Рибосомы и ее функции. Строение рибосом. Роль рибосом в организме

Рибосома - это маленькая электронно-плотная частица, образованная связанными между собой молекулами рРНК и белками, которые формируют сложное надмолекулярное соединение - рибонуклеопротеидный комплекс.

В рибосомах белки и молекулы рРНК находятся примерно в равных весовых отношениях. В состав цитоплазматических рибосом эукариот входят четыре молекулы рРНК, различающиеся по молекулярной массе. Количество органелл в клетке весьма разнообразно: тысячи и десятки тысяч. Рибосомы могут быть связаны с ЭПС или находиться в свободном состоянии.

Рибосома представляет собой сложное органическое соединение, формирующее компактную органеллу, способную считывать информацию с цепей иРНК и, используя ее, синтезировать полипептидные цепочки.

Рибосома расшифровывает информационный код, содержащийся в иРНК, который составлен четырьмя видами нуклеотидов. Три нуклеотида, располагаясь в различных последовательностях, несут информацию о двадцати аминокислотах. Рибосома, по сути дела, исполняет роль переводчика этой информации. Эта задача разрешается с помощью тРНК и ферментов, синтезирующих полипептидные цепочки. Такие ферменты называются аминоацил-тРНК-синтетазами. Число аминоацил-тРНК-синтетаз определяется разнообразием аминокислот, так как каждой аминокислоте соответствует свой фермент. Таким образом, в каждой рибосоме не менее 20 видов таких ферментов.

Рибосома состоит из большой и малой субъединиц. Каждая из субъединиц построена из рибонуклеопротеидного тяжа, где рРНК взаимодействует со специальными белками и образует тело рибосомы. Рибосомы образуются в ядрышке или матриксе митохондрий. Синтез полипептидных цепочек, осуществляемый рибосомами, называется трансляцией рРНК - это основа для формирования рибосом. Малая субъединица рибосомы образована одной молекулой рРНК и примерно 30 белками. В большую субъединицу встроена одна длинная рРНК и две коротких. С ними связаны 45 молекул белков.

тРНК - это небольшие молекулы, состоящие из 70…90 нуклеотидов, которые имеют форму листа клевера. тРНК доставляет аминокислоты к рибосомам. Каждая молекула тРНК имеет акцепторный конец, к которому присоединяется активированная аминокислота. Аминокислоты прикрепляются к последовательности трех нуклеотидов, комплементарных (соответствующих) нуклеотидам кодона в иPHК - антикодону.

Различают цитоплазматические (свободные и связанные) и митохондриальные рибосомы. Цитоплазматические и митохондриальные рибосомы значительно отличаются друг от друга по химическому составу, размерам и происхождению.

При электронной микроскопии обнаруживают как единичные рибосомы, так и их комплексы (полисомы). Вне синтеза субъединицы рибосом располагаются отдельно друг от друга. Субъединицы объединяются в момент трансляции информации с иРНК. При этом трансляция информации с одной молекулы иРНК осуществляют несколько рибосом (от 5…6 до нескольких десятков). Такие рибосомы чаще всего формируют так называемые полисомы - рыхлый конгломерат рибосом, располагающийся цепочкой по ходу иРНК. Это позволяет синтезировать с одной молекулы иРНК сразу несколько полипептидных цепочек.

Вне трансляции субъединицы рибосом могут распадаться и вновь объединяться. Этот процесс находится в динамическом равновесии. Процесс трансляции запускается со сборки активной рибосомы и обозначается как инициация трансляции. В собранной рибосоме имеются активные центры. Такие центры располагаются на контактирующих поверхностях обеих субъединиц. Между малой и большой субъединицами располагается серия углублений. В этих полостях находятся: иРНК, тРНК и синтезируемый пептид (пептидил-тРНК). Зоны, связанные с синтетическими процессами, формируют следующие активные центры:

  • центр связывания иРНК (М-центр);
  • пептидильный центр (П-центр), на котором происходит инициация и окончание считывания информации, а в процессе синтеза полипептида на нем находится полипептидная цепочка;
  • аминокислотный центр (A-центр), место связывания с очередной тРНК;
  • пептидилтрансферазный центр (ПТФ-центр). Здесь происходит катализ синтеза полипептида и синтезируемая молекула удлиняется на еще одну аминокислоту.

