Шпаргалка: Строение и функции коры больших полушарий мозга. Кора головного мозга, строение и функции

19. Функции новой коры, функциональное значение первой и второй соматосенсорных зон, моторные зоны коры (их локализация и функциональное значение). Полифункциональность корковых областей, функциональная пластичность коры.

Соматосенсорная кора - область коры головного мозга, которая отвечает за регуляцию определенных сенсорных систем. Первая соматосенсорная зона расположена на постцентральной извилине непосредственно позади глубокой . Вторая соматосенсор­ная зона находится на верхней стенке боковой борозды, разделяющей теменную и височную доли. В этих зонах обнаружены терморецептивные и ноцицептивные (болевые) нейроны. Первая зона (I) достаточно хорошо изучена. Здесь имеют представительст­во практически все участки поверхности тела. В результате систематических исследований получена достаточно точная картина представительств тела в этой зоне коры головного мозга. В литературных и научных источниках такое представительство получило наименование “соматосенсорного гомункулуса” (подробно см. юнита 3). Соматосенсорная кора этих зон, с учетом шестислойного строения, организована в виде функциональных единиц - колонок нейронов (диаметр 0,2 - 0,5 мм), которые наделены двумя специфическими свойствами: ограниченным горизонтальным распространением афферентных нейронов и вертикальной ориентацией дендритов пирамидных клеток. Нейроны одной колонки возбуждаются рецепторами только одного типа, т.е. специфическими рецепторными окончаниями. Обработка информации в колонках и между ними осуществляется иерархично. Эфферентные связи первой зоны передают переработанную информацию к двигательной коре (обеспечивается регуляция движений по обратной связи), теменно-ассоциативной зоне (обеспечивается интеграция зрительной и тактильной информации) и к таламусу, ядрам заднего столба, спинному мозгу (обеспечивается эфферентная регуляция потока афферентной информации). Первая зона функционально обеспечивает точное тактильное различение и сознательное восприятие стимулов на поверхности тела. Вторая зона (II) изучена меньше и она занимает значительно меньше места. Филогенетически вторая зона старше первой и участвует практически во всех соматосенсорных процессах. Рецептивные поля нейронных колонок второй зоны находятся на обеих сторонах тела, а их проекции симметричны. Данная зона координирует действия сенсорной и двигательной информации, например, при ощупывании предметов двумя руками.

Моторные (двигательные) зоны коры

Передняя центральная извилина (кпереди от роландовой борозды) и прилегающие к ней задние отделы первой и второй лобных извилин составляют двигательную зону мозговой коры. Ядром двигательного анализатора является передняя центральная извилина (поле 4). Характерной цитоархитектонической особенностью поля 4 служит отсутствие IV слоя зернистых клеток к наличие в слое V гигантских пирамидных клеток Беца, длинные отростки которых в составе пирамидного пути достигают промежуточных и двигательных нейронов спинного мозга.

В области передней центральной извилины расположены центры движения для противоположных конечностей и противоположной половины лица, туловища (рис.).

    Верхнюю треть извилины занимают центры движения нижних конечностей , причем выше всех лежит центр движения стопы, ниже него - центр движения голени, а еще ниже - центр движения бедра.

    Среднюю треть занимают центры движения туловища и верхней конечности. Выше других лежит центр движений лопатки, затем - плеча, предплечья, а еще ниже - кисти.

    Нижняя треть передней центральной извилины (область покрышки - operculum) занята центрами движения для лица, жевательных мышц, языка, мягкого нёба и гортани.

Так как нисходящие двигательные пути перекрещиваются, то раздражение всех указанных точек вызывает сокращение мышц противоположной стороны тела. В моторной зоне наибольшую площадь занимает представительство мускулатуры кистей рук, лица, губ, языка и наименьшую - туловища и нижних конечностей. Размерам коркового моторного представительства соответствует точность и тонкость управления движениями данной части тела.

Электрическое или химическое раздражение участков поля 4 вызывает координированное сокращение строго определенных мышечных групп. Экстирпация какого-нибудь центра сопровождается параличом соответствующего отрезка мускулатуры. Паралич этот через некоторое время сменяется слабостью и ограничением движения (парез), так как многие двигательные акты могут выполняться за счет непирамидных путей или благодаря компенсаторной деятельности уцелевших корковых механизмов.

Премоторная зона коры

Двигательные зоны коры. Выделяют первичную и вторичную моторные зоны.

В первичной моторной зоне (прецентральная извилина, поле 4) расположены нейроны, иннервирующие мотонейроны мышц лица, туловища и конечностей. В ней имеется четкая топографическая проекция мышц тела (см. рис. 2). Основной закономерностью топографического представительства является то, что регуляция деятельности мышц, обеспечивающих наиболее точные и разнообразные движения (речь, письмо, мимика), требует участия больших по площади участков двигательной коры. Раздражение первичной моторной коры вызывает сокращение мышц противоположной стороны тела (для мышц головы сокращение может быть билатеральное). При поражении этой корковой зоны утрачивается способность к тонким координированным движениям конечностями, особенно пальцами рук.

