Построим матрицу коэффициентов парной корреляции. Проверить наличие мультиколлинеарности. Обосновать отбор факторов в модель

Задание 2

1. Построить матрицу парных коэффициентов корреляции. Проверить наличие мультиколлинеарности. Обосновать отбор факторов в модель.

2. Построить уравнение множественной регрессии в линейной форме с выбранными факторами.

3. Оценить статистическую значимость уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента.

4. Построить уравнение регрессии со статистически значимыми факторами. Оценить качество уравнения регрессии с помощью коэффициента детерминации R 2 . Оценить точность построенной модели.

5. Оценить прогноз объема выпуска продукции, если прогнозные значения факторов составляют 75% от их максимальных значений.

Условия задачи (Вариант 21)

По данным, представленным в таблице 1 (n =17), изучается зависимость объема выпуска продукции Y (млн. руб.) от следующих факторов (переменных):

X 1 – численность промышленно-производственного персонала, чел.

X 2 – среднегодовая стоимость основных фондов, млн. руб.

X 3 – износ основных фондов, %

X 4 – электровооруженность, кВт×ч.

X 5 – техническая вооруженность одного рабочего, млн. руб.

X 6 – выработка товарной продукции на одного работающего, руб.

Таблица 1. Данные выпуска продукции

Y X 1 X 2 X 3 X 4 X 5 X 6
39,5 4,9 3,2
46,4 60,5 20,4
43,7 24,9 9,5
35,7 50,4 34,7
41,8 5,1 17,9
49,8 35,9 12,1
44,1 48,1 18,9
48,1 69,5 12,2
47,6 31,9 8,1
58,6 139,4 29,7
70,4 16,9 5,3
37,5 17,8 5,6
62,0 27,6 12,3
34,4 13,9 3,2
35,4 37,3 19,0
40,8 55,3 19,3
48,1 35,1 12,4


Построить матрицу парных коэффициентов корреляции. Проверить наличие мультиколлинеарности. Обосновать отбор факторов в модель

В таблице 2 представлена матрица коэффициентов парной корреляции для всех переменных, участвующих в рассмотрении. Матрица получена с помощью инструмента Корреляция из пакета Анализ данных в Excel.

Таблица 2. Матрица коэффициентов парной корреляции

Y X1 X2 X3 X4 X5 X6
Y
X1 0,995634
X2 0,996949 0,994947
X3 -0,25446 -0,27074 -0,26264
X4 0,12291 0,07251 0,107572 0,248622
X5 0,222946 0,166919 0,219914 -0,07573 0,671386
X6 0,067685 -0,00273 0,041955 -0,28755 0,366382 0,600899

Визуальный анализ матрицы позволяет установить:

1) У имеет довольно высокие парные корреляции с переменными Х1, Х2 (>0,5) и низкие с переменными Х3,Х4,Х5,Х6 (<0,5);

2) Переменные анализа Х1, Х2 демонстрируют довольно высокие парные корреляции, что обуславливает необходимость проверки факторов на наличие между ними мультиколлинеарности. Тем более, что одним из условий классической регрессионной модели является предположение о независимости объясняющих переменных.

Для выявления мультиколлинеарности факторов выполним тест Фаррара-Глоубера по факторам Х1,Х2,Х3,Х4,Х5,Х6 .

Проверка теста Фаррара-Глоубера на мультиколлинеарность факторов включает несколько этапов.

1) Проверка наличия мультиколлинеарности всего массива переменных .

Одним из условий классической регрессионной модели является предположение о независимости объясняющих переменных. Для выявления мультиколлинеарности между факторами вычисляется матрица межфакторных корреляций R с помощью Пакета анализа данных (таблица 3).

Таблица 3.Матрица межфакторных корреляций R

X1 X2 X3 X4 X5 X6
X1 0,994947 -0,27074 0,07251 0,166919 -0,00273
X2 0,994947 -0,26264 0,107572 0,219914 0,041955
X3 -0,27074 -0,26264 0,248622 -0,07573 -0,28755
X4 0,07251 0,107572 0,248622 0,671386 0,366382
X5 0,166919 0,219914 -0,07573 0,671386 0,600899
X6 -0,00273 0,041955 -0,28755 0,366382 0,600899

Между факторами Х1 и Х2, Х5 и Х4, Х6 и Х5 наблюдается сильная зависимость (>0,5).

Определитель det (R) = 0,001488 вычисляется с помощью функции МОПРЕД. Определитель матрицы R стремится к нулю, что позволяет сделать предположение об общей мультиколлинеарности факторов.