На малой субъединице расположен М-центр, основная часть A-центра и небольшой участок П-центра. На большой субъединице можно найти остальные части А- и П-центров, а также ПТФ-центр.

Трансляция начинается со стартового кодона - триплета аденин-урацил-гуанин, расположенного в 5′-конце иРНК. Он присоединяется к малой субъединице на уровне П-центра будущей рибосомы. Затем происходит объединение комплекса с большой субъединицей. Этот процесс активируют или, наоборот, блокируют белковые факторы. С момента формирования рибосома прерывисто, триплет за триплетом движется вдоль молекулы и РНК, что сопровождается ростом полипептидной цепочки. Число аминокислот в таком белке равно числу триплетов иРНК.

Процесс трансляции предполагает цикл близких событий и называется элонгацией - удлинение пептидной цепочки. Сигналом для прекращения трансляции служит появление в иРНК одного из «бессмысленных» кодонов (УАА, УАГ, УГА). Эти кодоны узнает один из двух факторов терминации. Они активируют гидролазную активность пептидилтрансферазного центра, что сопровождается отщеплением образованного полипептида, распадом рибосомы на субъединицы и прекращением синтеза.

Свободные рибосомы распределены в матриксе цитоплазмы. Они находятся либо в виде субъединиц и не участвуют в трансляции, либо «считывают» информацию, образуя полипептидные цепочки белков матрикса цитоплазмы и ядра, цитоскелета клетки и т. д.

Связанные рибосомы - это такие рибосомы, которые прикреплены к мембранам гр. ЭПС или к наружной мембране ядерной оболочки. Происходит это только в момент синтеза полипептидных цепочек белков, формирующих секреторные гранулы цитолеммы, лизосом, ЭПС, комплекса Гольджи и др.

Синтез белковых молекул происходит непрерывно и идет с большой скоростью: в одну минуту образуются от 50 до 60 тыс. пептидных связей. За одну секунду рибосома эукариот считывает информацию с 2…15 кодонов (триплетов) иРНК. Синтез одной молекулы крупного белка (глобулина) длится около 2 мин. У бактерий этот процесс идет гораздо быстрее.

Таким образом, рибосомы - это органеллы, обеспечивающие анаболические процессы в клетке, а именно синтез полипептидных цепочек белков.

В слабо специализированных и быстро растущих клетках в основном обнаруживают свободные рибосомы. В специализированных клетках рибосомы располагаются в составе гр. ЭПС. Содержание РНК и соответственно степень белковых синтезов соотносится с количеством рибосом. Это сопровождается склонностью к базофилии цитоплазмы, то есть способностью окрашиваться основными красителями.

В клетках некоторых типов цитоплазма более базофильна, чем в других. Базофилия может быть диффузной или локальной. С помощью электронной микроскопии установлено, что локальная базофилия создается гр. ЭПС, а именно прикрепленными к ее мембранам рибосомами. Примерами подобной, фокусной базофилии служат: цитоплазма нейрона, базальный полюс железистого эпителия концевых отделов экзокринной части поджелудочной железы, белковопродутдирующие клетки слюнных желез. Диффузная базофилия обусловлена свободными рибосомами. Базофилию выявляют и в случае накопления в цитоплазме включений или большого количества лизосом, имеющих кислое содержимое. В этих случаях видна базофильно окрашенная зернистость.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Рибосомы - это большие молекулярные машины, состоящие из молекул РНК и белков, которые присутствуют во всех живых клетках. Их биологическая роль заключается в осуществлении трансляции - процесса биосинтеза белковых молекул, в ходе которого последовательность аминокислот в полипептидных цепях однозначно определяется информацией генетического кода. В 2000 году ученые определили атомную структуру малой субъединицы бактериальной рибосомы и большой субъединицы рибосомы архебактерий. Это позволило гораздо лучше понять работу трансляционного аппарата у прокариотических организмов. Теперь удалось определить молекулярную структуру малой субъединицы эукариотической рибосомы в комплексе с фактором инициации трансляции eIF1 с разрешением 3,9 ангстрем.