Вторичная моторная зона (поле 6) расположена как на латеральной поверхности полушарий, впереди прецентральной извилины (премоторная кора), так и на медиальной поверхности, соответствующей коре верхней лобной извилины (дополнительная моторная область). Вторичная двигательная кора в функциональном плане имеет главенствующее значение по отношению к первичной двигательной коре, осуществляя высшие двигательные функции, связанные с планированием и координацией произвольных движений. Здесь в наибольшей степени регистрируется медленно нарастающий отрицательный потенциал готовности, возникающий примерно за 1 с до начала движения. Кора поля 6 получает основную часть импульсации от базальных ганглиев и мозжечка, участвует в перекодировании информации о плане сложных движений.

Раздражение коры поля 6 вызывает сложные координированные движения, например поворот головы, глаз и туловища в противоположную сторону, содружественные сокращения сгибателей или разгибателей на противоположной стороне. В премоторной коре расположены двигательные центры, связанные с социальными функциями человека: центр письменной речи в заднем отделе средней лобной извилины (поле 6), центр моторной речи Брока в заднем отделе нижней лобной извилины (поле 44), обеспечивающие речевой праксис, а также музыкальный моторный центр (поле 45), обеспечивающий тональность речи, способность петь. Нейроны двигательной коры получают афферентные входы через таламус от мышечных, суставных и кожных рецепторов, от базальных ганглиев и мозжечка. Основным эфферентным выходом двигательной коры на стволовые и спинальные моторные центры являются пирамидные клетки V слоя. Основные доли коры большого мозга представлены на рис. 3.

Рис. 3. Четыре основные доли коры головного мозга (лобная, височная, теменная и затылочная); вид сбоку. В них расположены первичная двигательная и сенсорная области , двигательные и сенсорные области более высокого порядка (второго, третьего и т.д.) и ассоциативная (неспецифичная) кора

Ассоциативные области коры (неспецифическая, межсенсорная, межанализаторная кора) включают участки новой коры большого мозга, которые расположены вокруг проекционных зон и рядом с двигательными зонами, но не выполняют непосредственно чувствительных или двигательных функций, поэтому им нельзя приписывать преимущественно сенсорные или двигательные функции, нейроны этих зон обладают большими способностями к обучению. Границы этих областей обозначены недостаточно четко. Ассоциативная кора является филогенетически наиболее молодой частью новой коры, получившей наибольшее развитие у приматов и у человека. У человека она составляет около 50% всей коры или 70 % неокортекса. Термин «ассоциативная кора» возник в связи с существовавшим представлением о том, что эти зоны за счет проходящих через них кортико-кортикальных соединений связывают двигательные зоны и одновременно служат субстратом высших психических функций. Основными ассоциативными зонами коры являются: теменно-височно-затылочная, префронтальная кора и лимбическая ассоциативная зона.

Нейроны ассоциативной коры являются полисенсорными (полимодальными): они отвечают, как правило, не на один (как нейроны первичных сенсорных зон), а на несколько раздражителей, т. е. один и тот же нейрон может возбуждаться при раздражении слуховых, зрительных, кожных и др. рецепторов. Полисенсорность нейронов ассоциативной коры создается кортико-кортикальными связями с разными проекционными зонами, связями с ассоциативными ядрами таламуса. В результате этого ассоциативная кора представляет собой своеобразный коллектор различных сенсорных возбуждений и участвует в интеграции сенсорной информации и в обеспечении взаимодействия сенсорных и моторных областей коры.

Ассоциативные области занимают 2-й и 3-й клеточные слои ассоциативной коры, на которых происходит встреча мощных одномодальных, разномодальных и неспецифических афферентных потоков. Работа этих отделов коры мозга необходима не только для успешного синтеза и дифференцировки (избирательного различения) воспринимаемых человеком раздражителей, но и для перехода к уровню их символизации, т. е. для оперирования значениями слов и использования их для отвлеченного мышления, для синтетического характера восприятия.

С 1949 г. широкую известность получила гипотеза Д. Хебба, постулирующая в качестве условия синаптической модификации совпадение пресинаптической активности с разрядом пост-синаптического нейрона, поскольку не всякая активность синапса ведет к возбуждению постсинаптического нейрона. На основании гипотезы Д. Хебба можно предположить, что отдельные нейроны ассоциативных зон коры связаны разнообразными путями и образуют клеточные ансамбли, выделяющие «подобразы», т.е. соответствующие унитарным формам восприятия. Эти связи, как отмечал Д.Хебб, настолько хорошо развиты, что достаточно активировать один нейрон, как возбуждается весь ансамбль.