2) Проверка наличия мультиколлинеарности каждой переменной с другими переменными:

· Вычислим обратную матрицу R -1 с помощью функции Excel МОБР (таблица 4):

Таблица 4. Обратная матрица R -1

X1 X2 X3 X4 X5 X6
X1 150,1209 -149,95 3,415228 -1,70527 6,775768 4,236465
X2 -149,95 150,9583 -3,00988 1,591549 -7,10952 -3,91954
X3 3,415228 -3,00988 1,541199 -0,76909 0,325241 0,665121
X4 -1,70527 1,591549 -0,76909 2,218969 -1,4854 -0,213
X5 6,775768 -7,10952 0,325241 -1,4854 2,943718 -0,81434
X6 4,236465 -3,91954 0,665121 -0,213 -0,81434 1,934647

· Вычисление F-критериев , где – диагональные элементы матрицы , n=17, k = 6 (таблица 5).

Таблица 5. Значения F-критериев

F1 (Х1) F2 (Х2) F3 (Х3) F4 (Х4) F5 (Х5) F6 (Х6)
89,29396 89,79536 0,324071 0,729921 1,163903 0,559669

· Фактические значения F-критериев сравниваются с табличным значением F табл = 3,21 (FРАСПОБР(0,05;6;10)) при n1= 6 и n2 = n - k – 1=17-6-1=10 степенях свободы и уровне значимости α=0,05, где k – количество факторов.

· Значения F-критериев для факторов Х1 и Х2 больше табличного, что свидетельствует о наличии мультиколлинеарности между данными факторами. Меньше всего влияет на общую мультиколлинеарность факторов фактор Х3.

3) Проверка наличия мультиколлинеарности каждой пары переменных

· Вычислим частные коэффициенты корреляции по формуле , где – элементы матрицы (таблица 6)

Таблица 6. Матрица коэффициентов частных корреляций

X1 X2 X3 X4 X5 X6
X1
X2 0,996086
X3 -0,22453 0,197329
X4 0,093432 -0,08696 0,415882
X5 -0,32232 0,337259 -0,1527 0,581191
X6 -0,24859 0,229354 -0,38519 0,102801 0,341239

· Вычисление t -критериев по формуле (таблица 7)

n - число данных = 17

K - число факторов = 6

Таблица 7.t-критерии для коэффициентов частной корреляции

X1 X2 X3 X4 X5 X6
X1
X2 35,6355
X3 -0,72862 0,636526
X4 0,296756 -0,27604 1,446126
X5 -1,07674 1,13288 -0,4886 2,258495
X6 -0,81158 0,745143 -1,31991 0,326817 1,147999

t табл = СТЬЮДРАСПОБР(0,05;10) = 2,23

Фактические значения t-критериев сравниваются с табличным значением при степенях свободы n-k-1 = 17-6-1=10 и уровне значимости α=0,05;

t21 > tтабл

t54 > tтабл

Из таблиц 6 и 7 видно, что две пары факторов X1 и Х2, Х4 и Х5 имеют высокую статистически значимую частную корреляцию, то есть являются мультиколлинеарными. Для того чтобы избавиться от мультиколлинеарности, можно исключить одну из переменных коллинеарной пары. В паре Х1 и Х2 оставляем Х2, в паре Х4 и Х5 оставляем Х5.

Таким образом, в результате проверки теста Фаррара-Глоубера остаются факторы: Х2, Х3, Х5, Х6.

Завершая процедуры корреляционного анализа, целесообразно посмотреть частные корреляции выбранных факторов с результатом Y.

Построим матрицу парных коэффициентов корреляции, исходя из данных таблицы 8.

Таблица 8. Данные выпуска продукции с отобранными факторами Х2, Х3, Х5, Х6.

№ наблю-дения Y X 2 X 3 X 5 X 6
39,5 3,2
46,4 20,4
43,7 9,5
35,7 34,7
41,8 17,9
49,8 12,1
44,1 18,9
48,1 12,2
47,6 8,1
58,6 29,7
70,4 5,3
37,5 5,6
12,3
34,4 3,2
35,4
40,8 19,3
48,1 12,4

В последнем столбце таблицы 9 представлены значения t-критерия для столбца У.

Таблица 9.Матрица коэффициентов частной корреляции с результатом Y

Y X2 X3 X5 X6 t критерий (t табл (0,05;11)= 2,200985
Y 0,996949 -0,25446 0,222946 0,067685
X2 0,996949 -0,26264 0,219914 0,041955 44,31676
X3 -0,25446 -0,26264 -0,07573 -0,28755 0,916144
X5 0,222946 0,219914 -0,07573 0,600899 -0,88721
X6 0,067685 0,041955 -0,28755 0,600899 1,645749

Из таблицы 9 видно, что переменная Y имеет высокую и одновременно статистически значимую частную корреляцию с фактором Х2.

По территориям Южного федерального округа РФ приводятся данные за 2011 год

Территории федерального округа

Валовой региональный продукт, млрд. руб., Y

Инвестиции в основной капитал, млрд. руб., X1

1. Респ. Адыгея

2. Респ. Дагестан

3. Респ. Ингушетия

4. Кабардино-БалкарскаяРесп.

5. Респ. Калмыкия

6. Карачаево-ЧеркесскаяРесп.