Как известно, биомолекулы способны образовывать кристаллы, которые могут рассеивать рентгеновские лучи. На основании картины дифракции рентгеновских лучей кристаллами можно воссоздать трехмерную кристаллическую структуру. Процесс получения трехмерной структуры белка состоит из нескольких стадий. Поскольку для кристаллизации необходимо большое количество белка, то, как правило, первым этапом является молекулярное клонирование его гена (генов) с последующей экспрессией , например в специальных бактериальных штаммах. Далее происходит очистка белкового препарата в несколько стадий различных хроматографий , так как белки, используемые для кристаллизации, должны обладать высокой степенью чистоты. Следующая стадия - кристаллизация белков (или комплексов), где применяется довольно много технических ухищрений для получения кристаллов, подходящих для дальнейшей работы. После получения удачных образцов кристаллов их замораживают и хранят в жидком азоте до следующей стадии - рассеивания рентгеновских лучей и получения картины их дифракции. Этот этап осуществляется при помощи синхротронов : кристалл облучается рентгеновскими лучами при разных углах поворота вокруг собственной оси. Картины дифракции записывают и анализируют при помощи специализированного программного обеспечения. Одна из главных характеристик на этом этапе - разрешение дифракционной картины рассеивания рентгеновских лучей, что определяет, например, будут ли видны отдельные аминокислоты на конечной структуре или только элементы вторичной структуры белка. Последняя стадия - построение компьютером модели структуры белка и окончательное определение пространственной структуры белка или комплекса белков с другими молекулами.

Благодаря комбинации методик по моделированию атомных структур, авторы построили пространственную модель рибосомальной 40S-субъединицы, а также определили третичную структуру всей молекулы 18S-рибосомальной РНК (рРНК); см. рис. 1.

Эукариотическая 40S-субъединица содержит 33 белковые молекулы, 18 из которых отсутствуют у бактерий. В результате данного исследования были показаны пространственные укладки всех рибосомальных белков малой 40S-субъединицы (рис. 2 и 3).

К настоящему моменту известно, что для преодоления пространственных помех во время процесса трансляции, обусловленных элементами вторичной структуры мРНК, рибосомы обладают внутренней хеликазной активностью, чтобы расплетать молекулы мРНК. В ходе исследования был смоделирован канал для мРНК в эукариотической рибосоме, особенности которого по сравнению с аналогичной структурой бактериальных рибосом также обуславливают разницу инициации трансляции у прокариот и эукариот (рис. 4A).

Теперь известно, что эукариотические рибосомальные белки образуют протяженные контакты между собой, а не с рРНК, как у прокариот. Полученные данные позволяют говорить о том, что форма «клюва» эукариотической малой субъединицы похожа на такую же структуру у малой субъединицы прокариотической рибосомы, но состоит в основном из белков, а не из РНК (рис. 4B).

Эукариотический фактор инициации eIF1 не имеет структурных гомологов у бактерий, хотя некоторые функции у него схожи с бактериальным фактором инициации трансляции IF3. Фактор eIF1 играет важную роль в инициации трансляции у эукариот - с его участием происходит переход 40S-субъединицы в конформацию , готовую к сканированию мРНК. Во время сканирования фактор eIF1 способен распознать стартовый кодон трансляции, далее происходит его диссоциация из инициаторного комплекса, что приводит к формированию закрытого комплекса у малой 40S-субъединицы. В данной работе авторы впервые показали точную локализацию и характер взаимодействия инициаторного фактора eIF1 с 40S-субъединицей (рис. 5), что приоткрывает занавес над вопросом о взаимодействии фактора eIF1 и инициаторной транспортной РНК (тРНК).

Таким образом, определение кристаллической структуры 40S-субъединицы демонстрирует функциональные и эволюционные особенности эукариотических рибосом. Для дальнейшего уточнения полученных данных и ответов на вопросы о сборке, созревании и транспортировке 40S-субъединиц необходимы биохимические и генетические эксперименты, отправной точкой для которых послужит полученная в результате данной работы структура.

