой. Коэффициент ранговой корреляции Спирмена определяет степень этой параллельности, тесноты связи признаков.

Для математической операции по расчету и определению связи признаков с помощью указанного коэффициента нужно произвести некоторые действия:

  1. Каждому значению какого-либо испытуемого или явления присваивается номер по порядку - ранг. Он может соответствовать значению явления по возрастанию и по убыванию.
  2. Дальше сопоставляются ранги значения признаков двух количественных рядов для того, чтобы определить разность между ними.
  3. В отдельном столбце таблицы для каждой полученной разности прописывается ее квадрат, а внизу результаты суммируются.
  4. После этих действий применяется формула, по которой рассчитывается коэффициент корреляции Спирмена.

Свойства коэффициента корреляции

К основным свойствам коэффициента Спирмена относят следующие:

  • Измерение значений в пределах от -1 до 1.
  • Знак коэффициента интерпретаций не имеет.
  • Теснота связи определяется по принципу: чем выше величина, тем теснее связь.

Как проверить полученное значение?

Для проверки связи признаков между собой необходимо выполнить определенные действия:

  1. Выдвигается нулевая гипотеза (H0), она же основная, затем формулируется другая, альтернативная первой (H 1). Первая гипотеза будет заключаться в том, что коэффициент корреляции Спирмена равняется 0 - это значит, что связи не будет. Вторая, наоборот, гласит, что коэффициент не равен 0, тогда связь есть.
  2. Следующим действием будет нахождение наблюдаемого значения критерия. Оно находится по основной формуле коэффициента Спирмена.
  3. Далее находятся критические значения заданного критерия. Это можно сделать только с помощью специальной таблицы, где отображаются различные значения по заданным показателям: уровень значимости (l) и число, определяющее (n).
  4. Теперь нужно сравнить два полученных значения: установленного наблюдаемого, а также критического. Для этого необходимо построить критическую область. Нужно начертить прямую линию, на ней отметить точки критического значения коэффициента со знаком "-" и со знаком"+". Слева и справа от критических значений полукругами от точек откладываются критические области. Посередине, объединяя два значения, отмечается полукругом ОПГ.
  5. После этого делается вывод о тесноте связи между двумя признаками.

Где лучше использовать эту величину

Самой первой наукой, где активно использовался этот коэффициент, была психология. Ведь это наука, не основывающаяся на цифрах, однако для доказательства каких-либо важных гипотез, касающихся развития отношений, черт характера людей, знаний студентов, требуется статистическое подтверждение выводов. Также его используют в экономике, в частности, при валютных оборотах. Здесь оцениваются признаки без статистики. Очень удобен коэффициент ранговой корреляции Спирмена в этой области применения тем, что оценка производится независимо от распределения переменных, так как они заменяются ранговым числом. Активно применяется коэффициент Спирмена в банковском деле. Социология, политология, демография и другие науки также используют его в своих исследованиях. Результаты получаются быстро и максимально точно.

Удобно и быстро используется коэффициент корреляции Спирмена в Excel. Здесь существуют специальные функции, которые помогают быстро получить необходимые значения.

Какие еще коэффициенты корреляции существуют?

Кроме того, что мы узнали про коэффициент корреляции Спирмена, существуют еще различные корреляционные коэффициенты, позволяющие измерить, оценить качественные признаки, связь между количественными признаками, тесноту связи между ними, представленными в ранговой шкале. Это такие коэффициенты, как биссериальный, рангово-биссериальный, контенгенции, ассоциации, и так далее. Коэффициент Спирмена очень точно показывает тесноту связи, в отличие от всех остальных методов ее математического определения.

Ранговая корреляция Спирмена (корреляция рангов). Ранговая корреляция Спирмена - самый простой способ определения степени связи между факторами. Название метода свидетельствует о том, что связь определяют между рангами, то есть рядами полученных количественных значений, ранжированных в порядке убывания или возрастания. Надо иметь в виду, что, во-первых, ранговое корреляцию Не рекомендуется проводить, если связь пар меньше четырех и больше двадцати; во-вторых, ранговая корреляция позволяет определять связь и в другом случае, если значение имеют полуколичественный характер, то есть не имеют числового выражения, отражают четкий порядок следования этих величин; в-третьих, ранговое корреляцию целесообразно применять в тех случаях, когда достаточно получить приблизительные данные. Пример расчета коэффициента ранговой корреляции для определения вопрос: замеряют вопросник X и Y подобные личностные качества испытуемых. С помощью двух вопросников (X и Y), которые требуют альтернативных ответов "да" или "нет", получили первичные результаты - ответы 15 испытуемых (N = 10). Результаты подали в виде суммы утвердительных ответов отдельно для вопросника X и для вопросника В. Эти результаты сведены в табл. 5.19.

Таблица 5.19. Табулирование первичных результатов для расчета коэффициента ранговой корреляции по Спирмену (р) *

Анализ сводной корреляционной матрицы. Метод корреляционных плеяд.

Пример. В табл. 6.18 приведены интерпретации одиннадцати переменных, которые тестируют по методике Векслера. Данные получили на однородной выборке в возрасте от 18 до 25 лет (n = 800).

Перед расслаиванием корреляционную матрицу целесообразно ранжировать. Для этого в исходной матрицы вычисляют средние значения коэффициентов корреляции каждой переменной со всеми остальными.