7. Респ. Северная Осетия - Алания

8. Краснодарский кра)

9. Ставропольский край

10. Астраханская обл.

11. Волгоградская обл.

12. Ростовская обл.

  • 1. Рассчитайте матрицу парных коэффициентов корреляции; оцените статистическую значимость коэффициентов корреляции.
  • 2. Постройте поле корреляции результативного признака и наиболее тесно связанного с ним фактора.
  • 3. Рассчитайте параметры линейной парной регрессии для каждого фактора Х..
  • 4. Оцените качество каждой модели через коэффициент детерминации, среднюю ошибку аппроксимации и F-критерий Фишера. Выберите лучшую модель.

составит 80% от его максимального значения. Представьте графически: фактические и модельные значения, точки прогноза.

  • 6. Используя пошаговую множественную регрессию (метод исключения или метод включения), постройте модель формирования цены квартиры за счёт значимых факторов. Дайте экономическую интерпретацию коэффициентов модели регрессии.
  • 7. Оцените качество построенной модели. Улучшилось ли качество модели по сравнению с однофакторной моделью? Дайте оценку влияния значимых факторов на результат с помощью коэффициентов эластичности,в - и -? коэффициентов.

При решении данной задачи расчеты и построение графиков и диаграмм будем вести с использованием настройки Excel Анализ данных.

1. Рассчитаем матрицу парных коэффициентов корреляции и оценим статистическую значимость коэффициентов корреляции

В диалоговом окне Корреляция в поле Входной интервал вводим диапазон ячеек, содержащих исходные данные. Так как мы выделили и заголовки столбцов, то устанавливаем флажок Метки в первой строке.

Получили следующие результаты:

Таблица 1.1 Матрица парных коэффициентов корреляции

Анализ матрицы коэффициентов парной корреляции показывает, что зависимая переменная Y, т.е валового регионального продукта имеет более тесную связь с Х1 (инвестиции в основной капитал). Коэффициент корреляции равен 0,936. Это означает, что на 93,6% зависимая переменная Y (валовой региональный продукт) зависит от показателя Х1 (инвестиции в основной капитал).

Статистическая значимость коэффициентов корреляции определим с помощью t-критерия Стьюдента. Табличное значение сравниваем с расчетными значениями.

Вычислим табличное значение с помощью функции СТЬЮДРАСПОБР.

t табл.=0,129 при доверительной вероятности равной 0,9 и степенью свободы (n-2).

Статистическим значимым является фактор Х1.

2. Построим поле корреляции результативного признака (валового регионального продукта) и наиболее тесно связанного с ним фактора (инвестиции в основной капитал)

Для этого воспользуемся инструментом построения точечной диаграммы программы Excel.

В результате получаем поле корреляции цены валового регионального продукта, млрд. руб. и инвестиции в основной капитал, млрд. руб. (рисунок 1.1.).

Рисунок 1.1

3. Рассчитаем параметры линейной парной регрессии для каждого фактора Х

Для расчета параметров линейной парной регрессии воспользуемся инструментом Регрессия, входящим в настойку Анализ данных.

В диалоговом окне Регрессия в поле Входной интервал Y вводим адрес диапазона ячеек, которые представляет зависимую переменную. В поле

Входной интервал Х вводим адрес диапазона, который содержит значения независимых переменных. Выполним вычисления параметры парной регрессии для фактора Х.

Для Х1 получили следующие данные, представленные в таблице 1.2:

Таблица 1.2

Уравнение регрессии зависимости цены валового регионального продукта от инвестиции в основной капитал имеет вид:

4. Оценим качество каждой модели через коэффициент детерминации, среднюю ошибку аппроксимации и F-критерий Фишера. Установим, какая модель является лучшей.

Коэффициент детерминации, среднюю ошибку аппроксимации мы получили в результате расчетов, проведенных в пункте 3. Полученные данные представлены в следующих таблицах:

Данные по Х1:

Таблица 1.3а

Таблица 1.4б

А) Коэффициент детерминации определяет, какая доля вариации признака У учтена в модели и обусловлена влиянием на него фактора Х. Чем больше значение коэффициента детерминации, тем теснее связь между признаками в построенной математической модели.

В программе Excel обозначается R-квадрат.

Исходя из данного критерия наиболее адекватной является модель уравнения регрессии зависимости цены валового регионального продукта от инвестиции в основной капитал (Х1).

Б) Среднюю ошибку аппроксимации рассчитаем по формуле:

где числитель - сумма квадратов отклонения расчетных значений от фактических. В таблицах она находится в столбце SS, строке Остатки.

Среднее значение цены квартиры рассчитаем в Excel с помощью функции СРЗНАЧ. = 24,18182 млрд. руб.

При проведении экономических расчетов модель считается достаточно точной, если средняя ошибка аппроксимации меньше 5%, модель считается приемлемой, если средняя ошибка аппроксимации меньше 15%.