Рибосомы являются важнейшими органоидами клетки, так как на них протекает процесс трансляции - синтез полипептида на матричной РНК (мРНК). Другими словами, рибосомы служат местом белкового синтеза .

Строение рибосом

Рибосомы относятся к немембранным органоидам. Они очень мелкие (около 20 нм), но многочисленные (тысячи и даже миллионы на клетку), состоят из двух частей – суб ъединиц . В состав субчастиц входят рибосомальные РНК (рРНК) и рибосомные белки, т. е. рибосомы по химическому составу являются рибонуклеопротеи д ами . Однако в них также присутствует небольшое количество низкомолекулярных соединений. Из-за многочисленности рибосом, рРНК составляет более половины от всей РНК клетки.

Одну из субъединиц называют «малой», вторую – «большой».

В собранной из субъединиц рибосоме выделят два (по одним источникам) или три (по другим) участка, которые называют сайтами . Один из участков обозначают A (aminoacyl) и называют аминоацильным, второй - P (peptidyl) - пептидильный. Данные сайты являются основными каталитическими центрами протекающих на рибосомах реакций. Третий участок обозначают E (exit), через него освободившаяся от синтезируемого полипептида транспортная РНК (тРНК), покидает рибосому.

Кроме перечисленных сайтов на рибосомах есть другие участки, используемые для связывания различных ферментов.

Когда субъединицы диссоциированы (разъединены) специфичность сайтов теряется, т. е. они определяются сочетанием соответствующих областей обеих субъединиц.

Отличие рибосом прокариот и эукариот

Соотношение по массе белков и РНК в рибосоме примерно поровну. Однако у прокариот белков меньше (около 40%).

Размеры как самих рибосом, так и субъединиц выражают в скорости их седиментации (осаждения) при центрифугировании. При этом S обозначает константу Сведберга - единицу, характеризующую скорость оседания в центрифуге (чем больше S, тем быстрее частица осаждается, а значит тяжелее). У прокариот рибосомы имеют размер в 70S, а у эукариот - в 80S (т. е. они тяжелее и крупнее). При этом субъединицы прокариотических рибосом имеют значения 30S и 50S, а эукариотических - 40S и 60S. Размеры рибосом в митохондриях и хлоропластах эукариот сходны с прокариотическими (хотя имеют определенную вариабельность по размерам), что может указывать на их происхождение от древних прокариотических организмов.

У прокариот в состав большой субъединицы рибосом входит две молекулы рРНК и более 30 молекул белка, в состав малой - одна молекула рРНК и около 20 белков. У эукариот в субъединицах больше молекул белка, а также в большой субъединице три молекулы рРНК. Составляющие рибосому белки и молекулы рРНК обладают способностью к самосборке и в итоге образуют сложную трехмерную структуру. Структуру рРНК поддерживают ионы магния.

Синтез рРНК

У эукариот в состав рибосом входят 4 вида рРНК. При этом три образуются из одного транскрипта-предшественника - 45S рРНК. Он синтезируется в ядрышке (на петлях хромосом его формирующем) при помощи РНК-полимеразы-1. Гены рРНК имеют много копий (десятки и сотни) и обычно располагаются на концах разных пар хромосом. После синтеза 45S рРНК разрезается на 18S, 5.8S и 28S рРНК, каждая из которых подвергается тем или иным модификациям.

Четвертый вид рРНК синтезируется вне ядрышка с помощью фермента РНК-полимеразы-3. Это 5S РНК, которая после синтеза не нуждается в .

Третичная структура рРНК в составе рибосом очень сложная и компактная. Она служит каркасом для размещения рибосомных белков, которые выполняют вспомогательные функции для поддержания структуры и функциональности.

Функция рибосом

Функционально рибосомы являются местом связывания молекул, участвующих в синтезе (мРНК, тРНК, различные факторы). Именно в рибосоме молекулы могут занять друг по отношению к другу такое положение, которое позволит быстро протечь химической реакции реакции.