Аппаратом, выполняющим роль регулятора уровня бодрствования, а также осуществляющим избирательную модуляцию и актуализацию приоритета той или иной функции, является модулирующая система мозга, которую часто называют лимбико-ретикулярный комплекс, или восходящая активирующая система. К нервным образованиям этого аппарата относятся лимбическая и неспецифические системы мозга с активирующими и инактивируюшими структурами. Среди активирующих образований прежде всего выделяют ретикулярную формацию среднего мозга, задний гипоталамус, голубое пятно в нижних отделах ствола мозга. К инактивирующим структурам относят преоптическую область гипоталамуса, ядра шва в стволе мозга, фронтальную кору.

В настоящее время по таламокортикальным проекциям предлагают выделять три основные ассоциативные системы мозга: таламотеменную, таламолобную и таламовисочную.

Таламотеменная система представлена ассоциативными зонами теменной коры, получающими основные афферентные входы от задней группы ассоциативных ядер таламуса. Теменная ассоциативная кора имеет эфферентные выходы на ядра таламуса и гипоталамуса, в моторную кору и ядра экстрапирамидной системы. Основными функциями таламотеменной системы являются гнозис и праксис. Под гнозисом понимают функцию различных видов узнавания: формы, величины, значения предметов, понимание речи, познание процессов, закономерностей и др. К гностическим функциям относится оценка пространственных отношений, например, взаимного расположения предметов. В теменной коре выделяют центр стереогнозиса, обеспечивающий способность узнавания предметов на ощупь. Вариантом гностической функции является формирование в сознании трехмерной модели тела («схемы тела»). Под праксисом понимают целенаправленное действие. Центр праксиса находится в надкорковой извилине левого полушария, он обеспечивает хранение и реализацию программы двигательных автоматизированных актов.

Таламолобная система представлена ассоциативными зонами лобной коры, имеющими основной афферентный вход от ассоциативного медиодорсального ядра таламуса, других подкорковых ядер. Основная роль лобной ассоциативной коры сводится к инициации базовых системных механизмов формирования функциональных систем целенаправленных поведенческих актов (П. К.Анохин). Префронтальная область играет главную роль в выработке стратегии поведения. Нарушение этой функции особенно заметно, когда необходимо быстро изменить действие и когда между постановкой задачи и началом ее решения проходит некоторое время, т.е. успевают накопиться раздражители, требующие правильного включения в целостную поведенческую реакцию.

Таламовисочная система. Некоторые ассоциативные центры, например, стереогнозиса, праксиса, включают в себя и участки височной коры. В височной коре расположен слуховой центр речи Вернике, находящийся в задних отделах верхней височной извилины левого полушария. Этот центр обеспечивает речевой гнозис: распознание и хранение устной речи как собственной, так и чужой. В средней части верхней височной извилины находится центр распознания музыкальных звуков и их сочетаний. На границе височной, теменной и затылочной долей находится центр чтения, обеспечивающий распознание и хранение образов.

Существенную роль в формировании поведенческих актов играет биологическое качество безусловной реакции, а именно ее значение для сохранения жизни. В процессе эволюции это значение было закреплено в двух противоположных эмоциональных состояниях – положительном и отрицательном, которые у человека составляют основу его субъективных переживаний -- удовольствия и неудовольствия, радости и печали. Во всех случаях целенаправленное поведение строится в соответствии с эмоциональным состоянием, возникшим при действии раздражителя. Во время поведенческих реакций отрицательного характера напряжение вегетативных компонентов, особенно сердечно-сосудистой системы , в отдельных случаях, особенно в непрерывных так называемых конфликтных ситуациях, может достигать большой силы, что вызывает нарушение их регуляторных механизмов (вегетативные неврозы).

В этой части книги рассмотрены основные общие вопросы аналитико-синтетической деятельности мозга, которые позволят перейти в последующих главах к изложению частных вопросов физиологии сенсорных систем и высшей нервной деятельности.

Сенсорная зона коры головного мозга - небольшая часть мозга, располагающаяся между двигательной зоной коры и теменной долей. Именно этот отдел мозга отвечает за телесные ощущения и восприятия. Все наши тактильные, зрительные, слуховые и обонятель ные импульсы рождаются в сенсорной зоне коры головного мозга. Максимальная концентрация спинномозговой жидкости достигается там, где в детстве у нас был родничок. Даосы считают, что затвердевание этой мягкой области кладет начало процессу, благодаря которому мы воспринимаем каждое ощущение как самостоятельное. В детстве мы чувствуем внешние раздражители, но не способны осознавать каждое ощущение отдельно.

Даосы называют этот район полостью Бай Гуй, в которой при переживании напряженных ментальных состояний концентрируются все ощущения и разум может постичь абсолютную чистоту - просветление сознания.

В даосизме эта область мозга стимулируется как посредством визуализации света в области макушки, так и при помощи пристального созерцания ее внутренним оком, цель которого - повысить уровень ее восприятия. Эта зона важна не только с точки зрения восстановления молодости и достижения просветления сознания, но и потому, что именно через нее дух покидает тело в момент смерти.