По данному критерию, наиболее адекватной является математическая модель для уравнения регрессии зависимости цены валового регионального продукта от инвестиции в основной капитал (Х1).

В) Для проверки значимости модели регрессии используется F-тест. Для этого выполняется сравнение и критического (табличного)значений F-критерия Фишера.

Расчетные значения приведены в таблицах 1.4б (обозначены буквой F).

Табличное значение F-критерий Фишера рассчитаем в Excel с помощью функции FРАСПОБР. Вероятность возьмем равной 0,05. Получили: = 4,75

Расчетные значения F-критерий Фишера для каждого фактора сравним с табличным значением:

71,02 > = 4,75 модель по данному критерию адекватна.

Проанализировав данные по всем трем критериям, можно сделать вывод, что наиболее лучшей является математическая модель, построена для фактора валового регионального продукта, которая описана линейным уравнением

5. Для выбранной модели зависимости цены валового регионального продукта

осуществим прогнозирование среднего значения показателя при уровне значимости, если прогнозное значения фактора составит 80% от его максимального значения. Представим графически: фактические и модельные значения, точки прогноза.

Рассчитаем прогнозное значение Х, по условию оно составит 80% от максимального значения.

Рассчитаем Х max в Excel с помощью функции МАКС.

0,8 *52,8 = 42,24

Для получения прогнозных оценок зависимой переменной подставим полученное значение независимой переменной в линейное уравнение:

5,07+2,14*42,24 = 304,55 млрд. руб.

Определим доверительный интервал прогноза, который будет иметь следующие границы:

Для вычисления доверительного интервала для прогнозного значения рассчитываем величину отклонения от линии регрессии.

Для модели парной регрессии величина отклонения рассчитывается:

т.е. значение стандартной ошибки из таблицы 1.5а.

(Так как число степеней свободы равно единицы, то знаменатель будет равен n-2). корреляция парная регрессия прогноз

Для расчета коэффициента воспользуемся функцией Excel СТЬЮДРАСПОБР, вероятность возьмем равную 0,1, число степеней свободы 38.

Значение рассчитаем с помощью Excel, получим 12294.


Определим верхнюю и нижнюю границы интервала.

  • 304,55+27,472= 332,022
  • 304,55-27,472= 277,078

Таким образом, прогнозное значение = 304,55 тыс.долл., будет находиться между нижней границей, равной 277,078 тыс.долл. и верхней границей, равной 332,022 млдр. Руб.

Фактические и модельные значения, точки прогноза представлены графически на рисунке 1.2.


Рисунок 1.2

6. Используя пошаговую множественную регрессию (метод исключения), построим модель формирования цены валового регионального продукта за счёт значимых факторов

Для построения множественной регрессии воспользуемся функцией Регрессия программы Excel, включив в нее все факторы. В результате получаем результативные таблицы, из которых нам необходим t-критерий Стьюдента.

Таблица 1.8а

Таблица 1.8б

Таблица 1.8в.

Получаем модель вида:

Поскольку < (4,75 < 71,024), уравнение регрессии следует признать адекватным.

Выберем наименьшее по модулю значение t-критерия Стьюдента, оно равно 8,427, сравниваем его с табличным значением, которые рассчитываем в Excel, уровень значимости берем равным 0,10, число степеней свободы n-m-1=12-4=8: =1,8595

Поскольку 8,427>1,8595 модель следует признать адекватной.

7. Для оценки значимого фактора полученной математической модели, рассчитаем коэффициенты эластичности, и - коэффициенты

Коэффициент эластичности показывает, насколько процентов изменится результативный признак при изменении факторного признака на 1%:

Э X4 = 2,137 *(10,69/24,182) = 0,94%

То есть с ростом инвестиции в основной капитал 1% стоимость в среднем возрастает на 0,94%.

Коэффициент показывает на какую часть величины среднего квадратического отклонения меняется среднее значение зависимой переменной с изменением независимой переменной на одно среднеквадратическое отклонение.

2,137* (14.736/33,632) = 0,936.

Данные средних квадратических отклонений взяты из таблиц, полученных с помощью инструменты Описательная статистика.

Таблица 1.11 Описательная статистика (Y)

Таблица 1.12 Описательная статистика (Х4)

Коэффициент определяет долю влияния фактора в суммарном влиянии всех факторов:

Для расчета коэффициентов парной корреляции вычисляем матрицу парных коэффициентов корреляции в программе Excel с помощью инструмента Корреляция настройки Анализа данных.

Таблица 1.14

(0,93633*0,93626) / 0,87 = 1,00.

Вывод: Из полученных расчетов можно сделать вывод, что результативный признак Y (валовой региональный продукт) имеет большую зависимость от фактора X1 (инвестиции в основной капитал) (на 100%).

