Роль углеводов в живой клетке план сообщения. Строение, свойства и функции углеводов

Углеводы или сахара - одни из важнейших органических веществ в природе. Функция углеводов в организме человека связана с процессом метаболизма - гликолизом, в результате которого высвобождается энергия.

Строение

Молекула углевода состоит из нескольких карбонильных (=С=O) и гидроксильных (-ОН) групп. В зависимости от строения различают три группы углеводов:

  • моносахариды;
  • олигосахариды;
  • полисахариды.

Моносахариды - простейшие сахара, состоящие всего из одной молекулы. Моносахариды включают несколько групп, различающихся количеством атомов углерода в молекуле - структурной единице. Моносахариды, содержащие три атома углерода, называются триозами, пять - пентозами, шесть - гексозами и так далее. Наиболее значимыми для живых организмов являются пентозы, входящие в состав нуклеиновых кислот, и гексозы, из которых состоят полисахариды. Пример гексозы - глюкоза.

Рис. 1. Глюкоза.

Олигосахариды включают от двух до 10 структурных единиц. В зависимости от их количества выделяют:

  • дисахариды - диозы;
  • трисахариды - триозы;
  • тетрасахариды - тетраозы;
  • пентасахариды;
  • гексасахариды и т.д.

Наиболее значимым являются дисахариды (лактоза, сахароза, мальтоза) и трисахариды (рафиноза, мелицитоза, мальтотриоза).

В состав олигосахаридов могут входить однородные и неоднородные молекулы. В связи с этим различают:

  • гомоолигосахариды - все молекулы одинаковой структуры;
  • гетероолигосахариды - молекулы разной структуры.

Рис. 2. Гомоолигосахариды и гетероолигосахариды.

Наиболее сложными углеводами являются полисахариды, состоящие из множества (от 10 до тысяч) моносахаридов. К ним относятся:

  • целлюлоза;
  • гликоген;
  • крахмал;
  • хитин.

Рис. 3. Полисахарид.

В отличие от олигосахаридов и моносахаридов полисахариды жёсткие, нерастворимые в воде вещества без сладкого вкуса.

Формула углеводов - C n (H 2 O) m . В молекуле любого углевода присутствуют не меньше трёх атомов углерода.

Функции

Основная функция углеводов в клетке - превращение в энергию. АТФ (аденозинтрифосфат) - универсальный источник энергии - включает моносахарид рибозу. АТФ формируется в результате гликолиза - окисления и распада глюкозы на пируват (пировиноградную кислоту). Гликолиз проходит в несколько этапов. Углеводы полностью окисляются до углекислого газа и воды, при этом высвобождается энергия.

В таблице перечислены основные функции углеводов.

Функция

Описание

Структурная

Полисахариды являются материалом для опорных структур. Благодаря целлюлозе, входящей в клеточную стенку, растения приобретают жёсткость. Хитин входит в состав клеток грибов и придаёт жёсткость экзоскелету членистоногих

Энергетическая

Углеводы - главный источник энергии. При расщеплении грамма углеводов выделяется 17,6 кДж энергии

Защитная

Образуют шипы и колючки растений

Запасающая

Запасаются в виде зёрен крахмала у растений и гранул гликогена у животных. При недостатке энергии крахмал и гликоген расщепляются до глюкозы

Осмотическая

Регулируют осмотическое давление

Рецепторная

Входят в состав клеточных рецепторов

Некоторые углеводы образуют с липидами и белками сложные структуры - гликолипиды и гликопротеины. Они входят в состав клеточных мембран. Антитела, плазма крови, рецепторные белки - гликопротеины.

Что мы узнали?

Сахара - сложные органические соединения, необходимые всем живым организмам. Они состоят из одной или нескольких молекул, содержащих несколько карбонильных и гидроксильных групп. Углеводы выполняют важные биологические функции. Углеводы являются источником энергии, входят в состав клеточных стенок растений и грибов, составляют экзоскелет членистоногих. Они накапливаются в виде крахмала и гликогена, участвуют в передаче сигналов, регулируют осмотическое давление.

Тест по теме

Оценка доклада

Средняя оценка: 4.1 . Всего получено оценок: 82.

Углеводы.

В составе клеток всех живых организмов широкое распространение имеют углеводы.

Углеводами - называют органические соединения, состоящие из углерода (C), водорода (H) и кислорода(O2). В большинстве углеводов водород и кислород находятся, как правило, в тех же соотношениях, что и в воде (отсюда их название - углеводы). Общая формула таких углеводов Cn(H2O)m. Примером может служить один из самых распространенных углеводов - глюкоза, элементный состав которой С6Н12О6

С точки зрения химии углеводы являются органическими веществами, содержащими неразветвленную цепь из нескольких атомов углерода, карбонильную группу (C=O), а также несколько гидроксильных групп(OH).

В организме человека углеводы производятся в незначительном количестве, поэтому основное их количество поступает в организм с продуктами питания.

Виды углеводов.

