Основы линейной регрессии. Оценка параметров уравнения регрессии

Корреляционный анализ .

Уравнение парной регрессии .

Использование графического метода .

Этот метод применяют для наглядного изображения формы связи между изучаемыми экономическими показателями. Для этого в прямоугольной системе координат строят график, по оси ординат откладывают индивидуальные значения результативного признака Y, а по оси абсцисс - индивидуальные значения факторного признака X.

Совокупность точек результативного и факторного признаков называется полем корреляции .

На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.

Линейное уравнение регрессии имеет вид y = bx + a + ε

Здесь ε - случайная ошибка (отклонение, возмущение).

Причины существования случайной ошибки:

1. Невключение в регрессионную модель значимых объясняющих переменных;

2. Агрегирование переменных. Например, функция суммарного потребления – это попытка общего выражения совокупности решений отдельных индивидов о расходах. Это лишь аппроксимация отдельных соотношений, которые имеют разные параметры.

3. Неправильное описание структуры модели;

4. Неправильная функциональная спецификация;

5. Ошибки измерения.

Так как отклонения ε i для каждого конкретного наблюдения i – случайны и их значения в выборке неизвестны, то:

1) по наблюдениям x i и y i можно получить только оценки параметров α и β

2) Оценками параметров α и β регрессионной модели являются соответственно величины а и b, которые носят случайный характер, т.к. соответствуют случайной выборке;

Тогда оценочное уравнение регрессии (построенное по выборочным данным) будет иметь вид y = bx + a + ε, где e i – наблюдаемые значения (оценки) ошибок ε i , а и b соответственно оценки параметров α и β регрессионной модели, которые следует найти.

Для оценки параметров α и β - используют МНК (метод наименьших квадратов). Метод наименьших квадратов дает наилучшие (состоятельные, эффективные и несмещенные) оценки параметров уравнения регрессии.

Но только в том случае, если выполняются определенные предпосылки относительно случайного члена (ε) и независимой переменной (x).

Формально критерий МНК можно записать так:

S = ∑(y i - y * i) 2 → min

Система нормальных уравнений.

a n + b∑x = ∑y

a∑x + b∑x 2 = ∑y x

Для наших данных система уравнений имеет вид

15a + 186.4 b = 17.01

186.4 a + 2360.9 b = 208.25

Из первого уравнения выражаем а и подставим во второе уравнение:

Получаем эмпирические коэффициенты регрессии: b = -0.07024, a = 2.0069

Уравнение регрессии (эмпирическое уравнение регрессии):

y = -0.07024 x + 2.0069

Эмпирические коэффициенты регрессии a и b являются лишь оценками теоретических коэффициентов β i , а само уравнение отражает лишь общую тенденцию в поведении рассматриваемых переменных.

Для расчета параметров регрессии построим расчетную таблицу (табл. 1)

1. Параметры уравнения регрессии.

Выборочные средние.

Выборочные дисперсии:

Среднеквадратическое отклонение

1.1. Коэффициент корреляции

Ковариация .

Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:

Линейный коэффициент корреляции принимает значения от –1 до +1.

Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:

0.1 < r xy < 0.3: слабая;

0.3 < r xy < 0.5: умеренная;

0.5 < r xy < 0.7: заметная;

0.7 < r xy < 0.9: высокая;

0.9 < r xy < 1: весьма высокая;

В нашем примере связь между признаком Y фактором X высокая и обратная.

Кроме того, коэффициент линейной парной корреляции может быть определен через коэффициент регрессии b:

1.2. Уравнение регрессии (оценка уравнения регрессии).

Линейное уравнение регрессии имеет вид y = -0.0702 x + 2.01

Коэффициентам уравнения линейной регрессии можно придать экономический смысл.

Коэффициент регрессии b = -0.0702 показывает среднее изменение результативного показателя (в единицах измерения у) с повышением или понижением величины фактора х на единицу его измерения. В данном примере с увеличением на 1 единицу y понижается в среднем на -0.0702.

Коэффициент a = 2.01 формально показывает прогнозируемый уровень у, но только в том случае, если х=0 находится близко с выборочными значениями.

Но если х=0 находится далеко от выборочных значений х, то буквальная интерпретация может привести к неверным результатам, и даже если линия регрессии довольно точно описывает значения наблюдаемой выборки, нет гарантий, что также будет при экстраполяции влево или вправо.

Подставив в уравнение регрессии соответствующие значения х, можно определить выровненные (предсказанные) значения результативного показателя y(x) для каждого наблюдения.