Когда сенсорная зона коры головного мозга интенсивно стимулируется, способность тела получать физические и ментальные ощущения сильно возрастает. Эта повышенная восприимчивость к ощущениям также выражается в реакции гипоталамуса на сильное сексуальное возбуждение; гипоталамус посылает гипофизу сигнал о необходимости выброса гонадотропинов в эндокринную систему.

Это происходит только в том случае, если человек испытал какое-либо интенсивное состояние экстатического характера, которое лежит в основе почти всего трансцендентного опыта, описанного в трактатах по медитации и йоге. Секс, будучи источником энергии, предоставляет лучшие и наиболее эффективные средства для того, чтобы испытать подобное состояние.

Спинной и головной мозг целиком окружены спинномозговой жидкостью, и именно эта жидкость, как считают даосы, ответственна за прохождение сексуальной энергии из почек в головной мозг. Эффект просветления вызывается сочетанием повышения температуры крови и движения сексуальной энергии, достигающей верхней части головы. Не забывайте, что довольно много этой жидкости находится в сенсорной зоне коры головного мозга.

И Тигрицы, и даосы стремятся к стимуляции сенсорной зоны коры. Методы могут отчасти отличаться, но конечная цель одна и та же. Тигрица добивается просветления сознания путем поглощения мужской сексуальной энергии, которое в даосских книгах называется восстановлением инь через ян. Мужчина-даос достигает просветления посредством возвращения сексуальной энергии в мозг, или восстановления инь через ян.

Тигрица, при помощи полной концентрации на оральной стимуляции полового члена мужчины, может достичь состояния высочайшей восприимчивости, результатом которой становится способность Тигрицы поглощать мужскую сексуальную энергию и переживать духовную трансформацию. Главный смысл состоит в усиленной стимуляции гипофиза и гипоталамуса, чтобы они реагировали на пределе возможностей и вырабатывали гормоны, способные восстановить молодость.

Оргазм

Обсудив то, как западная наука и даосская духовная алхимия воспринимают процесс поглощения энергии, теперь мы можем более подробно поговорить об оргазме как таковом.

Непосредственно перед или сразу после оргазма сознание человека находится в состоянии повышенной восприимчивости. Во время оргазма в нем происходит остановка времени и вся нервная система сосредоточивается на ощущениях и выделении половых жидкостей.

Чем интенсивнее оргазм, тем насыщеннее и ярче ощущения и восприятие.

Также оргазм активно стимулирует затылочную долю головного мозга (которая контролирует зрение) и снижает активность двигательной зоны коры (которая контролирует произвольные движения). Во время оргазма мы воспринимаем и чувствуем окружающий мир через остро сконцентрированные ощущения. Цвета нам кажутся ярче, а сознание наполняется светящимися образами. Тело больше не контролирует произвольные движения, а совершает лишь те, что способствуют получению оргазма. Даже слуховой и речевой центры головного мозга находятся в состоянии повышенной ак­тивности.

Что касается повышения остроты слуха и зрения, то многие сексуальные неудачи происходят как раз из-за того, что сексуальный партнер говорит во время оргазма второго партнера какие-нибудь неподходящие слова. Человек в этот момент настолько чувствителен, что слова обиды или неодобрения западают очень глубоко в сознание и влияют на его сексуальное поведение в будущем. Именно поэтому, как вы узнаете позже, во время полового акта Тигрица всегда выказывает глубокое одобрение в отношении пениса партнера, качества его спермы и действий.

После оргазма весь организм погружается в состояние покоя, и поэтому большинство сексологов считают его транквилизатором. Это происходит потому, что гипофиз, который также контролирует выработку успокаивающих гормонов, моментально отправляет их в эндокринную систему, что является естественной защитой организма от слишком интенсивных и длительных ощущений. Реакция на успокаивающие гормоны более ярко выражена у мужчин, чем у женщин, так как организм последних лучше приспособлен к множественным оргазмам; обычно для того, чтобы гипофиз выбросил в женский организм успокаивающие гормоны, требуется больше одного оргазма. Этим объясняется тот факт, что женщины после оргазма могут быть очень энергичными, так как все еще находятся под действием гонадотропинов.

Мужчины тоже могут получать множественные оргазмы, но это происходит только тогда, когда последующая стимуляция достаточно интенсивна и между оргазмом и новым возбуждением проходит определенное количество времени, нужное для того, чтобы успо­каивающие гормоны потеряли активность. Интенсивность первого оргазма определяет количество спящих гормонов, выбрасываемых гипофизом в организм.