Углеводы бывают:
1) Моносахариды. (самые простые формы углеводов)

- глюкоза С6Н12О6 (основное топливо в нашем организме)
- фруктоза С6Н12О6 (самый сладкий углевод)
- рибоза С5Н10О5 (входит в состав нуклеиновых кислот)
- эритроза С4 H8 O4 (промежуточная форма при расщеплении углеводов)

2) Олигосахариды (содержат от 2 до 10 остатков моносахаридов)

Сахароза С12Н22О11 (глюкоза + фруктоза, или в просто – тростниковый сахар)
- лактоза C12 H22 O11 (молочный сахар)
- мальтоза C12 H24 O12 (солодовый сахар, состоит из двух связанных остатков глюкозы)

3) Сложные углеводы (состоящие из множества остатков глюкозы)

- крахмал (С6H10O5)n (наиболее важный углеводный компонент пищевого рациона, человек потребляет из углеводов около 80% крахмала.)
- гликоген (энергетические резервы организма, излишки глюкозы, при поступлении в кровь, откладываются про запас организмом в виде гликогена)

4) Волокнистые, или неусваеваемые, углеводы, определяющиеся как пищевая клетчатка.

- Целлюлоза (самое распостраненное органическое вещество на земле и вид клетчатки)

По простой классификации углеводы можно разделить на простые и сложные. В простые входят моносахариды и олигосахариды, в сложные полисахариды и клетчатка. В подробностях все виды углеводов рассмотрим позже, а так же их применение в пищевом рационе.

Основные функции.

Энергетическая.
Углеводы являются основным энергетическим материалом. При распаде углеводов высвобождаемая энергия рассеивается в виде тепла или накапливается в молекулах АТФ. Углеводы обеспечивают около 50 – 60 % суточного энергопотребления организма, а при мышечной деятельности на выносливость - до 70 %. При окислении 1 г углеводов выделяется 17 кДж энергии (4,1 ккал). В качестве основного энергетического источника в организме используется свободная глюкоза или запасенные углеводы в виде гликогена. Является основным энергетическим субстратом мозга.

Пластическая.
Углеводы (рибоза, дезоксирибоза) используются для построения АТФ, АДФ и других нуклеотидов, а также нуклеиновых кислот. Они входят в состав некоторых ферментов. Отдельные углеводы являются структурными компонентами клеточных мембран. Продукты превращения глюкозы (глюкуроновая кислота, глюкозамин и др.) входят в состав полисахаридов и сложных белков хрящевой и других тканей.

Запас питательных веществ.
Углеводы накапливаются (запасаются) в скелетных мышцах, печени и других тканях в виде гликогена. Систематическая мышечная деятельность приводит к увеличению запасов гликогена, что повышает энергетические возможности организма.

Специфическая.
Отдельные углеводы участвуют в обеспечении специфичности групп крови, исполняют роль антикоагулянтов (вызывающие свертывание), являясь рецепторами цепочки гормонов или фармакологических веществ, оказывая противоопухолевое действие.

Защитная.
Сложные углеводы входят в состав компонентов иммунной системы; мукополисахариды находятся в слизистых веществах, которые покрывают поверхность сосудов носа, бронхов, пищеварительного тракта, мочеполовых путей и защищают от проникновения бактерий и вирусов, а также от механических повреждений.
Регуляторная.
Клетчатка пищи не поддается процессу расщепления в кишечнике, однако активирует перистальтику кишечного тракта, ферменты, использующиеся в пищеварительном тракте, улучшая пищеварение и усвоение питательных веществ.

Вступление.

  1. Строение,свойства и функции белков.

    Обмен белков.

    Углеводы.

    Строение,свойства и функции углеводов.

    Обмен углеводов.

    Строение,свойства и функции жиров.

10)Обмен жиров.

Список литературы

ВСТУПЛЕНИЕ

Нормальная деятельность организма возможна при непрерывном поступлении пищи. Входящие в состав пищи жиры, белки, углеводы, минеральные соли, вода и витамины необходимы для жизненных процессов организма.

Питательные вещества являются как источником энергии, покрывающем расходы организма, так и строительным материалом, который используется в процессе роста организма и воспроизведения новых клеток, замещающих отмирающие. Но питательные вещества в том виде, в каком они употребляются в пищу, не могут всосаться и быть использованными организмом. Только вода, минеральные соли и витамины всасываются и усваиваются в том виде, в каком они поступают.

Питательными веществами называются белки, жиры и углеводы. Эти вещества являются необходимыми составными частями пищи. В пищеварительном тракте белки, жиры и углеводы подвергаются как физическим воздействиям (измельчаются и перетираются), так и химическим изменениям, которые происходят под влиянием особых веществ - ферментов, содержащихся в соках пищеварительных желёз. Под влиянием пищеварительных соков питательные вещества расщепляются на более простые, которые всасываются и усваиваются организмом.

БЕЛКИ

СТРОЕНИЕ, СВОЙСТВА И ФУНКЦИИ

"Во всех растениях и животных присутствует некое вещество, которое без сомнения является наиболее важным из всех известных веществ живой природы и без которого жизнь была бы на нашей планете невозможна. Это вещество я наименовал - протеин". Так писал еще в 1838 году голландский биохимик Жерар Мюльдер, который впервые открыл существование в природе белковых тел и сформулировал свою теорию протеина. Слово "протеин" (белок) происходит от греческого слова "протейос", что означает "занимающий первое место". И в самом деле, все живое на земле содержит белки. Они составляют около 50% сухого веса тела всех организмов. У вирусов содержание белков колеблется в пределах от 45 до 95%.