Связь между у и х определяет знак коэффициента регрессии b (если > 0 – прямая связь, иначе - обратная). В нашем примере связь обратная.

1.3. Коэффициент эластичности .

Коэффициенты регрессии (в примере b) нежелательно использовать для непосредственной оценки влияния факторов на результативный признак в том случае, если существует различие единиц измерения результативного показателя у и факторного признака х.

Для этих целей вычисляются коэффициенты эластичности и бета - коэффициенты.

Средний коэффициент эластичности E показывает, на сколько процентов в среднем по совокупности изменится результат у от своей средней величины при изменении фактора x на 1% от своего среднего значения.

Коэффициент эластичности находится по формуле:

Коэффициент эластичности меньше 1. Следовательно, при изменении Х на 1%, Y изменится менее чем на 1%. Другими словами - влияние Х на Y не существенно.

Бета – коэффициент

Бета – коэффициент показывает, на какую часть величины своего среднего квадратичного отклонения изменится в среднем значение результативного признака при изменении факторного признака на величину его среднеквадратического отклонения при фиксированном на постоянном уровне значении остальных независимых переменных:

Т.е. увеличение x на величину среднеквадратического отклонения S x приведет к уменьшению среднего значения Y на 0.82 среднеквадратичного отклонения S y .

1.4. Ошибка аппроксимации .

Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации. Средняя ошибка аппроксимации - среднее отклонение расчетных значений от фактических:

Ошибка аппроксимации в пределах 5%-7% свидетельствует о хорошем подборе уравнения регрессии к исходным данным.

Поскольку ошибка меньше 7%, то данное уравнение можно использовать в качестве регрессии.

Линейная регрессия сводится к нахождению уравнения вида:

Первое выражение позволяет по заданным значениям фактора х рассчитать теоретические значения результативного признака, подставляя в него фактические значения факторах. На графике (рис. 1.2) теоретические значения лежат на прямой, которая представляет собой линию регрессии.

Построение линейной регрессии сводится к оценке ее параметров - а и Ь. Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК).

МНК позволяет получить такие оценки параметров а и Ь, при которых сумма квадратов отклонений фактических значений у от теоретических у х минимальна:

Рис. 1.2.

Для нахождения минимума надо вычислить частные производные суммы (1.4) по каждому из параметров (а и ft) и приравнять их к нулю:

После преобразования получаем систему нормальных уравнений:

В системе п - объем выборки, суммы легко рассчитываются из исходных данных. Решая систему относительно а и Ь, получаем:

Выражение (1.7) можно записать в другом виде:

где cov(x, у) - ковариация признаков; су* - дисперсия фактора х.

Параметр b называется коэффициентом регрессии. Его величина показывает среднее изменение результата с увеличением фактора на одну единицу. Возможность четкой экономической интерпретации коэффициента регрессии сделала линейное уравнение парной регрессии достаточно распространенным в эконометрических исследованиях.

Формально а - значение у при х = 0. Если х не имеет и не может иметь нулевого значения, то такая трактовка свободного члена а не имеет смысла. Параметр а чаще всего не имеет экономического содержания. Попытки экономически интерпретировать его могут привести к абсурду, особенно при а 0. Интерпретировать можно лишь знак при параметре а. Если а > 0, то относительное изменение результата происходит медленнее, чем изменение фактора. Сравним эти относительные изменения:

Иногда линейное уравнение парной регрессии записывают для отклонений от средних значений:

где

При этом свободный член равен нулю, что и отражено в выражении (1.10). Этот факт следует из геометрических соображений: уравнению регрессии отвечает та же прямая (1.3), но при оценке регрессии в отклонениях начало координат перемещается в точку с координатами (Зс, у). При этом в выражении (1.8) обе суммы будут равны нулю, что и повлечет равенство нулю свободного члена. Выражения (1.7) и (1.9) при этом также упрощаются.

В качестве примера рассмотрим на группе предприятий, выпускающих один вид продукции, регрессионную зависимость издержек от выпуска продукции у = а + Ьх + е (табл. 1.1).

Система нормальных уравнений будет иметь вид

Решая ее, получаем а - -5,79, b - 36,84.

Уравнение регрессии имеет вид

Таблица 1.1

Исходные данные для оценки параметров парной линейной модели

Выпуск продукции (х), тыс. ед.

Затраты на производство (у), млн руб.

Подставив в уравнение регрессии значения х, найдем теоретические значения у (последняя колонка табл. 1.1).