Список литературы

  • 1. Магнус Я.Р., Катышев П.К., Пересецкий А.А. Эконометрика. Начальный курс. Учебное пособие. 2-е изд. - М.: Дело, 1998. - с. 69 - 74.
  • 2. Практикум по эконометрике: Учебное пособие / И.И. Елисеева, С.В. Курышева, Н.М. Гордеенко и др. 2002. - с. 49 - 105.
  • 3. Доугерти К. Введение в эконометрику: Пер. с англ. - М.: ИНФРА-М, 1999. - XIV, с. 262 - 285.
  • 4. Айвызян С.А., Михтирян В.С. Прикладная математика и основы эконометрики. -1998., с 115-147 .
  • 5. Кремер Н.Ш., Путко Б.А. Эконометрика. -2007. с 175-251.

1. ПОСТРОИМ МАТРИЦУ КОЭФФИЦИЕНТОВ ПАРНОЙ КОРРЕЛЯЦИИ.

Для этого рассчитаем коэффициенты парной корреляции по формуле:

Необходимые расчеты представлены в таблице 9.

-

связь между выручкой предприятия Y и объемом капиталовложений Х 1 слабая и прямая;

-

связи между выручкой предприятия Y и основными производственными фондами Х 2 практически нет;

-

связь между объемом капиталовложений Х 1 и основными производственными фондами Х 2 тесная и прямая;

Таблица 9

Вспомогательная таблица для расчета коэффициентов парных корреляций

t Y X1 X2

(y-yср)*
(x1-x1ср)

(y-yср)*
(x2-x2ср)

(х1-х1ср)*
(x2-x2ср)

1998 3,0 1,1 0,4 0,0196 0,0484 0,0841 0,0308 0,0406 0,0638
1999 2,9 1,1 0,4 0,0576 0,0484 0,0841 0,0528 0,0696 0,0638
2000 3,0 1,2 0,7 0,0196 0,0144 1E-04 0,0168 -0,0014 -0,0012
2001 3,1 1,4 0,9 0,0016 0,0064 0,0441 -0,0032 -0,0084 0,0168
2002 3,2 1,4 0,9 0,0036 0,0064 0,0441 0,0048 0,0126 0,0168
2003 2,8 1,4 0,8 0,1156 0,0064 0,0121 -0,0272 -0,0374 0,0088
2004 2,9 1,3 0,8 0,0576 0,0004 0,0121 0,0048 -0,0264 -0,0022
2005 3,4 1,6 1,1 0,0676 0,0784 0,1681 0,0728 0,1066 0,1148
2006 3,5 1,3 0,4 0,1296 0,0004 0,0841 -0,0072 -0,1044 0,0058
2007 3,6 1,4 0,5 0,2116 0,0064 0,0361 0,0368 -0,0874 -0,0152
Σ 31,4 13,2 6,9 0,684 0,216 0,569 0,182 -0,036 0,272
Средн. 3,14 1,32 0,69

Также матрицу коэффициентов парных корреляций можно найти в среде Excel с помощью надстройки АНАЛИЗ ДАННЫХ, инструмента КОРРЕЛЯЦИЯ.

Матрица коэффициентов парной корреляции имеет вид:

Y X1 X2
Y 1
X1 0,4735 1
X2 -0,0577 0,7759 1

Матрица парных коэффициентов корреляции показывает, что результативный признак у (выручка) имеет слабую связь с объемом капиталовложений х 1 , а с Размером ОПФ связи практически нет. Связь между факторами в модели оценивается как тесная, что говорит о их линейной зависимости, мультиколлинеарности.

2. ПОСТРОИТЬ ЛИНЕЙНУЮ МОДЕЛЬ МНОЖЕСТВЕННОЙ РЕГРЕССИИ

Параметры модели найдем с помощью МНК. Для этого составим систему нормальных уравнений.

Расчеты представлены в таблице 10.

Решим систему уравнений, используя метод Крамера:

Таблица 10

Вспомогательные вычисления для нахождения параметров линейной модели множественной регрессии

y
3,0 1,1 0,4 1,21 0,44 0,16 3,3 1,2
2,9 1,1 0,4 1,21 0,44 0,16 3,19 1,16
3,0 1,2 0,7 1,44 0,84 0,49 3,6 2,1
3,1 1,4 0,9 1,96 1,26 0,81 4,34 2,79
3,2 1,4 0,9 1,96 1,26 0,81 4,48 2,88
2,8 1,4 0,8 1,96 1,12 0,64 3,92 2,24
2,9 1,3 0,8 1,69 1,04 0,64 3,77 2,32
3,4 1,6 1,1 2,56 1,76 1,21 5,44 3,74
3,5 1,3 0,4 1,69 0,52 0,16 4,55 1,4
3,6 1,4 0,5 1,96 0,7 0,25 5,04 1,8
31,4 13,2 6,9 17,64 9,38 5,33 41,63 21,63

Линейная модель множественной регрессии имеет вид:

Если объем капиталовложений увеличить на 1 млн. руб., то выручка предприятия увеличиться в среднем на 2,317 млн. руб. при неизменных размерах основных производственных фондов.