Белки являются одними из четырех основных органических веществ живой материи (белки, нуклеиновые кислоты, углеводы, жиры), но по своему значению и биологическим функциям они занимают в ней особое место. Около 30% всех белков человеческого тела находится в мышцах, около 20% - в костях и сухожилиях и около 10% - в коже. Но наиболее важными белками всех организмов являются ферменты, которые, холя и присутствуют в их теле и в каждой клетке тела в малом количестве, тем не менее управляют рядом существенно важных для жизни химических реакций. Все процессы, происходящие в организме: переваривание пищи, окислительные реакции, активность желез внутренней секреции, мышечная деятельность и работа мозга регулируется ферментами. Разнообразие ферментов в теле организмов огромно. Даже в маленькой бактерии их насчитываются многие сотни.

Белки, или, как их иначе называют, протеины, имеют очень сложное строение и являются наиболее сложными из питательных веществ. Белки - обязательная составная часть всех живых клеток. В состав белков входят: углерод, водород, кислород, азот, сера и иногда фосфор. Наиболее характерно для белка наличие в его молекуле азота. Другие питательные вещества азота не содержат. Поэтому белок называют азотосодержащис веществом.

Основные азотосодержащие вещества, из которых состоят белки, - это аминокислоты. Количество аминокислот невелико - их известно только 28. Все громадное разнообразие содержащихся в природе белков представляет собой различное сочетание известных аминокислот. От их сочетания зависят свойства и качества белков.

При соединении двух или нескольких аминокислот образуется более сложное соединение - полипептид . Полипептиды, соединяясь, образуют еще более сложные и крупные частицы и в итоге - сложную молекулу белка.

Когда в пищеварительном тракте или в эксперименте белки расщепляются на более простые соединения, то через ряд промежуточных стадий (альбумоз и пептонов) они расщепляются на полипептиды и, наконец, на аминокислоты. Аминокислоты в отличие от белков легко всасываются и усваиваются организмом. Они используются организмом для образования собственного специфического белка. Если же вследствие избыточного поступления аминокислот их расщепление в тканях продолжается, то они окисляются до углекислого газа и воды.

Большинство белков растворяется в воде. Молекулы белков в силу их больших размеров почти не проходят через поры животных или растительных мембран. При нагревании водные растворы белков свертываются. Есть белки (например, желатина), которые растворяются в воде только при нагревании.

При поглощении пища сначала попадает в ротовую полость, а затем по пищеводу в желудок. Чистый желудочный сок бесцветен, имеет кислую реакцию. Кислая реакция зависит от наличия соляной кислоты, концентрация которой составляет 0,5%.

Желудочный сок обладает свойством переваривать пищу, что связано с наличием в нем ферментов. Он содержит пепсин - фермент, расщепляющий белок. Под влиянием пепсина белки расщепляются на пептоны и альбумозы. Железами желудка пепсин вырабатывается в неактивном виде, переходит в активную форму при воздействии на него соляной кислоты. Пепсин действует только в кислой среде и при попадании в щелочную среду становится не гативным.

Пища, поступив в желудок, более или менее длительное время задерживается в нем - от 3 до 10 часов. Срок пребывания пищи в желудке зависит от ее характера и физического состояния - жидкая она или твердая. Вода покидает желудок немедленно после поступления. Пища, содержащая большее количество белков, задерживается в желудке дольше, чем углеводная; еще дольше остается в желудке жирная пища. Передвижение пищи происходит благодаря сокращению желудка, что способствует переходу в пилорическую часть, а затем в двенадцатиперстную кишку уже значительно переваренной пищевой кашицы.

Пищевая кашица, поступившая в двенадцатиперстную кишку, подвергается дальнейшему перевариванию. Здесь на пищевую кашицу изливается сок кишечных желез, которыми усеяна слизистая оболочка кишки, а также сок поджелудочной железы и желчь. Под влиянием этих соков пищевые вещества - белки, жиры и углеводы - подвергаются дальнейшему расщеплению и доводятся до такого состояния, когда могут всосаться в кровь и лимфу.

Поджелудочный сок бесцветен и имеет щелочную реакцию. Он содержит ферменты, расщепляющие белки, углеводы и жиры.

Одним из основных ферментов является трипсин, находящийся в соке поджелудочной железы в недеятельном состоянии в виде трипсиногена. Трипсиноген не может расщеплять белки, если не будет переведен в активное состояние, т.е. в трипсин. Трипсиноген переходит в трипсин при соприкосновении с кишечным соком под влиянием находящегося в кишечном соке вещества энтерокиназы. Энтерокиназа образуется в слизистой оболочке кишечника. В двенадцатиперстной кишке действие пепсина прекращается, так как пепсин действует только в кислой среде. Дальнейшее переваривание белков продолжается уже под влиянием трипсина.

Трипсин очень активен в щелочной среде. Его действие продолжается и в кислой среде, но активность падает. Трипсин действует на белки и расщепляет их до аминокислот; он также расщепляет образовавшиеся в желудке пептоны и альбумозы до аминокислот.