Величина а не имеет экономического смысла. Если переменные х и у выразить через отклонения от средних уровней, то линия регрессии на графике пройдет через начало координат. Оценка коэффициента регрессии при этом не изменится: у" = 36,84х", где у" = у-у, х" = х-х.

В качестве другого примера рассмотрим функцию потребления в виде:

где С - потребление; у - доход; К, L - параметры.

Данное уравнение линейной регрессии обычно используется в увязке с балансовым равенством

где / - размер инвестиций; г - сбережения.

Для простоты предположим, что доход расходуется на потребление и инвестиции. Таким образом, рассматривается система уравнений

Наличие балансового равенства накладывает ограничения на величину коэффициента регрессии, которая не может быть больше единицы, т.е. К 1.

Предположим, что функция потребления составила С = 1,9 + 0,65у.

Коэффициент регрессии характеризует склонность к потреблению. Он показывает, что из каждой тысячи рублей дохода на потребление расходуется в среднем 650 руб., а 350 руб. инвестируется. Если рассчитать регрессию размера инвестиций от дохода, т.е. I = а + by, то уравнение регрессии будет I = -1,9 + 0,35у. Его можно и не определять, поскольку оно выводится из функции потребления. Коэффициенты регрессии этих двух уравнений связаны равенством 0,65 + 0,35 = 1. Если коэффициент регрессии оказывается больше единицы, то у и на потребление расходуются не только доходы, но и сбережения.

Коэффициент регрессии К в функции потребления используется для расчета мультипликатора:

где т » 2,86, поэтому дополнительные вложения 1 тыс. руб. на длительный срок приведут при прочих равных условиях к дополнительному доходу 2,86 тыс. руб.

При линейной регрессии в качестве показателя тесноты связи выступает линейный коэффициент корреляции г.

Его значения находятся в границах: - 1 r 1. Если 6>0,то0 г b 0-1 г 0. По данным примера расчет выражения (1.11) дает г = 0,991, что означает очень тесную зависимость затрат на производство от величины объема выпускаемой продукции.

Для оценки качества подбора линейной функции рассчитывается коэффициент детерминации как квадрат линейного коэффициента корреляции I 2 . Он характеризует долю дисперсии результативного признака у, объясняемую регрессией, в общей дисперсии результативного признака:

Величина 1 - г 2 характеризует долю дисперсии у, вызванную влиянием остальных, не учтенных в модели факторов.

В примере г 2 = 0,982. Уравнением регрессии объясняется 98,2% дисперсии у, а на прочие факторы приходится 1,8% - это остаточная дисперсия.


Первое выражение позволяет по заданным значениям фактора x рассчитать теоретические значения результативного признака, подставляя в него фактические значения фактора x . На графике теоретические значения лежат на прямой, которые представляют собой линию регрессии.

Построение линейной регрессии сводится к оценке ее параметров- а и b . Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК).

Для нахождения минимума надо вычислить частные производные суммы (4) по каждому из параметров – а и b – и приравнять их к нулю.

(5)

Преобразуем, получаем систему нормальных уравнений:

(6)

В этой системе n- объем выборки, суммы легко рассчитываются из исходных данных. Решаем систему относительно а и b , получаем:

(7)

. (8)

Выражение (7) можно записать в другом виде:

(9)

где ковариация признаков, дисперсия фактора x.

Параметр b называется коэффициентом регрессии. Его величина показывает среднее изменение результата с изменением фактора на одну единицу. Возможность четкой экономической интерпретации коэффициента регрессии сделала линейное уравнение парной регрессии достаточно распространенным в эконометрических исследованиях.

Формально a – значение y при x=0. Если x не имеет и не может иметь нулевого значения, то такая трактовка свободного члена a не имеет смысла. Параметр a может не иметь экономического содержания. Попытки экономически интерпретировать его могут привести к абсурду, особенно при a < 0. Интерпретировать можно лишь знак при параметре a. Если a > 0, то относительное изменение результата происходит медленнее, чем изменение фактора. Сравним эти относительные изменения:

< при > 0, > 0 <

Иногда линейное уравнение парной регрессии записывают для отклонений от средних значений:

где , . При этом свободный член равен нулю, что и отражено в выражении (10). Этот факт следует из геометрических соображений: уравнению регрессии отвечает та же прямая (3), но при оценке регрессии в отклонениях начало координат перемещается в точку с координатами . При этом в выражении (8) обе суммы будут равны нулю, что и повлечет равенство нулю свободного члена.

Рассмотрим в качестве примера по группе предприятий, выпускающих один вид продукции, регрессионную зависимость издержек от выпуска продукции .