Если основные производственные фонды увеличить на 1 млн. руб., то выручка предприятия уменьшиться в среднем на 1,171 млн. руб. при неизменном объеме капиталовложений.

3. РАССЧИТАЕМ:

коэффициент детерминации:

67,82% изменения выручки предприятия обусловлено изменением объема капиталовложений и основных производственных фондов, на 32,18% - влиянием факторов, не включенных в модель.

F – критерий Фишера

Проверим значимость уравнения

Табличное значение F – критерия при уровне значимости α = 0,05 и числе степеней свободы d.f. 1 = k = 2 (количество факторов), числе степеней свободы d.f. 2 = (n – k – 1) = (10 – 2 – 1) = 7 составит 4,74.

Так как F расч. = 7,375 > F табл. = 4.74, то уравнение регрессии в целом можно считать статистически значимым.

Рассчитанные показатели можно найти в среде Excel с помощью надстройки АНАЛИЗА ДАННЫХ, инструмента РЕГРЕССИЯ.


Таблица 11

Вспомогательные вычисления для нахождения средней относительной ошибки аппроксимации

y А
3,0 1,1 0,4 2,97 0,03 0,010
2,9 1,1 0,4 2,97 -0,07 0,024
3,0 1,2 0,7 2,85 0,15 0,050
3,1 1,4 0,9 3,08 0,02 0,007
3,2 1,4 0,9 3,08 0,12 0,038
2,8 1,4 0,8 3,20 -0,40 0,142
2,9 1,3 0,8 2,96 -0,06 0,022
3,4 1,6 1,1 3,31 0,09 0,027
3,5 1,3 0,4 3,43 0,07 0,019
3,6 1,4 0,5 3,55 0,05 0,014
0,353

среднюю относительную ошибку аппроксимации

В среднем расчетные значения отличаются от фактических на 3,53 %. Ошибка небольшая, модель можно считать точной.

4. Построить степенную модель множественной регрессии

Для построения данной модели прологарифмируем обе части равенства

lg y = lg a + β 1 ∙ lg x 1 + β 2 ∙ lg x 2 .

Сделаем замену Y = lg y, A = lg a, X 1 = lg x 1 , X 2 = lg x 2 .

Тогда Y = A + β 1 ∙ X 1 + β 2 ∙ X 2 – линейная двухфакторная модель регрессии. Можно применить МНК.

Расчеты представлены в таблице 12.

Таблица 12

Вспомогательные вычисления для нахождения параметров степенной модели множественной регрессии

y lg y
3,0 1,1 0,4 0,041 -0,398 0,477 0,002 -0,016 0,020 0,158 -0,190
2,9 1,1 0,4 0,041 -0,398 0,462 0,002 -0,016 0,019 0,158 -0,184
3,0 1,2 0,7 0,079 -0,155 0,477 0,006 -0,012 0,038 0,024 -0,074
3,1 1,4 0,9 0,146 -0,046 0,491 0,021 -0,007 0,072 0,002 -0,022
3,2 1,4 0,9 0,146 -0,046 0,505 0,021 -0,007 0,074 0,002 -0,023
2,8 1,4 0,8 0,146 -0,097 0,447 0,021 -0,014 0,065 0,009 -0,043
2,9 1,3 0,8 0,114 -0,097 0,462 0,013 -0,011 0,053 0,009 -0,045
3,4 1,6 1,1 0,204 0,041 0,531 0,042 0,008 0,108 0,002 0,022
3,5 1,3 0,4 0,114 -0,398 0,544 0,013 -0,045 0,062 0,158 -0,217
3,6 1,4 0,5 0,146 -0,301 0,556 0,021 -0,044 0,081 0,091 -0,167
31,4 13,2 6,9 1,178 -1,894 4,955 0,163 -0,165 0,592 0,614 -0,943

Решаем систему уравнений применяя метод Крамера.

Степенная модель множественной регрессии имеет вид:

В степенной функции коэффициенты при факторах являются коэффициентами эластичности. Коэффициент эластичности показывает на сколько процентов измениться в среднем значение результативного признака у, если один из факторов увеличить на 1 % при неизменном значении других факторов.

Если объем капиталовложений увеличить на 1%, то выручка предприятия увеличиться в среднем на 0,897% при неизменных размерах основных производственных фондов.

Если основные производственные фонды увеличить на 1%, то выручка предприятия уменьшиться на 0,226% при неизменных капиталовложениях.

5. РАССЧИТАЕМ:

коэффициент множественной корреляции:

Связь выручки предприятия с объемом капиталовложений и основными производственными фондами тесная.