На мужчин, у которых часто происходит семяизвержение, успокаивающие гормоны с возрастом влияют все меньше и меньше. Чтобы- проверить действие этих гормонов, мужчина должен сдерживать эякуляцию в течение двух недель или около того. Тогда во время семяизвержения ему будет трудно не закрыть глаза. Эти успокаивающие гормоны необходимы для восстановления мужской юности, поэтому эякуляция не должна происходить часто. После этого во время эякуляции эти гормоны будут сильнее влиять на всю эндокринную систему. Тигрица извлекает пользу не только из своего оргазма, но и из оргазма партнера. Увеличивая интенсивностьоргазма мужчины, она может достичь состояния высочайшей восприимчивости, в котором поглощает и его оргазм, и его сексуальную энергию. Она достигает этого, целиком концентрируясь на максимальном возбуждении мужчины и его оргазме - в том смысле, что все ее внимание обращено на его пенис и сперму. Как ребенок, находящийся в возбужденном и нетерпеливом состоянии перед тем, как открыть подарок на день рождения, она стонет в ожидании его оргазма. Держа его пенис на расстоянии пяти-семи сантиметров от своего лица, она смотрит прямо на головку члена, а когда сперма выделяется, она представляет, как энергия его оргазма проникает прямо в верхнюю часть ее головы, Когда у мужчины заканчивается семяизвержение, она закрывает глаза и водит зрачками вверх и вниз, как будто пристально рассматривает верхнюю часть мозга. Она обращает все свое внимание на ощущение тепла его семени на своем лице. Когда головка его пениса находится у нее во рту, она совершает сосательные движения девять раз (очень аккуратно и без усилия, если пенис слишком чувствительный) и снова представляет себе энергию его члена, проникающую в верхнюю часть ее головы.

В этих своих практиках она в полной мере использует свое воображение. Когда мы стареем и испытываем на себе неблагоприятное влияние окружающей среды и давление общества, мы теряем способность использовать воображение. Воображение является одним из мощнейших инструментов, который мы, люди, увы, используем слишком редко. В детском возрасте фантазия мешает нам отличать воображаемых друзей от настоящих и дает возможность зримо и ярко представлять все наши цели и надежды. С возрастом мы используем воображение все меньше и меньше, хотя оно и участвует в формировании религиозных переживаний: мы воспринимаем своего бога как настоящего, живого человека. В этом отношении мы называем воображение верой, но она функционирует точно таким же образом.

Ребенок использует воображение чаще, чем рациональное мышление, которое разрушает силу воображения. Белая тигрица использует свое воображение в полной мере и в результате получает возможность воспринимать сексуальную энергию как нечто вполне материальное. Мы должны помнить, что все, что существует в мире, является материальным воплощением идеи.

Подобно тому, как некоторые успешные спортсмены, бизнесмены и кинозвезды еще в подростковом возрасте мечтали о том, чтобы стать богатыми и знаменитыми, чувствуя, что это непременно случится, Тигрицы представляют и воспринимают себя уже достигшими юности и бессмертия - и совершенно уверены, что так оно и будет. Используя свое воображение, Тигрица способна увеличить интенсивность не только своего собственного оргазма, но и оргазма партнера и воссоздать духовное и физическое состояние своей молодости.

Тигрица увеличивает интенсивность своих половых ощущений, используя мужчин, которых называют Зелеными драконами. Она поступает так для того, чтобы избежать рутины, являющейся отрицательным последствием длительных сексуальных отношений с одним партнером, у которого интенсивность ощущений со временем чаще всего постепенно снижается. Кроме того, как гласит пословица, близкие отношения рождают презрение. С одним мужчиной ее сексуальное желание станет реализовываться в сексе, целью которого будет продолжение рода, а не духовное возрождение. Утратив стремление к возрождению, она уже не может измениться. Также Тигрица использует других мужчин для возбуждения своего основного партнера, Нефритового дракона, чтобы он, наблюдая за тем, как она занимается с ними любовью, тоже мог сделать свой оргазм более интенсивным. Таким образом, увеличение интенсивности своего оргазма и оргазма партнера является для Тигрицы ключом к очищению, сохранению и восстановлению молодости. С этой точки зрения секс становится лекарством.

Мозг это загадочный орган, который постоянно изучается учеными и остается до конца не исследованным. Система строения не простая и является сочетанием нейронных клеток, которые группируются в отдельные отделы. Кора головного мозга имеется у большинства животных и млекопитающих, но именно в человеческом организме она получила большего развития. Этому способствовала трудовая активность.

Почему мозг называют серым веществом или серой массой? Он сероватый, но в нем присутствует белый, красный и черные цвет. Серая субстанция представляет разные типы клеток, а белая нервную материю. Красный цвет это кровяные сосуды, а черный это меланин пигмент, который отвечает за окраску волос и кожи.

Строение мозга

Главный орган делится на пять основных частей. Первая часть продолговатая. Это продление спинного мозга, который контролирует связь с деятельностью тела и состоит из серой и белой субстанции. Вторая, средняя включает четыре бугорка, из которых два ответственные за слуховую, а два за зрительскую функцию. Третья, задняя включает мосток и церебеллум или мозжечок. Четвертая, буферная гипоталамус и таламус. Пятая, конечная, которая формирует два полушария.