Таблица 1

Выпуск продукции тыс.ед.() Затраты на производство, млн.руб.()
31,1
67,9
141,6
104,7
178,4
104,7
141,6
Итого: 22 770,0

Система нормальных уравнений будет иметь вид:

Решая её, получаем a= -5,79, b=36,84.

Уравнение регрессии имеет вид:

Подставив в уравнение значения х , найдем теоретические значения y (последняя колонка таблицы).

Величина a не имеет экономического смысла. Если переменные x и y выразить через отклонения от средних уровней, то линия регрессии на графике пройдет через начало координат. Оценка коэффициента регрессии при этом не изменится:

, где , .

В качестве другого примера рассмотрим функцию потребления в виде:

,

где С- потребление, y –доход, K,L- параметры. Данное уравнение линейной регрессии обычно используется в увязке с балансовым равенством:

,

где I – размер инвестиций, r – сбережения.

Для простоты предположим, что доход расходуется на потребление и инвестиции. Таким образом, рассматривается система уравнений:

Наличие балансового равенства накладывает ограничения на величину коэффициента регрессии, которая не может быть больше единицы, т.е. .

Предположим, что функция потребления составила:

.

Коэффициент регрессии характеризует склонность к потреблению. Он показывает, что из каждой тысячи рублей дохода на потребление расходуется в среднем 650 руб., а 350 руб. инвестируется. Если рассчитать регрессию размера инвестиций от дохода, т.е. , то уравнение регрессии составит . Это уравнение можно и не определять, поскольку оно выводится из функции потребления. Коэффициенты регрессии этих двух уравнений связаны равенством:

Если коэффициент регрессии оказывается больше единицы, то , и на потребление расходуются не только доходы, но и сбережения.

Коэффициент регрессии в функции потребления используется для расчета мультипликатора:

Здесь m ≈2,86, поэтому дополнительные вложения 1 тыс. руб. на длительный срок приведут при прочих равных условиях к дополнительному доходу 2,86 тыс. руб.

При линейной регрессии в качестве показателя тесноты связи выступает линейный коэффициент корреляции r:

(11)

Его значения находятся в границах: . Если b > 0, то при b < 0 . По данным примера , что означает очень тесную зависимость затрат на производство от величины объема выпускаемой продукции.

Для оценки качества подбора линейной функции рассчитывается коэффициент детерминации как квадрат линейного коэффициента корреляции r 2 . Он характеризует долю дисперсии результативного признака y , объясняемую регрессией, в общей дисперсии результативного признака:

(12)

Величина характеризует долю дисперсии y , вызванную влиянием остальных, не учтенных в модели факторов.

В примере . Уравнением регрессии объясняется 98,2% дисперсии , а на прочие факторы приходится 1,8%, это остаточная дисперсия.


1.3. Предпосылки МНК (условия Гаусса-Маркова)

Как было сказано выше, связь между y и x в парной регрессии является не функциональной, а корреляционной. Поэтому оценки параметров a и b являются случайными величинами, свойства которых существенно зависят от свойств случайной составляющей ε. Для получения по МНК наилучших результатов необходимо выполнение следующих предпосылок относительно случайного отклонения (условия Гаусса-Маркова):

1 0 . Математическое ожидание случайного отклонения равно нулю для всех наблюдений: .

2 0 . Дисперсия случайных отклонений постоянна: .

Выполнимость данной предпосылки называется гомоскедастичностью (постоянством дисперсии отклонений). Невыполнимость данной предпосылки называется гетероскедастичностью (непостоянством дисперсии отклонений)

3 0 . Случайные отклонения ε i и ε j являются независимыми друг от друга для :

Выполнимость этого условия называется отсутствием автокорреляции .

4 0 . Случайное отклонение должно быть независимо от объясняющих переменных.

Обычно это условие выполняется автоматически, если объясняющие переменные в данной модели не являются случайными. Кроме того, выполнимость данной предпосылки для эконометрических моделей не столь критична по сравнению с первыми тремя.

При выполнимости указанных предпосылок имеет место теорема Гаусса -Маркова : оценки (7) и (8), полученные по МНК, имеют наименьшую дисперсию в классе всех линейных несмещенных оценок .

Таким образом, при выполнении условий Гаусса-Маркова оценки (7) и (8) являются не только несмещенными оценками коэффициентов регрессии, но и наиболее эффективными, т.е. имеют наименьшую дисперсию по сравнению с любыми другими оценками данных параметров, линейными относительно величин y i .