Затем по табл. 5.20 определяют допустимые уровни расслоение корреляционной матрицы при заданных доверительной вероятности 0,95 и n - количества

Таблица 6.20. Восходящая корреляционная матрица

Переменные 1 2 3 4 бы 0 7 8 0 10 11 M (rij) Ранг
1 1 0,637 0,488 0,623 0,282 0,647 0,371 0,485 0,371 0,365 0,336 0,454 1
2 1 0,810 0,557 0,291 0,508 0,173 0,486 0,371 0,273 0,273 0,363 4
3 1 0,346 0,291 0,406 0,360 0,818 0,346 0,291 0,282 0,336 7
4 1 0,273 0,572 0,318 0,442 0,310 0,318 0,291 0,414 3
5 1 0,354 0,254 0,216 0,236 0,207 0,149 0,264 11
6 1 0,365 0,405 0,336 0,345 0,282 0,430 2
7 1 0,310 0,388 0,264 0,266 0,310 9
8 1 0,897 0,363 0,388 0,363 5
9 1 0,388 0,430 0,846 6
10 1 0,336 0,310 8
11 1 0,300 10

Обозначения: 1 - общая осведомленность; 2 - понятийнисть; 3 - внимательность; 4 - вдатнисть К обобщения; б - непосредственное запоминание (на цифрах) 6 - уровень освоения родном языке; 7 - скорость овладения сенсомоторном навыками (кодирование символами) 8 - наблюдательность; 9 - комбинаторные способности (к анализу и синтезу) 10 - способность к организации частей в осмысленное целое; 11 - способность к эвристического синтеза; M (rij) - среднее значение коэффициентов корреляции переменной с остальными переменных наблюдений (в нашем случае n = 800): r (0) - значение нулевой "Рассекая" плоскости - минимальная значимая абсолютная величина коэффициента корреляции (n - 120, r (0) = 0,236; n = 40, r (0) = 0,407) | Δr | - допустимый шаг расслоения (n = 40, | Δr | = 0,558) в - допустимое количество уровней расслоения (n = 40, s = 1 ; n = 120, s = 2); r (1), r (2), ..., r (9) - абсолютное значение секущей плоскости (n = 40, r (1) = 0,965).

Для n = 800 находим значение гтип и границ ги после чего Расслаивающая ранжированы корреляционную матрицу, выделяя корреляционные плеяды внутри слоев, или отделяем части корреляционной матрицы, вырисовывая объединения корреляционных плеяд для вышележащих слоев (рис. 5.5).

Содержательный анализ полученных плеяд выходит за пределы математической статистики. Надо отметить два формальные показатели, которые помогают при содержательной интерпретации плеяд. Одним существенным показателем служит степень вершины, то есть количество ребер, примыкающих к вершине. Переменная с наибольшим количеством ребер является "ядром" плеяды и ее можно рассматривать как индикатор остальных переменных этой плеяды. Другой существенный показатель - плотность связи. Переменная может иметь меньше связей в одной плеяде, но теснее, и больше связей в другой плеяде, однако менее тесных.

Предсказания и оценки. Уравнение у = b1x + b0 называется общим уравнением прямой. Оно свидетельствует о том, что пары точек (x, y), которые

Рис. 5.5. Корреляционные плеяды, полученные расслоением матрицы

лежат на некоторой прямой, связанные так, что для любого значения х величину в в находящегося с ним в паре, можно найти, умножив х на некоторое число b1 добавив вторых, число b0 к этому произведению.

Коэффициент регрессии позволяет определить степень изменения следственной фактора при изменении причинного фактора на одну единицу. Абсолютные величины характеризуют зависимость между переменными факторами по их абсолютными значениями. Коэффициент регрессии вычисляют по формуле:

Планирование и анализ экспериментов. Планирование и анализ экспериментов - это третья важная отрасль статистических методов, разработанных для нахождения и проверки причинных связей между переменными.

Для исследования многофакторных зависимостей в последнее время все чаще используют методы математического планирования эксперимента.

Возможность одновременного варьирования всеми факторами позволяет: а) уменьшить количество опытов;

б) свести ошибку эксперимента к минимуму;

в) упростить обработку полученных данных;

г) обеспечить наглядность и легкость по сравнению результатов.

Каждый фактор может приобретать некоторую соответствующее количество различных значений, которые называются уровнями и обозначают -1, 0 и 1. Фиксированный набор уровней факторов определяет условия одного из возможных опытов.

Совокупность всех возможных сочетаний вычисляют по формуле:

Полным факторным экспериментом называется эксперимент, в котором реализуются все возможные сочетания уровней факторов. Полные факторные эксперименты могут обладать свойством ортогональности. При ортогональном планировании факторы в эксперименте является некоррелированными, коэффициенты регрессии, которые высчитывают в итоге, определяют независимо друг от друга.

Важным преимуществом метода математического планирования эксперимента является его универсальность, пригодность во многих областях исследований.

Рассмотрим пример сравнения влияния некоторых факторов на формирование уровня психического напряжения в регулировщиков цветных телевизоров.

В основу эксперимента положен ортогональный План 2 три (три фактора изменяются на двух уровнях).

Эксперимент проводили с полным части 2 +3 с трехкратным повторением.

Ортогональное планирование базируется на построении уравнения регрессии. Для трех факторов оно выглядит так:

Обработка результатов в этом примере включает:

а) построение ортогонального плана 2 +3 таблице для расчета;

б) вычисления коэффициентов регрессии;

в) проверку их значимости;

г) интерпретацию полученных данных.

Для коэффициентов регрессии упомянутого уравнения надо было поставить N = 2 3 = 8 вариантов, чтобы иметь возможность оценить значимость коэффициентов, где количество повторений К равнялось 3.

Составлена матрица планирования эксперимента выглядела.