Поверхность состоит из бороздочек и мозгов, покрытых оболочкой. Этот отдел составляет 80 % общего веса человека. Также мозг можно разделить на три части церебеллум, стволик и полушария. Он покрыт тремя слоями, которые предохраняют и питают основной орган. Это паутинный слой, в котором циркулирует мозговая жидкость, мягкий содержит кровяные сосуды, твердый близкий к мозгу и защищает его от повреждений.

Функции мозга


Мозговая деятельность включает основные функции серого вещества. Это чувствительные, зрительные, слуховые, обонятельные, осязательные реакции и моторные функции. Однако все главные центры управления находятся в продолговатой части, где координируется деятельность сердечно-сосудистой системы, защитных реакций и мышечной деятельности.

Двигательные пути продолговатого органа создают перекрещивание с переходом на противолежащую сторону. Это ведет к тому, что рецепторы сначала образуются в правой области, после чего поступают импульсы в левую область. Речь выполняется в больших полушариях мозга. Задний отдел отвечает за вестибулярный аппарат.

Кора головного мозга — высший отдел ЦНС, который обеспечивает совершенную организацию поведения человека. По факту она предопределяет сознание, участвует в управлении мышлением, способствует обеспечению взаимосвязи с внешним миром и функционирования организма. Она устанавливает взаимодействие с внешним миром посредством рефлексов, что позволяет надлежащим образом адаптироваться к новым условиям.

Указанный отдел ответственный за работу самого мозга. Сверху определенных участков, взаимосвязанных с органами восприятия, образовались зоны, обладающие подкорковым белым веществом. Они важны при сложном обрабатывании данных. Вследствие появления такого органа в мозге начинается следующая стадия, на которой значение ее функционирования существенно возрастает. Данный отдел является органом, который выражает индивидуальность и сознательную деятельность индивида.

Общая информация о коре ГМ

Представляет собой поверхностный слой толщиной до 0,2 см, который покрывает полушария. Он предусматривает вертикально ориентированные нервные окончания. Этот орган содержит центростремительные и центробежные нервные отростки, нейроглии. Каждая доля этого отдела несет ответственность за определенные функции:

  • – слуховая функция и обоняние;
  • затылочная – зрительное восприятие;
  • теменная – осязание и вкусовые рецепторы;
  • лобная – речь, двигательная активность, сложные мыслительные процессы.

По факту кора предопределяет сознательную деятельность индивида, участвует в управлении мышлением, взаимодействует с внешним миром.

Анатомия

Выполняемые корой функции зачастую обусловлены ее анатомическим строением. Структура имеет свои характерные черты, выраженные в разном числе слоев, габаритах, анатомии образующих орган нервных окончаний. Специалисты выделяют следующие разновидности слоев, взаимодействующих между собой и помогающих функционировать системе в целом:

  • Молекулярный слой. Помогает создать хаотично связанных дендритных формирований с малым числом клеток, имеющих веретенообразную форму и обусловливающих ассоциативную деятельность.
  • Наружный слой. Выражается нейронами, имеющими разные очертания. После них локализуются внешние контуры структур, имеющих пирамидальную форму.
  • Наружный слой пирамидального типа. Предполагает наличие нейронов разных размеров. По форме данные клетки схожи с конусом. Сверху выходит дендрит, обладающий наибольшими размерами. связаны при помощи деления на незначительные образования.
  • Зернистый слой. Предусматривает нервные окончания незначительного размера, локализованных обособленно.
  • Пирамидальный слой. Предполагает наличие нейронных цепей, обладающих различными габаритами. Верхние отростки нейронов способны доходить до начального слоя.
  • Покров, содержащий нейронные связи, напоминающие веретено. Часть из них, находящаяся в нижней точке, может достигать уровня белого вещества.
  • Лобная доля
  • Играет ключевую роль для сознательной деятельности. Участвует в запоминании, внимании, мотивации и прочих задачах.

Предусматривает наличие 2 парных долей и занимает 2/3 всего мозга. Полушария осуществляют контроль противоположных сторон туловища. Так, левая доля регулирует работу мышц правой стороны и наоборот.

Лобные части имеют важное значение в последующем планировании, включая управление и принятие решений. Кроме того, они выполняют следующие функции:

  • Речевая. Способствует выражению словами мыслительных процессов. Поражение данного участку может повлиять на восприятие.
  • Моторика. Дает возможность влиять на двигательную активность.
  • Сравнительные процессы. Способствует проведению классификации предметов.
  • Запоминание. Каждый участок мозга имеет важное значение в процессах запоминания. Лобная часть формирует долгосрочную память.
  • Личностное формирование. Дает возможность взаимодействовать импульсам, памяти и прочим задачам, образующим главные характеристики индивида. Поражение лобной доли кардинальным образом меняет личность.
  • Мотивация. Большая часть чувствительных нервных отростков расположены в лобной части. Дофамин способствует поддержанию мотивационной составляющей.
  • Контроль внимания. Если лобные части не способны осуществлять управление вниманием, то формируется синдром нехватки внимания.