Именно понимание важности условий Гаусса-Маркова отличает компетентного исследователя, использующего регрессионный анализ, от некомпетентного. Если эти условия не выполнены, исследователь должен это сознавать. Если корректирующие действия возможны, то аналитик должен быть в состоянии их выполнить. Если ситуацию исправить невозможно, исследователь должен быть способен оценить, насколько серьезно это может повлиять на результаты.

Проверить значимость параметров уравнения регрессии можно, используя t-статистику .

Задание:
По группе предприятий, выпускающих один и тот же вид продукции, рассматриваются функции издержек:
y = α + βx;
y = α x β ;
y = α β x ;
y = α + β / x;
где y – затраты на производство, тыс. д. е.
x – выпуск продукции, тыс. ед.

Требуется:
1. Построить уравнения парной регрессии y от x:

  • линейное;
  • степенное;
  • показательное;
  • равносторонней гиперболы.
2. Рассчитать линейный коэффициент парной корреляции и коэффициент детерминации . Сделать выводы.
3. Оценить статистическую значимость уравнения регрессии в целом.
4. Оценить статистическую значимость параметров регрессии и корреляции.
5. Выполнить прогноз затрат на производство при прогнозном выпуске продукции, составляющем 195 % от среднего уровня.
6. Оценить точность прогноза, рассчитать ошибку прогноза и его доверительный интервал.
7. Оценить модель через среднюю ошибку аппроксимации.

Решение :

1. Уравнение имеет вид y = α + βx
1. Параметры уравнения регрессии.
Средние значения

Дисперсия

Среднеквадратическое отклонение

Коэффициент корреляции

Связь между признаком Y фактором X сильная и прямая
Уравнение регрессии

Коэффициент детерминации
R 2 = 0.94 2 = 0.89, т.е. в 88.9774 % случаев изменения х приводят к изменению y. Другими словами - точность подбора уравнения регрессии - высокая

x y x 2 y 2 x ∙ y y(x) (y-y cp) 2 (y-y(x)) 2 (x-x p) 2
78 133 6084 17689 10374 142.16 115.98 83.83 1
82 148 6724 21904 12136 148.61 17.9 0.37 9
87 134 7569 17956 11658 156.68 95.44 514.26 64
79 154 6241 23716 12166 143.77 104.67 104.67 0
89 162 7921 26244 14418 159.9 332.36 4.39 100
106 195 11236 38025 20670 187.33 2624.59 58.76 729
67 139 4489 19321 9313 124.41 22.75 212.95 144
88 158 7744 24964 13904 158.29 202.51 0.08 81
73 152 5329 23104 11096 134.09 67.75 320.84 36
87 162 7569 26244 14094 156.68 332.36 28.33 64
76 159 5776 25281 12084 138.93 231.98 402.86 9
115 173 13225 29929 19895 201.86 854.44 832.66 1296
0 0 0 16.3 20669.59 265.73 6241
1027 1869 89907 294377 161808 1869 25672.31 2829.74 8774

Примечание: значения y(x) находятся из полученного уравнения регрессии:
y(1) = 4.01*1 + 99.18 = 103.19
y(2) = 4.01*2 + 99.18 = 107.2
... ... ...

2. Оценка параметров уравнения регрессии
Значимость коэффициента корреляции

По таблице Стьюдента находим Tтабл
T табл (n-m-1;α/2) = (11;0.05/2) = 1.796
Поскольку Tнабл > Tтабл, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициента корреляции статистически - значим.

Анализ точности определения оценок коэффициентов регрессии





S a = 0.1712
Доверительные интервалы для зависимой переменной

Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X = 1
(-20.41;56.24)
Проверка гипотез относительно коэффициентов линейного уравнения регрессии
1) t-статистика


Статистическая значимость коэффициента регрессии a подтверждается

Статистическая значимость коэффициента регрессии b не подтверждается
Доверительный интервал для коэффициентов уравнения регрессии
Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими:
(a - t S a ; a + t S a)
(1.306;1.921)
(b - t b S b ; b + t b S b)
(-9.2733;41.876)
где t = 1.796
2) F-статистики


Fkp = 4.84
Поскольку F > Fkp, то коэффициент детерминации статистически значим

Уравнение регрессии всегда дополняется показателем тесноты связи. При использовании линейной регрессии в качестве такого показателя выступает линейный коэффициент корреляции r yt . Существуют разные модификации формулы линейного коэффициента корреляции.