В тонких кишках заканчивается переработка пищевых веществ, начавшаяся в желудке и двенадцатиперстной кишке. В желудке и двенадцатиперстной кишке белки, жиры и углеводы расщепляются почти полностью, только часть их остается непереваренной. В тонких кишках под влиянием кишечного сока происходит окончательное расщепление всех пищевых веществ и всасывание продуктов расщепления. Продукты расщепления попадают в кровь. Это происходит через капилляры, каждый из которых подходит к ворсинке, расположенной на стенке тонких кишков.

ОБМЕН БЕЛКОВ

После расщепления белков в пищеварительном тракте образовавшиеся аминокислоты всасываются в кровь. В кровь всасывается также незначительное количество полипептидов - соединений, состоящих из нескольких аминокислот. Из аминокислот клетки нашего тела синтезируют белок, причем белок, который образуется в клетках человеческого организма, отличается от потребленного белка и характерен для человеческого организма.

Образование нового белка в организме человека и животных идет беспрерывно, так как в течении всей жизни взамен отмирающих клеток крови, кожи, слизистой оболочки, кишечника и т. д. создаются новые, молодые клетки. Для того чтобы клетки организма синтезировали белок, необходимо, чтобы белки поступали с пищей в пищеварительный канал, где они подвергаются расщиплению на аминокислоты, и уже из всосавшихся аминокислот будет образован белок.

Если же, минуя пищеварительный тракт, ввести белок непосредственно в кровь, то он не только не может быть использован человеческим организмом, он вызывает ряд серьезных осложнений. На такое введение белка организм отвечает резким повышением температуры и некоторыми другими явлениями. При повторном введении белка через 15-20 дней может наступить даже смерть при параличе дыхания, резком нарушение сердечной деятельности и общих судорогах.

Белки не могут быть заменены какими-либо другими пищевыми веществами, так как синтез белка в организме возможен только из аминокислот.

Для того чтобы в организме мог произойти синтез присущего ему белка, необходимо поступление всех или наиболее важных аминокислот.

Из известных аминокислот не все имеют одинаковую ценность для организма. Среди них есть аминокислоты, которые могут быть заменены другими или синтезированными в организме из других аминокислот; наряду с этим есть и незаменимые аминокислоты, при отсутствии которых или даже одной из них белковый обмен в организме нарушается.

Белки не всегда содержат все аминокислоты: в одних белках содержится большее количество необходимых организму аминокислот, в других - незначительное. Разные белки содержат различные аминокислоты и в разных соотношениях.

Белки, в состав которых входят все необходимые организму аминокислоты, называются полноценными; белки, не содержащие всех необходимых аминокислот, являются неполноценными белками.

Для человека важно поступление полноценных белков, так как из них организм может свободно синтезировать свои специфические белки. Однако полноценный белок может быть заменен двумя или тремя неполноценными белками, которые, дополняя друг друга, дают в сумме все необходимые аминокислоты. Следовательно, для нормальной жизнедеятельности организма необходимо, чтобы в пище содержались полноценные белки или набор неполноценных белков, по аминокислотному содержанию равноценных полноценным белкам.

Поступление полноценных белков с пищей крайне важно для растущего организма, так как в организме ребенка не только происходит восстановление отмирающих клеток, как у взрослых, но и в большом количестве создаются новые клетки.

Обычная смешанная пища содержит разнообразные белки, которые в сумме обеспечивают потребность организма в аминокислотах. Важна не только биологическая ценность поступающих с пищей белков, но и их количество. При недостаточном количестве белков нормальный рост организма приостанавливается или задерживается, так как потребности в белке не покрываются из-за его недостаточного поступления.

К полноценным белкам относятся преимущественно белки животного происхождения, кроме желатины, относящейся к неполноценным белкам. Неполноценные белки - преимущественно растительного происхождения. Однако некоторые растения (картофель, бобовые и др.) содержат полноценные белки. Из животных белков особенно большую ценность для организма представляют белки мяса, яиц, молока и др.

УГЛЕВОДЫ

СТРОЕНИЕ, СВОЙСТВА И ФУНКЦИИ

Углеводы или сахариды - одна из основных групп органических соединений организма. Они представляют собой первичные продукты фотосинтеза и исходные продукты биосинтеза других веществ в растениях (органические кислоты, аминокислоты), а также содержатся в клетках всех других живых организмов. В животной клетке содержание углеводов колеблется в пределах 1-2%, в растительной оно может достигать в некоторых случаях 85-90% массы сухого вещества.

Углеводы состоят из углерода, водорода и кислорода, причем у большинства углеводов водород и кислород содержатся в том же соотношении, что и в воде (отсюда их название - углеводы). Таковы, например, глюкоза С6Н12О6 или сахароза С12Н22О11. В состав производных углеводов могут входить и другие элементы. Все углеводы делятся на простые (моносахариды) и сложные (полисахариды).

Среди моносахаридов по числу углеродных атомов различают триозы (3С), тетрозы (4С), пентозы (5С), гексозы (6С) и гептозы (7С). Моносахариды с пятью и более атомами углерода, растворяясь в воде, могут приобретать кольцевую структуру. В природе наиболее часто встречаются пентозы (рибоза, дезоксирибоза, рибулоза) и гексозы (глюкоза, фруктоза, галактоза). Рибоза и дезоксирибоза играют важную роль в качестве составных частей нуклеиновых кислот и АТФ. Глюкоза в клетке служит универсальным источником энергии. С превращением моносахаридов связаны не только обеспечение клетки энергией, но и биосинтез многих других органических веществ, а также обезвреживание и выведение из организма ядовитых веществ, проникающих извне или образующихся в процессе обмена веществ, например, при распаде белков.