Таблица 13

Вспомогательные вычисления для нахождения коэффициента множественной корреляции, коэффициента детерминации, ср.относ.ошибки аппроксимации степенной модели множественной регрессии

Y

(Y-Y расч.) 2

A
3,0 1,1 0,4 2,978 0,000 0,020 0,007
2,9 1,1 0,4 2,978 0,006 0,058 0,027
3,0 1,2 0,7 2,838 0,026 0,020 0,054
3,1 1,4 0,9 3,079 0,000 0,002 0,007
3,2 1,4 0,9 3,079 0,015 0,004 0,038
2,8 1,4 0,8 3,162 0,131 0,116 0,129
2,9 1,3 0,8 2,959 0,003 0,058 0,020
3,4 1,6 1,1 3,317 0,007 0,068 0,024
3,5 1,3 0,4 3,460 0,002 0,130 0,012
3,6 1,4 0,5 3,516 0,007 0,212 0,023
31,4 13,2 6,9 0,198 0,684 0,342

коэффициент детерминации:

71,06% изменения выручки предприятия в степенной модели обусловлено изменением объема капиталовложений и основных производственных фондов, на 28,94 % - влиянием факторов, не включенных в модель.

F – критерий Фишера

Проверим значимость уравнения

Табличное значение F – критерия при уровне значимости α = 0,05 и числе степеней свободы d.f. 1 = k = 2, числе степеней свободы d.f. 2 = (n – k – 1) = (10 – 2 – 1) = 7 составит 4,74.

Так как F расч. = 8,592 > F табл. = 4.74, то уравнение степенной регрессии в целом можно считать статистически значимым.

Посадка невозможна, в каком из реализуемых случаев расход топлива меньше. Получить программу оптимального управления, когда до некоторого момента t1 управление отсутствует u*=0, а начиная с t=t1, управление равно своему максимальному значению u*=umax, что соответствует минимальному расходу топлива. 6.) Решить каноническую систему уравнений, рассматривая ее для случаев, когда и управление...

К составлению математических моделей. Если математическая модель - это диагноз заболевания, то алгоритм - это метод лечения. Можно выделить следующие основные этапы операционного исследования: наблюдение явления и сбор исходных данных; постановка задачи; построение математической модели; расчет модели; тестирование модели и анализ выходных данных. Если полученные результаты не удовлетворяют...

Математических построений по аналогии с выявляет в плоском приближении продольно-скалярную электромагнитную волну с электрической - (28) и магнитной (29) синфазными составляющими. Математическая модель безвихревой электродинамики характеризуется скалярно-векторной структурой своих уравнений. Основополагающие уравнения безвихревой электродинамики сведены в таблице 1. Таблица 1 , ...

Z 1 (t)

Z 2 (t)

t

y(t)

Z 1 (t)

Z 2 (t)

t

y(t)

Основная задача, стоящая при выборе факторов включаемых в корреляционную модель, заключается в том, чтобы ввести в анализ все основные факторы, влияющие на уровень изучаемого явления. Однако, введение в модель большого числа факторов нецелесообразно, правильнее отобрать только сравнительно небольшое число основных факторов, находящихся предположительно в корреляционной зависимости с выбранным функциональным показателем.

Это можно сделать с помощью так называемого двух стадийного отбора. В соответствии с ним в модель включаются все предварительно отобранные факторы. Затем среди них на основе специальной количественной оценки и дополнительно качественного анализа выявляются несущественно влияющие факторы, которые постепенно отбрасываются пока не останутся те, относительно которых можно утверждать, что имеющийся статистический материал согласуется с гипотезой об их совместном существенном влиянии на зависимую переменную при выбранной форме связи.

Свое наиболее законченное выражение двух стадийный отбор получил в методике так называемого многошагового регрессионного анализа, при котором отсев несущественных факторов происходит на основе показателей их значимости, в частности на основе величины t ф - расчетном значении критерия Стьюдента.

Рассчитаем t ф по найденным коэффициентам парной корреляции и сравним их с t критическим для 5% уровня значимости (двустороннего) и 18 степенями свободы (ν = n-2).

где r – значение коэффициента парной корреляции;

n – число наблюдений (n=20)

При сравнении t ф для каждого коэффициента с t кр = 2,101 получаем, что найденные коэффициенты признаются значимыми, т.к. t ф > t кр.

t ф для r yx 1 = 2, 5599 ;

t ф для r yx 2 = 7,064206 ;

t ф для r yx 3 = 2,40218 ;

t ф для r х1 x 2 = 4,338906 ;

t ф для r х1 x 3 = 15,35065;

t ф для r х2 x 3 = 4,749981

При отборе факторов включаемых в анализ к ним предъявляются специфические требования. Прежде всего, показатели, выражающие эти факторы должны быть количественно измеримы.

Факторы, включаемые в модель, не должны находиться между собой в функциональной или близкой к ней связи. Наличие таких связей характеризуется мультиколлинеарностью.

Мультиколлинеарность свидетельствует о том, что некоторые факторы характеризуют одну и ту же сторону изучаемого явления. Поэтому их одновременное включение в модель нецелесообразно, так как они в определённой степени дублируют друг друга. Если нет особых предположений говорящих в пользу одного из этих факторов, следует отдавать предпочтение тому из них, который характеризуется большим коэффициентом парной (или частной) корреляции.