Следует иметь в виду, что величина линейного коэффициента корреляции оценивает тесноту связи рассматриваемых признаков в её линейной форме. Поэтому близость абсолютной величины линейного коэффициента корреляции к нулю ещё не означает отсутствия связи между признаками.

Для оценки качества подбора линейной функции рассчитывается квадрат линейного коэффициента корреляции r yt 2 , называемый коэффициентом детерминации. Коэффициент детерминации характеризует долю дисперсии результативного признака у t , объясняемую регрессией, в общей дисперсии результативного признака.

Уравнение нелинейной регрессии, так же как и в линейной зависимости, дополняется показателем корреляции, а именно индексом корреляции R.

Парабола второго порядка, как и полином более высокого порядка, при лианеризации принимает вид уравнения множественной регрессии. Если же нелинейное относительно объясняемой переменной уравнение регрессии при линеаризации принимает форму линейного уравнения парной регрессии, то для оценки тесноты связи может быть использован линейный коэффициент корреляции, величина которого в этом случае совпадёт с индексом корреляции.

Иначе обстоит дело, когда преобразования уравнения в линейную форму связаны с зависимой переменной. В этом случае линейный коэффициент корреляции по преобразованным значениям признаков даёт лишь приближённую оценку тесноты связи и численно не совпадает с индексом корреляции. Так, для степенной функции

после перехода к логарифмически линейному уравнению

lny = lna + blnx

может быть найден линейный коэффициент корреляции не для фактических значений переменных х и у, а для их логарифмов, то есть r lnylnx . Соответственно квадрат его значения будет характеризовать отношение факторной суммы квадратов отклонений к общей, но не для у, а для его логарифмов:

Между тем при расчёте индекса корреляции используются суммы квадратов отклонений признака у, а не их логарифмов. С этой целью определяются теоретические значения результативного признака, то есть, как антилогарифм рассчитанной по уравнению величины и остаточная сумма квадратов как.

В знаменателе расчёта R 2 yx участвует общая сумма квадратов отклонений фактических значений у от их средней величины, а в расчёте r 2 lnxlny участвует. Соответственно различаются числители и знаменатели рассматриваемых показателей:

  • - в индексе корреляции и
  • - в коэффициенте корреляции.

Вследствие близости результатов и простоты расчётов с использованием компьютерных программ для характеристики тесноты связи по нелинейным функциям широко используется линейный коэффициент корреляции.

Несмотря на близость значений R и r или R и r в нелинейных функциях с преобразованием значения признака у, следует помнить, что если при линейной зависимости признаков один и тот же коэффициент корреляции характеризует регрессию, как следует помнить, что если при линейной зависимости признаков один и тот же коэффициент корреляции характеризует регрессию как, так и, так как, то при криволинейной зависимости для функции y=j(x) не равен для регрессии x=f(y).

Поскольку в расчёте индекса корреляции используется соотношение факторной и общей суммы квадратов отклонений, то имеет тот же смысл, что и коэффициент детерминации. В специальных исследованиях величину для нелинейных связей называют индексом детерминации.

Оценка существенности индекса корреляции проводится, так же как и оценка надёжности коэффициента корреляции.

Индекс корреляции используется для проверки существенности в целом уравнения нелинейной регрессии по F-критерию Фишера.

Величина m характеризует число степеней свободы для факторной суммы квадратов, а (n - m - 1) - число степеней свободы для остаточной суммы квадратов.

Для степенной функции m = 1 и формула F - критерия примет тот же вид, что и при линейной зависимости:

Для параболы второй степени

y = a 0 + a 1 x + a 2 x 2 +еm = 2

Расчёт F-критерия можно вести и в таблице дисперсионного анализа результатов регрессии, как это было показано для линейной функции.

Индекс детерминации можно сравнивать с коэффициентом детерминации для обоснования возможности применения линейной функции. Чем больше кривизна линии регрессии, тем величина коэффициента детерминации меньше индекса детерминации. Близость этих показателей означает, что нет необходимости усложнять форму уравнения регрессии и можно использовать линейную функцию.

Практически, если величина разности между индексом детерминации и коэффициентом детерминации не превышает 0,1, то предположение о линейной форме связи считается оправданным.

Если t факт >t табл, то различия между рассматриваемыми показателями корреляции существенны и замена нелинейной регрессии уравнением линейной функции невозможна. Практически, если величина t < 2, то различия между R yx и r yx несущественны, и, следовательно, возможно применение линейной регрессии, даже если есть предположения о некоторой нелинейности рассматриваемых соотношений признаков фактора и результата.