Ди - и полисахариды образуются путем соединения двух и более моносахаридов, таких, как глюкоза галактоза маноза, арабиноза или ксилоза. Так, соединяясь между собой с выделением молекулы воды, две молекулы моносахаридов образуют молекулу дисахарида. Типичными представителями этой группы веществ являются сахароза (тростниковый сахар), мальтаза (солодовый сахар), лактоза (молочный сахар). Дисахариды по своим свойствам близки к моносахаридам. Например, и те, и другие хорошо растворимы в воде и имеют сладкий вкус. К числу полисахаридов принадлежит крахмал, гликоген, целлюлоза, хитин, каллоза и др.

Основная роль углеводов связана с их энергетической функцией. При их ферментативном расщеплении и окислении выделяется энергия, которая используется клеткой. Полисахариды играют главным образом роль запасных продуктов и легко мобилизуемых источников энергии (например, крахмал и гликоген), а также используются в качестве строительного материала (целлюлоза, хитин). Полисахариды удобны в качестве запасных веществ по ряду причин: будучи нерастворимы в воде, они не оказывают на клетку ни осмотического, ни химического влияния, что весьма важно при длительном хранении их в живой клетке: твердое, обезвоженное состояние полисахаридов увеличивает полезную массу продуктов запаса за счет экономии их объема. При этом существенно уменьшается вероятность потребления этих продуктов болезнетворными бактериями и другими микроорганизмами, которые, как известно, не могут заглатывать пищу, а всасывают вещества всей поверхностью тела. И наконец, при необходимости запасные полисахариды легко могут быть превращены в простые сахара путем гидролиза.

ОБМЕН УГЛЕВОДОВ

Углеводы, как уже говорилось выше, играют очень важную роль в организме, являясь основным источником энергии. Углеводы поступают к нам в организм в виде сложных полисахаридов - крахмала, дисахаридов и моносахаридов. Основное количество углеводов поступает в виде крахмала. Расщепившись до глюкозы, углеводы всасываются и через ряд промежуточных реакций распадаются на углекислый газ и воду. Эти превращения углеводов и окончательное окисление сопровождаются освобождением энергии, которая и используется организмом.

Расщепление сложных углеводов - крахмала и солодового сахара, начинается уже в полости рта, где под влиянием птиалина и мальтазы крахмал расщепляется до глюкозы. В тонких кишках все углеводы расщепляются до моносахаридов.

Угле воды всасываются преимущественно в виде глюкозы и только отчасти в виде других моносахаридов (галактозы, фруктозы). Их всасывание начинается уже в верхних отделах кишечника. В нижних отделах тонких кишок в пищевой кашице углеводов почти не содержится. Углеводы через ворсинки слизистой оболочки, к которым подходят капилляры, всасываются в кровь, и с кровью, оттекающей от тонкого кишечника, попадают в воротную вену. Кровь воротной вены проходит через печень. Если концентрация сахара в крови человека равна 0,1%, то углеводы проходят печень и поступают в общий кровоток.

Количество сахара в крови все время поддерживается на определенном уровне. В плазме содержание сахара составляет в среднем 0,1%. В сохранении постоянного уровня сахара в крови большую роль играет печень. При обильном поступлении сахара в организм его излишек откладывается в печени и вновь поступает в кровь, когда содержание сахара в крови падает. В печени углеводы содержатся в виде гликогена.

При употреблении в пищу крахмала уровень сахара в крови заметным изменениям не подвергается, так как расщепление крахмала в пищеварительном тракте длятся продолжительное время и образовавшиеся при этом моносахариды всасываются медленно. При поступлении значительного количества (150-200г) обычного сахара или глюкозы уровень сахара в крови резко повышается.

Такое повышение сахара в крови называется пищевой или алиментарной гипергликемией. Избыток сахара выводится почками, и в моче появляется глюкоза.

Выведение сахара почками начинается в том случае, когда уровень сахара в крови составляет 0,15-0,18%. Такая алиментарная гипергликемия наступает обычно после употребления большого количества сахара и вскоре проходит, не вызывая каких-либо нарушений в деятельности организма.

Однако при нарушении внутрисекреторной деятельности поджелудочной железы наступает заболевание, известное под названием сахарной болезни или сахарного диабета. При этом заболевании уровень сахара в крови повышается, печень теряет способность заметно удерживать сахар, и начинается усиленное выделение сахара с мочой.

Гликоген откладывается не только в печени. Значительное его количество содержатся также в мышцах, где он потребляется в цепи химических реакций, протекающих в мышцах при сокращении.

При физической работе потребление углеводов усиливается, и их количество в крови увеличивается. Повышенная потребность в глюкозе удовлетворяется как расщеплением гликогена печени на глюкозу и поступлением последней в кровь, так и гликогеном, содержащимся в мышцах.