Теменная доля

Охватывает верхнюю и боковую части полушария, а также разделяются центральной бороздой. Функции, которые выполняет данный участок, различаются для доминантной и недоминантной сторон:

  • Доминантная (преимущественно левая). Несет ответственность за возможность понимания устройства целого через соотношение его составляющих и за синтез информации. Кроме того, дает возможность осуществления взаимосвязанных движений, которые требуются для получения конкретного результата.
  • Недоминантная (преимущественно правая). Центр, который перерабатывает данные, поступающие из затылочной части, и обеспечивает 3-хмерное восприятие происходящего. Поражение данного участка ведет к неспособности распознавания объектов, лиц, пейзажей. Так как зрительные образы перерабатываются в мозге обособленно от данных, поступающих из остальных органов чувств. Кроме того, сторона принимает участие в ориентации в пространстве человека.

Обе теменные части принимают участие в восприятии температурных изменений.

Височная

Она реализует сложную психическую функцию – речь. Расположена на обоих полушариях сбоку в нижней части, тесно взаимодействуя с близлежащими отделами. Данная часть коры обладает наиболее выраженными контурами.

Височные участки осуществляют обработку слуховых импульсов, преобразуя их в звуковой образ. Имеют важное значение в обеспечении речевых коммуникативных навыков. Непосредственно в данном отделе происходит распознавание услышанной информации, выбор языковых единиц для смысловой выраженности.

На сегодняшний день подтверждено, что возникновение сложностей с обонянием у больного преклонного возраста сигнализирует о формирующемся заболевании Альцгеймера.

Незначительный участок внутри височной доли (), осуществляет контроль долговременной памяти. Непосредственно височная часть накапливает воспоминания. Доминантный отдел взаимодействует с вербальной памятью, недоминантный способствует зрительному запоминанию образов.

Одновременное повреждение двух долей ведет к безмятежному состоянию, потере возможности идентификации внешних образов и повышенной сексуальности.

Островок

Островок (закрытая долька) расположен в глуби боковой борозды. От смежных отделов островок отделяется круговой бороздой. Верхний участок закрытой дольки разделяется на 2 части. Здесь проецируется вкусовой анализатор.

Формирующая дно латеральной борозды, закрытая долька является выступом, верхняя часть которого направлена наружу. Островок отделяется круговой бороздой от близлежащих долей, которые формируют покрышку.

Верхний отдел закрытой дольки подразделяется на 2 части. В первой локализуется прецентральная борозда, а находящаяся посреди них расположена передняя центральная извилина.

Борозды и извилины

Являют собой впадины и находящиеся посреди них складки, которые локализуются на поверхности мозговых полушарий. Борозды способствуют увеличению коры полушарий, не увеличивая объем черепной коробки.

Значимость данных участков заключается в том, что две трети всей коры располагаются в глуби борозд. Бытуют мнение, что полушария развиваются неодинаково в разных отделах, в результате этого напряжение будет также неравномерным в конкретных участках. Это может привести к формированию складок либо извилин. Другие ученые полагают, что большое значение имеет первоначальное развитие борозд.

Анатомическая структура рассматриваемого органа отличается многообразием функций.

Каждый отдел данного органа обладает специфическим предназначением, являясь своеобразным уровнем воздействия.

Благодаря им осуществляется все функционирование головного мозга. Нарушения в работе определенной зоны способно привести к сбоям в деятельности всего мозга.

Зона обработки импульсов

Данный участок способствует обработке нервных сигналов, поступающих через зрительные рецепторы, обоняние, осязание. Большинство рефлексов, взаимосвязанных с моторикой, будут обеспечены пирамидальными клетками. Зона, обеспечивающая обработку мышечных данных, характеризуется слаженной взаимосвязью всех слоев органа, что имеет ключевое значение на этапе соответствующего обрабатывания нервных сигналов.

Если кора мозга поражена на этом участке, то могут произойти нарушения в слаженном функционировании функций и действий по восприятию, неразрывно взаимосвязанных с моторикой. Внешне расстройства в двигательной части проявляются во время непроизвольной двигательной активности, судорогах, тяжелых проявлениях, которые ведут к параличу.

Зона сенсорного восприятия

Данная область отвечает за обработку импульсов, поступающих в мозг. По своей структуре она представляет собой систему взаимодействия анализаторов для установления взаимосвязи со стимулятором. Специалисты выделяют 3 отдела, отвечающих за восприятие импульсов. К ним относят затылочную, обеспечивающая обрабатывание зрительных образов; височную, которая связана со слухом; зону гиппокампа. Часть, которая несет ответственность за обработку данных стимуляторов вкуса, расположены рядом с теменем. Здесь располагаются центры, которые отвечают за прием и обработку тактильных импульсов.