В эукариотических клетках рибосомы могут находиться свободно в цитоплазме или быть прикрепленными с помощью специальных белков к ЭПС (эндоплазматическая сеть, она же ЭР - эндоплазматический ретикулум).

В процессе трансляции рибосома перемещается по мРНК. Часто по одной нитевидной мРНК двигаются несколько (или множество) рибосом, образуя так называемую полисому (полирибосому).

РИБОСОМА (от «рибонуклеиновая кислота» и греч. «сома» – тело), органоид, синтезирующий белки. Присутствует в клетках всех организмов, как эукариот, так и прокариот. Представляет собой сферическую частицу диаметром ок. 20 нм, состоящую из двух субчастиц, которые могут разъединяться и вновь объединяться. Структурный каркас рибосомы образован молекулами рибосомальной РНК (р-РНК) и связанными с ними белками. В клетках эукариот рибосомы формируются в ядрышке, где на ДНК синтезируется р-РНК, к которой затем присоединяются белки. Субчастицы рибосомы выходят из ядра в цитоплазму, и здесь завершается формирование полноценных рибосом. В цитоплазме рибосомы свободно находятся в цитоплазматическом матриксе (гиалоплазме) или прикрепляются к внешним мембранам ядра и эндоплазматической сети. Свободные рибосомы синтезируют белки для внутренних нужд клетки. Рибосомы на мембранах образуют комплексы – полирибосомы, которые синтезируют белки, поступающие через эндоплазматическую сеть в аппарат Гольджи и затем секретируемые клеткой. Количество рибосом в клетке зависит от интенсивности биосинтеза белка – их больше в клетках активно растущих тканей (меристем растений, зародышей и т. п.). В хлоропластах и митохондриях есть свои собственные мелкие рибосомы, они обеспечивают этим органоидам автономный (независимый от ядра) биосинтез белков (см. Трансляция).

Схема строения рибосомы, сидящей на мембране эндоплазматнческой сети:
1 — малая субъединица;
2 — иРНК;
3 — аминоацил — тРНК;
4 — аминокислота;
5 — большая субъединица;
6 — мембрана эндоплазматической сети;
7 — синтезируемая полипептидная цепь.

Каждая рибосома состоит из двух субчастиц-большой и малой. Рибосомы состоят из примерно равных (по массе) количеств РНК и белка (т.е. представляют собой рибонуклеопротеиновые частицы). Входящая в их состав РНК, называемая рибосомной РНК (рРНК), синтезируется в ядрышке. Вместе те и другие образуют сложную трехмерную структуру, обладающую способностью к самосборке.
Во время синтеза белка на рибосомах аминокислоты, из которых строится полипептидная цепь, последовательно одна за другой присоединяются к растущей цепи. Рибосома служит местом связывания для молекул, участвующих в синтезе, т. е. таким местом, где эти молекулы могут занять по отношению друг к другу совершенно определенное положение. В синтезе участвуют: матричная РНК (мРНК), несущая генетические инструкции от ядра клетки, транспортная РНК (тРНК), доставляющая к рибосоме требуемые аминокислоты, растущая полипептидная цепь, а также ряд факторов, ответственные за инициацию, элонгацию и терминацию цепи.
В эукариотических клетках отчетливо видны две популяции рибосом - свободные рибосомы и рибосомы, присоединенные к эндоплазматическому ретикулуму. Строение тех и других идентично, но часть рибосом связана с эндоплазматическим ретикулоумом через белки, которые они синтезируют. Такие белки обычно секретируются. Примером белка, синтезируемого свободными рибосомами, может служить гемоглобин, образующийся в молодых эритроцитах.
В процессе синтеза белка рибосома перемещается вдоль нитевидной молекулы мРНК. Процесс идет более эффективно, когда вдоль мРНК перемещается не одна рибосома, а одновременно много рибосом, напоминающих в этом случае бусины на нитке. Такие цепи рибосом называются полирибосомами или полисомами. На эндоплазматическом ретикулуме полисомы обнаруживаются в виде характерных завитков.