Значение глюкозы для организма не исчерпывается ее ролью как источника энергии. Этот моносахарид входит в состав протоплазмы клеток и, следовательно, необходим при образовании новых клеток, особенно в период роста. Большое значение имеет глюкоза в деятельности центральной нервной системы. Достаточно, чтобы концентрация сахара в крови понизилась до 0,04%, как начинаются судороги, теряется сознание и т.д.; иначе говоря, при понижении сахара в крови в первую очередь нарушается деятельность центральной нервной системы. Достаточно такому больному ввести в кровь глюкозу или дать поесть обычного сахара, как все нарушения исчезают. Более резкое и длительное понижение уровня сахара в крови - глипогликемия, может повлечь за собой резкие нарушения деятельности организма и привести к смерти.

При небольшом поступлении углеводов с пищей они образуются из белков и жиров. Таким образом, полностью лишить организм углеводов не удается, так как они образуются и из других пищевых веществ.

ЖИРЫ

СТРОЕНИЕ, СВОЙСТВА И ФУНКЦИИ

В состав жиров входят углерод, водород и кислород. Жир имеет сложное строение; его составными частями является глицерин (С3Н8О3) и жирные кислоты, при соединении которых и образуются молекулы жира. Наиболее распространенными являются три жирных кислоты: олеиновая (С18Н34О2), пальмитиновая (С16Н32О2) и стеариновая (С18Н36О2). От сочетания этих жирных кислот при их соединении с глицерином зависит образование того или другого жира. При соединении глицерина с олеиновой кислотой образуется жидкий жир, например, растительное масло. Пальмитиновая кислота образует более твердый жир, входит в состав сливочного масла и является главной составляющей частью человеческого жира. Стеариновая кислота входит в состав еще более твердых жиров, например, сала. Для того, чтобы человеческий организм мог синтезировать специфический жир, необходимо поступление всех трех жирных кислот.

В процессе пищеварения жир расщепляется на составные части - глицерин и жирные кислоты. Жирные кислоты нейтрализуются щелочами, в результате чего образуются их соли - мыла. Мыла растворяются в воде и легко всасываются.

Жиры являются составной частью протоплазмы и входят в состав всех органов, тканей и клеток организма человека. Кроме того, жиры представляют собой богатый источник энергии.

Расщепление жиров начинается в желудке. В желудочном соке содержится такое вещество как липаза. Липаза расщепляет жиры на жирные кислоты и глицерин. Глицерин растворяется в воде и легко всасывается, а жирные кислоты не растворяются в воде. Желчь способствует их растворению и всасыванию. Однако в желудке расщепляется только жир, раздробленный на мелкие частицы, например жир молока. Под влиянием желчи действие липазы усиливается в 15-20 раз. Желчь способствует тому, чтобы жир распался на мельчайшие частицы.

Из желудка пища попадает в двенадцатиперстную кишку. Здесь на нее изливается сок кишечных желез, а также сок поджелудочной железы и желчь. Под влиянием этих соков жиры подвергаются дальнейшему расщиплению и доводятся до такого состояния, когда могут всосаться в кровь и лимфу. Затем, по пищеварительному тракту пищевая кашица попадает в тонкий кишечник. Там, под влиянием кишечного сока происходит окончательное расщепление и всасывание.

Жир под влиянием фермента липазы расщепляется на глицерин и жирные кислоты. Глицерин растворяется и легко всасывается, а жирные кислоты нерастворимы в кишечном содержимом и не могут всосаться.

Жирные кислоты входят в соединение со щелочами и желчными кислотами и образуют мыла, которые легко растворяются и поэтому без затруднений проходят через кишечную стенку. В отличие от продуктов расщепления углеводов и белков продукты расщепления жиров всасываются не в кровь, а в лимфу, причем глицерин и мыла, проходя через клетки слизистой оболочки кишечника, вновь соединяются и образуют жир; поэтому уже в лимфатическом сосуде ворсинки находятся капельки вновь образованного жира, а не глицерин и жирные кислоты.

ОБМЕН ЖИРОВ

Жиры, как и углеводы, являются в первую очередь энергетическим материалом и используются организмом как источник энергии.

При окислении 1г жира количество освобождающейся энергии в два с лишним раза больше, чем при окислении такого же количества углеродов или белков.

В органах пищеварения жиры расщепляются на глицерин и жирные кислоты. Глицерин всасывается легко, а жирные кислоты только после омыления.

При прохождении через клетки слизистой оболочки кишечника из глицерина и жирных кислот вновь синтезируется жир, который поступает в лимфу. Образовавшийся при этом жир отличается от потребленного. Организм синтезирует жир, свойственный данному организму. Так, если человек потребляет разные жиры, содержащие олеиновую, пальмитиновую стеариновую жирные кислоты, то его организм синтезирует специфический для человека жир. Однако если в пище человека будет содержаться только какая-то одна жирная кислота, например олеиновая, если она будет преобладать, то образовавшийся при этом жир будет отличаться от человеческого и приближаться к более жидким жирам. При употреблении же в пищу преимущественно бараньего сала жир будет более твердый. Жир по своему характеру отличается не только у различных животных, но и в разных органах одного и того же животного.

Жир используется организмом не только как богатый источник энергии, он входит в состав клеток. Жир является обязательной составной частью протоплазмы, ядра и оболочки. Остаток поступившего в организм жира после покрытия его потребности откладывается в запас в виде жировых капель.