Считается, что предельным является значение коэффициента корреляции между двумя факторами, равное 0,8.

Мультиколлинеарность обычно приводит к вырождению матрицы переменных и, следовательно, к тому, что главный определитель уменьшает свое значение и в пределе становится близок к нулю. Оценки коэффициентов уравнения регрессии становятся сильно зависимыми от точности нахождения исходных данных и резко изменяют свои значения при изменении количества наблюдений.

Коллинеарными являются факторы …

И коллинеарны.

4. В модели множественной регрессии определитель матрицы парных коэффициентов корреляции между факторами , и близок к нулю. Это означает, что факторы , и … мультиколлинеарность факторов.

5. Для эконометрической модели линейного уравнения множественной регрессии вида построена матрица парных коэффициентов линейной корреляции (y – зависимая переменная; х (1) , х (2) , х (3) , x (4) – независимые переменные):


Коллинеарными (тесно связанными) независимыми (объясняющими) переменными не являются x (2) и x (3)

1. Дана таблица исходных данных для построения эконометрической регрессионной модели:

Фиктивными переменными не являются

стаж работы

производительность труда

2. При исследовании зависимости потребления мяса от уровня дохода и пола потребителя можно рекомендовать …

использовать фиктивную переменную – пол потребителя

разделить совокупность на две: для потребителей женского пола и для потребителей мужского пола

3. Изучается зависимость цены квартиры (у ) от ее жилой площади (х ) и типа дома. В модель включены фиктивные переменные, отражающие рассматриваемые типы домов: монолитный, панельный, кирпичный. Получено уравнение регрессии: ,
где ,
Частными уравнениями регрессии для кирпичного и монолитного являются …

для типа дома кирпичный

для типа дома монолитный

4. При анализе промышленных предприятий в трех регионах (Республика Марий Эл, Республика Чувашия, Республика Татарстан) были построены три частных уравнения регрессии:

для Республики Марий Эл;

для Республики Чувашия;

для Республики Татарстан.

Укажите вид фиктивных переменных и уравнение с фиктивными переменными, обобщающее три частных уравнения регрессии.

5. В эконометрике фиктивной переменной принято считать …

переменную, принимающую значения 0 и 1

описывающую количественным образом качественный признак

1. Для регрессионной модели зависимости среднедушевого денежного дохода населения (руб., у ) от объема валового регионального продукта (тыс. р., х 1 ) и уровня безработицы в субъекте (%, х 2 ) получено уравнение . Величина коэффициента регрессии при переменной х 2 свидетельствует о том, что при изменении уровня безработицы на 1% среднедушевой денежный доход ______ рубля при неизменной величине валового регионального продукта.

изменится на (-1,67)

2. В уравнении линейной множественной регрессии: , где – стоимость основных фондов (тыс. руб.); – численность занятых (тыс. чел.); y – объем промышленного производства (тыс. руб.) параметр при переменной х 1 , равный 10,8, означает, что при увеличении объема основных фондов на _____ объем промышленного производства _____ при постоянной численности занятых.


на 1 тыс. руб. … увеличится на 10,8 тыс. руб.

3. Известно, что доля остаточной дисперсии зависимой переменной в ее общей дисперсии равна 0,2. Тогда значение коэффициента детерминации составляет … 0,8

4. Построена эконометрическая модель для зависимости прибыли от реализации единицы продукции (руб., у ) от величины оборотных средств предприятия (тыс. р., х 1 ): . Следовательно, средний размер прибыли от реализации, не зависящий от объема оборотных средств предприятия, составляет _____ рубля. 10,75

5. F-статистика рассчитывается как отношение ______ дисперсии к ________ дисперсии, рассчитанных на одну степень свободы. факторной … остаточной

1. Для эконометрической модели уравнения регрессии ошибка модели определяется как ______ между фактическим значением зависимой переменной и ее расчетным значением. Разность

2. Величина называется … случайной составляющей

3. В эконометрической модели уравнения регрессии величина отклонения фактического значения зависимой переменной от ее расчетного значения характеризует … ошибку модели

4. Известно, что доля объясненной дисперсии в общей дисперсии равна 0,2. Тогда значение коэффициента детерминации составляет … 0,2

5. При методе наименьших квадратов параметры уравнения парной линейной регрессии определяются из условия ______ остатков . минимизации суммы квадратов

1. Для обнаружения автокорреляции в остатках используется …

статистика Дарбина – Уотсона

2. Известно, что коэффициент автокорреляции остатков первого порядка равен –0,3. Также даны критические значения статистики Дарбина – Уотсона для заданного количества параметров при неизвестном и количестве наблюдений , . По данным характеристикам можно сделать вывод о том, что …автокорреляция остатков отсутствует