Рибосомный синтез белка-многоэтапный процесс. Первая стадия (инициация) начинается с присоединения матричной РНК (мРНК) к малой рибосомной субчастице, не связанной с большой субчастицей. Характерно, что для начала процесса необходима именно диссоциированная рибосома. К образовавшемуся т. наз. инициаторному комплексу присоединяется большая рибосомная субчастица. В стадии инициации участвуют спец. инициирующий кодон (см. Генетический код), инициаторная транспортная РНК (тРНК) и специфич. белки (т. наз. факторы инициации). Пройдя стадию инициации, рибосома переходит к последоват. считыванию кодонов мРНК по направлению от 5"- к 3"-концу, что сопровождается синтезом полипептидной цепи белка, кодируемого этой мРНК (подробнее о механизме синтеза полипептидов см. в ст. Трансляция). В этом процессе рибосома функционирует как циклически работающая мол. машина. Рабочий цикл рибосомы при элонгации состоит из трех тактов: 1) кодонзависимого связывания аминоацил-тРНК (поставляет аминокислоты в рибосому), 2) транспептидации-переноса С-конца растущего пептида на аминоацил-тРНК, т.е. удлинения строящейся белковой цепи на одно звено, 3) транслокации-перемещения матрицы (мРНК) и пептидил-тРНК относительно рибосомы и переход рибосомы в исходное состояние, когда она может воспринять след. аминоацил-тРНК. Когда рибосома достигнет специального терминирующего кодона мРНК, синтез полипептида прекращается. При участии специфич. белков (т. наз. факторов терминации) синтезир. полипептид освобождается из рибосомы. После терминации рибосома может повторить весь цикл с др. цепью мРНК или др. кодирующей последовательностью той же цепи.

Схема синтеза полипептидной цепи полирибосомой: I-начал о синтеза, II-окончание синтеза; а-мРНК, б-рибосома, в-большая субъединица рибосомы, г-малая субъединица рибосомы.

В клетках с интенсивной секрецией белка и развитым эндоплазматич. ретикулумом значит. часть цитоплазматической рибосомы прикреплена к его мембране на пов-сти, обращенной к цитоплазме. Эти рибосомы синтезируют полипептиды, к-рые непосредственно транспортируются через мембрану для дальнейшей секреции. Синтез полипептидов для внутриклеточных нужд происходит в осн. на свободных (не связанных с мембраной) рибосомах цитоплазмы. При этом транслирующие рибосомы не равномерно диспергированы в цитоплазме, а собраны в группы. Такие агрегаты рибосом представляют собой структуры, где мРНК ассоциирована со многими рибосомами, находящимися в процессе трансляции; эти структуры получили назв. полирибосом или полисом.

При интенсивном синтезе белка расстояние между рибосомами вдоль цепи мРНК в полирибосоме м. б. предельно коротким, т.е. рибосомы находятся почти вплотную друг к другу. Рибосомы, входящие в полирибосомы, работают независимо и каждая из них синтезирует полную полипептидную цепь.

Рибосома – это тот самый рабочий, который претворяет генеральный план в жизнь, изготовляя по лекалам ДНК соответствующие белки.

Хотя могут быть локализованы и в неприкреплённой форме в цитоплазме . Нередко с одной молекулой мРНК ассоциировано несколько рибосом, такая структура называется полирибосомой (полисомой). Синтез рибосом у эукариот происходит в специальной внутриядерной структуре - ядрышке .

Рибосомы представляют собой нуклеопротеид , в составе которого соотношение РНК/белок составляет 1:1 у высших животных и 60-65:35-40 у бактерий. Рибосомная РНК составляет около 70 % всей РНК клетки. Рибосомы эукариот включают четыре молекулы рРНК, из них 18S , 5,8S и 28S рРНК синтезируются в ядрышке РНК-полимеразой I в виде единого предшественника (45S), который затем подвергается модификациям и нарезанию. 5S рРНК синтезируются РНК-полимеразой III в другой части генома и не нуждаются в дополнительных модификациях. Почти вся рРНК находится в виде магниевой соли, что необходимо для поддержания структуры; при удалении ионов магния рибосома подвергается диссоциации на субъединицы.