Жир откладывается преимущественно в подкожной клетчатке, сальнике, вокруг почек, образуя почечную капсулу, а также в других внутренних органах и в некоторых других участках тела. Значительное количество запасного жира содержится в печени и мышцах. Запасной жир является в первую очередь источником энергии, который мобилизуется, когда расход энергии превышает его поступление. В таких случаях жир окисляется до конечных продуктов распада.

Кроме энергетического значения, запасной жир играет и другую роль в организме; например, подкожный жир препятствует усиленной отдаче тепла, околопочечный - предохраняет почку от ушибов и т. д. Жира в организме может откладываться в запас довольно значительное количество. У человека он составляет в среднем 10-20% веса. При ожирении, когда нарушаются обменные процессы в организме, количество отложенного жира доходит до 50% веса человека.

Количество отложившегося жира зависит от ряда условий: от пола, возраста, условий работы, состояния здоровья и т.д. При сидячем характере работы отложение жира происходит более энергично, поэтому вопрос о составе и количестве пищи людей, ведущих сидячий образ жизни, имеет очень важное значение.

Жир синтезируется организмом не только из поступившего жира, но и из белков и углеводов. При полном исключении жира из пищи он все же образуется и в довольно значительном количестве может откладываться в организме. Основным источником образования жира в организме служат преимущественно углеводы.

СПИСОК ЛИТЕРАТУРЫ

1. В.И. Товарницкий: Молекулы и вирусы;

2. А.А. Маркосян: Физиология;

3. Н.П. Дубинин: Гинетика и человек;

4. Н.А. Лемеза: Биология в экзаменационных вопросах и ответах.

1. Структурная (строительная). Углеводы входят в состав многих элементов живых организмов, например, клеточная стенка растительной клетки, гликокаликс эпителия кишечника человека.

2. Сигнальная. Углеводно-белковые комплексы (гликопротеиды) образуют рецепторы (см. сигнальная функция белков).

3. Защитная. Гликопротеиды соединительной ткани выполняют функцию химической защиты, противостоят гидролитическим ферментам.

4. Энергетическая. При полном окислении 1 г углеводов выделяется 4,1 ккал или 17,2 кДж энергии.

Эта функция последняя по перечислению, но главная по значению. Углеводы дают человеку более 60% энергии.

Энергетика клетки .

В химических реакциях при образовании связей между простыми молекулами энергия потребляется, а при разрыве выделяется.

В процессе фотосинтеза у зеленых растений энергия солнечного света переходит в энергию химических связей, возникающих между молекулами углекислого газа и воды. Образуется молекула глюкозы: CO 2 + H 2 O + Q (энергия) = C 6 H 12 O 6 .

Глюкоза является главным источником энергии для человека и большинства животных.

Процесс усвоения этой энергии называют " окислительное фосфорилирование". Энергия (Q), выделяющаяся при окислении, сразу используется на фосфорилирование аденозиндифосфорной кислоты (АДФ):

АДФ+Ф+Q (энергия)=АТФ

Получается "универсальная энергетическая валюта" клетки аденозинтрифосфорная кислота (АТФ). Она может в любой момент быть использована на любую полезную организму работу или на согревание.

АТФ®АДФ+Ф+Q (энергия)

Процесс окисления глюкозы проходит в 2 этапа.

1. Анаэробное (бескислородное) окисление, или гликолиз, происходит на гладкой эндоплазматической сети клетки. В результате этого глюкоза оказывается разорванной на 2 части, а выделившейся энергии достаточно для синтеза двух молекул АТФ.

2. Аэробное (кислородное) окисление. Две части от глюкозы (2 молекулы пировиноградной кислоты) при наличии кислорода продолжают ряд окислительных реакций. Этот этап протекает на митохондриях и приводит к дальнейшему разрыву молекул и выделению энергии.

Результатом второго этапа окисления одной молекулы глюкозы является образование 6 молекул углекислого газа, 6 молекул воды и энергии, которой достаточно для синтеза 36 молекул АТФ.

В качестве субстратов для окисления на втором этапе могут использоваться не только молекулы, полученные из глюкозы, но и молекулы, полученные в результате окисления липидов, белков, спиртов и других энергоемких соединений.

Активная форма уксусной кислоты - А-КоА (ацетил коэнзим А, или ацетил кофермент А) - это промежуточный продукт окисления всех этих веществ (глюкозы, аминокислот, жирных кислот и других).

А-КоА является точкой пересечения углеводного, белкового и липидного обменов.

При избытке глюкозы и других энергонесущих субстратов организм начинает их депонировать. В этом случае, глюкоза окисляется по обычному пути до молочной и пировиноградной кислоты, затем до А-КоА. Далее, А-КоА становится базой для синтеза молекулы жирных кислот и жиров, которые депонируются в подкожной жировой клетчатке. Наоборот, при недостатке глюкозы, ее синтезируют из белков и жиров через А-КоА (глюконеогенез).

При необходимости могут пополняться и запасы заменимых аминокислот для строительства некоторых белков.


Схема связи углеводного, липидного, белкового и энергетического метаболизма

1. Какие вещества, относящиеся к углеводам, вам известны?

Ответ. Углеводы (сахариды) - общее название обширного класса природных органических соединений. Название происходит от слов «уголь» и «вода». Углеводы делятся на две группы: простые и сложные. Простые углеводы - глюкоза и фруктоза, дисахарид – сахароза, полисахариды – крахмал и целлюлоза

2. Какую роль играют углеводы в живом организме?