РНК большой субъединицы

Высокомолекулярная РНК, составляющая структурную основу большой субъединицы рибосомы, обозначается как 23S рРНК (в случае бактериальных рибосом) или 23S-подобная рРНК (в других случаях). Бактериальная 23S рРНК, также как и 16S рРНК, представляет собой одну ковалентно непрерывную полирибонуклеотидную цепь. В то же время 23S-подобная рРНК цитоплазматических рибосом эукариот состоит из двух прочно ассоциированных полирибонуклеотидных цепей - 28S и 5,8S рРНК (5,8S рРНК является структурным эквивалентом 5′-концевого ~160-нуклеотидного сегмента 23S рРНК, который оказался «отщеплён» в виде ковалентно обособленного фрагмента). 23S-подобная рРНК рибосом пластидов растений также состоит из двух прочно ассоциированных полирибонуклеотидных цепей и содержит 4,5S рРНК - структурный эквивалент 3′-концевого сегмента 23S рРНК. Известны случаи и ещё более глубоко зашедшей фрагментированности РНК, примером чего может служить 23S-подобная рРНК цитоплазматических рибосом некоторых протистов. Так, у Crithidia fasciculata она состоит из 7 отдельных фрагментов, а у Euglena gracilis - из 14.

Кроме вышеуказанной 23S(-подобной) рРНК, большая субъединица обычно содержит также относительно низкомолекулярную РНК - так называемую 5S рРНК. В отличие от вышеупомянутых 5,8S и 4,5S рРНК, 5S рРНК менее прочно ассоциирована с 23S(-подобной) рРНК, транскрибируется с отдельного гена и, таким образом, не может быть рассмотрена как отщеплённый фрагмент высокополимерной рРНК. 5S рРНК входит в состав большой субъединицы цитоплазматических рибосом всех прокариот и эукариот, но, по-видимому, не является непременной составляющей любой функциональной рибосомы, так как 5S рРНК отсутствуют в митохондриальных рибосомах млекопитающих (так называемых «минирибосомах»).

Число нуклеотидных звеньев, как и константы седиментации, для образцов 23S и 23S-подобных рРНК из различных источников могут существенно различаться. Например, 23S рРНК Escherichia coli состоит из 2904 нуклеотидных остатков, цитоплазматическая 26S рРНК Saccharomyces cerevisiae - из 3392, митохондриальная 26S рРНК Saccharomyces cerevisiae - из 3273, цитоплазматическая 28S рРНК Homo sapiens - из 5025. Большие субъединицы митохондриальных рибосом млекопитающих содержат относительно короткие 23S-подобные рРНК - всего 1560-1590 нуклеотидных остатков. Молекула 5,8S рРНК комплекса 28S 5,8S рРНК, характерного для цитоплазматических эукариотических рибосом, имеет длину около 160 нуклеотидных остатков. Длина 5S рРНК довольно консервативна и составляет 115-125 нуклеотидных остатков.

Рибосомные белки

Помимо рРНК, рибосома содержит также около 50 (прокариотические рибосомы) или 80 (цитоплазматические рибосомы эукариот) различных белков . Почти каждый из этих белков представлен лишь одной копией на каждую рибосому. Преобладают умеренно-осно́вные белки. Большинство рибосомных белков эволюционно консервативны, многие белки рибосом из различных источников могут быть соотнесены как гомологи , что учитывается в современной универсальной номенклатуре рибосомных белков. Рибосома на 30-50 % состоит из белка.

Низкомолекулярные компоненты

Кроме биополимеров (РНК и белков) в состав рибосом входят также некоторые низкомолекулярные компоненты. Это молекулы воды, ионы металлов (главным образом Mg 2+ - до 2 % сухой массы рибосомы), ди- и полиамины (такие как путресцин , кадаверин , спермидин, спермин - могут составлять до 2,5 % сухой массы рибосомы).

Механизм трансляции

Трансляция - синтез белка рибосомой на основе информации, записанной в матричной РНК (мРНК). У прокариот мРНК связывается с малой субъединицей рибосомы в результате взаимодействия 3′-конца 16S рРНК с комплементарной ему последовательностью Шайн - Дальгарно 5′-конца мРНК (для связывания малой субъединицы эукариотической рибосомы помимо специфического мотива в нуклеотидной последовательности мРНК, необходимо также наличие кэп-структуры на её 5′-конце). Далее происходит позиционирование стартового кодона (как правило, AUG) мРНК на малой субъединице. Дальнейшая ассоциация малой и большой субъединиц происходит при связывании инициаторной тРНК (у прокариот - это формилметионил-тРНК , обозначаемая как fMet-тРНК f Met) и при участии факторов инициации (IF1, IF2 и IF3 у прокариот; в случае эукариотических рибосом в инициации трансляции участвуют аналоги прокариотических факторов, а также дополнительные факторы). Таким образом, распознавание антикодона (в тРНК) происходит на малой субъединице.

После ассоциации, fMet-тРНК f Met находится в P- (peptidyl-) сайте каталитического (пептидилтрансферазного) центра рибосомы. Следующая тРНК, несущая на 3′-конце аминокислоту и комплементарная второму кодону на мРНК, находясь в комплексе с заряженным (GTP) фактором элонгации EF-Tu, поступает в А- (aminoacyl-) сайт рибосомы. Затем, образуется пептидная связь между формилметионином (связанным с тРНК f Met , находящейся в Р-сайте) и аминокислотой, принесённой тРНК, находящейся в А-сайте. Механизм катализа реакции транспептидации (образования пептидной связи в пептидилтрансферазном центре) до сих пор полностью не выяснен. Существует несколько гипотез, объясняющих детали этого процесса:

Вероятно, высокая эффективность катализа достигается сочетанием этих факторов.

После образования пептидной связи, полипептид оказывается связанным с тРНК, находящейся в А-сайте. На следующем этапе деацилированная тРНК f Met сдвигается из Р-сайта в Е-сайт (exit-), пептидил-тРНК - из А-сайта в Р-сайт, а мРНК продвигается на один триплет нуклеотидов (кодон). Этот процесс называется транслокацией и происходит с затратой энергии (GTP) при участии фактора EF-G.

Далее, тРНК, комплементарная следующему кодону мРНК, связывается с освободившимся А-сайтом рибосомы, что ведёт к повторению описанных шагов, а образуемый полипептид удлинняется на один аминокислотный остаток с каждым циклом. Стоп-кодоны (UGA, UAG и UAA) сигнализируют об окончании трансляции. Процесс окончания трансляции и освобождения готового полипетида, рибосомы и мРНК называется терминацией. У прокариот он происходит при участии факторов терминации RF1, RF2, RF3 и RRF.

История исследований рибосомы

Рибосомы впервые были описаны как уплотнённые частицы, или гранулы, американским клеточным биологом румынского происхождения Джорджем Паладе в середине 1950-х годов . В 1974 г. Паладе, Клод и Кристиан Де Дюв получили Нобелевскую премию по физиологии и медицине «за открытия, касающиеся структурной и функциональной организации клетки».

Термин «рибосома» был предложен Ричардом Робертсом в 1958 вместо «рибонуклеопротеидная частица микросомальной фракции» на первом симпозиуме, посвящённом этим частицам и их роли в биосинтезе белка . Биохимические и мутационные исследования рибосомы начиная с 1960-х позволили описать многие функциональные и структурные особенности рибосомы.

В начале 2000-х были построены модели с атомным разрешением (до 2,4 Å) структур отдельных субъединиц, а также полной прокариотической рибосомы, связанной с различными субстратами, которые позволили понять механизм декодинга (распознавания антикодона тРНК, комплементарного кодону мРНК) и детали взаимодействий между рибосомой, тРНК , мРНК , факторами трансляции, а также различными антибиотиками . Это крупнейшее достижение в молекулярной биологии было отмечено Нобелевской премией по химии 2009 года («За исследования структуры и функций рибосомы»). Награды были удостоены американец Томас Стейц , британец индийского происхождения