Ответ. Углеводы в живом организме выполняют ряд функций: энергетическую, строительную, защитную, запасающую функции.

Вопросы после §9

1. Какие углеводы называют моно-, олиго– и полисахаридами?

Ответ. Моносахариды (от греч. monos – один) – бесцветные кристаллические вещества, легко растворимые в воде и имеющие сладкий вкус. Из моносахаридов наибольшее значение для живых организмов имеют рибоза, дезоксирибоза, глюкоза, фруктоза, галактоза. Рибоза входит в состав РНК, АТФ, витаминов группы В, ряда ферментов. Дезоксирибоза входит в состав ДНК. Глюкоза (виноградный сахар) является мономером полисахаридов (крахмала, гликогена, целлюлозы). Она есть в клетках всех организмов. Фруктоза входит в состав олигосахаридов, например сахарозы. В свободном виде содержится в клетках растений. Галактоза также входит в состав некоторых олигосахаридов, например лактозы.

Олигосахариды (от греч. oligos – немного) образованы двумя (тогда их называют дисахариды) или несколькими моносахаридами, связанными ковалентно друг с другом с помощью гликозидной связи. Большинство олигосахаридов растворимы в воде и имеют сладкий вкус. Из олигосахаридов наиболее широко распространены дисахариды: сахароза (тростниковый сахар), мальтоза (солодовый сахар), лактоза (молочный сахар).

Полисахариды (от греч. poly – много) являются полимерами и состоят из неопределённо большого (до нескольких сотен или тысяч) числа остатков молекул моносахаридов, соединённых ковалентными связями. К ним относятся крахмал, гликоген, целлюлоза, хитин и др. Интересно, что крахмал, гликоген и целлюлоза, играющие важную роль в живых организмах, построены из мономеров глюкозы, но связи в их молекулах различны. Кроме того, у целлюлозы цепи не ветвятся, а у гликогена они ветвятся сильнее, чем у крахмала.

2. Какие функции выполняют углеводы в живых организмах?

Ответ. Основная функция углеводов – энергетическая. При их ферментативном расщеплении и окислении молекул углеводов выделяется энергия, которая обеспечивает жизнедеятельность организма. При полном расщеплении 1 г углеводов освобождается 17,6 кДж.

Углеводы выполняют запасающую функцию. При избытке они накапливаются в клетке в качестве запасающих веществ (крахмал, гликоген) и при необходимости используются организмом как источник энергии. Усиленное расщепление углеводов происходит, например, при прорастании семян, интенсивной мышечной работе, длительном голодании.

Очень важной является структурная, или строительная, функция углеводов. Они используются в качестве строительного материала. Так, целлюлоза благодаря особому строению нерастворима в воде и обладает высокой прочностью. В среднем 20–40 % материала клеточных стенок растений составляет целлюлоза, а волокна хлопка – почти чистая целлюлоза, и именно поэтому они используются для изготовления тканей.

Хитин входит в состав клеточных стенок некоторых простейших и грибов. В качестве важного компонента наружного скелета хитин встречается у отдельных групп животных, например у членистоногих.

Углеводы выполняют защитную функцию. Так, камеди (смолы, выделяющиеся при повреждении стволов и веток растений, например слив, вишен), препятствующие проникновению в раны болезнетворных микроорганизмов, являются производными моносахаридов.

Твердые клеточные стенки одноклеточных и хитиновые покровы членистоногих, в состав которых входят углеводы, также выполняют защитные функции.

3. Почему углеводы считаются главными источниками энергии в клетке?

Ответ. Углеводы считаются главными источниками энергии в клетке потому, что при их расщеплении выделяется достаточно количества энергии. Углеводы доступны организму. Расщепление углеводов происходит быстрее, чем остальных органических веществ.

Обычно в клетке животных организмов содержится около 1 % углеводов, в клетках печени их содержание доходит до 5 %, а в растительных клетках – до 90 %. Подумайте и объясните почему.

Ответ. В растительных клетках - большой процент углеводов, т. Так как растения автотрофы и в их клетках постоянно идёт процесс фотосинтеза углеводов.

В печени животных более высокое содержание углеводов, т. к. в её клетках находится запас глюкозы в виде гликогена.

Углеводы являются производными многоатомных спиртов и состоят из углерода, водорода и кислорода. Химики определяют эти соединения как многоатомные оксиальдегиды или многоатомные оксикетоны. Название «углеводы» хотя и является устаревшим, но и по сей день широко используется, в том числе и в научной литературе. Своё название этот класс соединений получил потому, что у большинства из них соотношение водорода и кислорода в молекуле такое же, как и в воде. Общая формула углеводов Cn(H20)m, где n не меньше 3. Однако не все соединения, относящиеся к классу углеводов, соответствуют данной формуле.

Выясните, какие это соединения.

Ответ. Общая формула углеводов Сn(H2O)m. Однако с развитием химии углеводов обнаружены соединения, состав которых не отвечает приведенной общей формуле,но обладающие свойствами веществ своего класса(например,C5H10O4-Дезоксирибоза). Еще одним примером может служить молочная кислота С3Н6 О3.