Сенсорная способность непосредственно зависит от количества нейронных связей на этом участке. Примерно данные отделы занимают до пятой части от всего размера коры. Повреждение данного участка провоцирует ненадлежащее восприятие, что не позволит продуцировать встречный импульс, который был бы адекватен раздражителю. Например, нарушение в функционировании слуховой зоны не во всех случаях вызывает глухоту, однако способно спровоцировать некоторые эффекты, искажающие нормальное восприятие данных.

Ассоциативная зона

Этот отдел способствует контактированию между импульсами, принимаемыми нейронными связями в сенсорном отделе, и моторикой, которая представляет собой встречный сигнал. Эта часть формирует осмысленные поведенческие рефлексы, а также принимает участие в их осуществлении. По месту расположения выделяются передние зоны, располагающиеся в лобных частях, и задние, занявшие промежуточное положение посреди висков, теменем и затылочным участком.

Для индивида свойственны сильно развитые задние ассоциативные зоны. Данные центры обладают особым предназначением, гарантируя обрабатывание речевых импульсов.

Патологические изменения в работе переднего ассоциативного участка ведет к сбоям в проведении анализа, прогнозирования, на основе пережитых ранее ощущений.

Расстройства в функционировании заднеассоциативного участка усложняет пространственную ориентацию, делает медленнее абстрактные мыслительные процессы, конструирование и идентификацию сложных зрительных образов.

Кора головного мозга ответственна за работу головного мозга. Подобное вызвало изменения в анатомическом строении самого мозга, так как его работа существенно усложнилась. Сверху определенных участков, взаимосвязанных с органами восприятия и двигательным аппаратом, образовались отделы, которые обладают ассоциативными волокнами. Они необходимы для сложной обработки попадающих внутрь мозга данных. Вследствие формирования данного органа начинается новая стадия, где ее значимость существенно возрастает. Данный отдел считается органом, который выражает индивидуальные особенности человека и его сознательную деятельность.

Кора больших полушарий головного мозга представляет собой наиболее молодое образование центральной нервной системы.Деятельность коры больших полушарий основана на принципе условного рефлекса, поэтому ее называют условно-рефлекторной. Она осуществляет быструю связь с внешней средой и приспособление организма к изменяющимся условиям внешней среды.

Глубокие борозды делят каждое полушарие большого мозга на лобную, височную, теменную, затылочную доли и островок . Островок расположен в глубине сильвиевой борозды и закрыт сверху частями лобной и теменной долей мозга.

Кора большого мозга делится на древнюю (архиокортекс ), старую (палеокортекс ) и новую (неокортекс). Древняя кора, наряду с другими функциями, имеет отношение к обонянию и обеспечению взаимодействия систем мозга. Старая кора включает поясную извилину, гиппокамп. У новой коры наибольшее развитие величины, дифференциации функций отмечается у человека. Толщина новой коры 3-4 мм. Общая площадь коры взрослого человека 1700-2000 см 2 , а число нейронов — 14 млрд (если их расположить в ряд, то образуется цепь протяженностью 1000 км) — постепенно истощается и к старости составляет 10 млрд (более 700 км). В составе коры имеются пирамидные, звездчатые и веретенообразные нейроны.

Пирамидные нейроны имеют разную величину, их дендриты несут большое количество шипиков: аксон пирамидного нейрона идет через белое вещество в другие зоны коры или структуры ЦНС.

Звездчатые нейроны имеют короткие, хорошо ветвящиеся дендриты и короткий аксон, обеспечивающий связи нейронов в пределах самой коры большого мозга.

Веретенообразные нейроны обеспечивают вертикальные или горизонтальные взаимосвязи нейронов разных слоев коры.

Строение коры больших полушарий

В коре содержится большое количество глиальных клеток, выполняющих опорную, обменную, секреторную, трофическую функции.

Наружная поверхность коры разделена на четыре доли: лобную, теменную, затылочную и височную. Каждая доля имеет свои проекционные и ассоциативные области.

Кора большого мозга имеет шестислойное строение (рис. 1-1):

  • молекулярный слой (1) светлый, состоит из нервных волокон и имеет небольшое количество нервных клеток;
  • наружный зернистый слой (2) состоит из звездчатых клеток, определяющих длительность циркулирования возбуждения в коре головного мозга, т.е. имеющих отношение к памяти;
  • слой пирамидных меток (3) формируется из пирамидных клеток малой величины и вместе со слоем 2 обеспечивает корко-корко- вые связи различных извилин мозга;
  • внутренний зернистый слой (4) состоит из звездчатых клеток, здесь заканчиваются специфические таламокортикальные пути, т.е. пути, начинающиеся от рецепторов-анализаторов.
  • внутренний пирамидный слой (5) состоит из гигантских пирамидных клеток, которые являются выходными нейронами, аксоны их идут в ствол мозга и спинной мозг;
  • слой полиморфных клеток (6) состоит из неоднородных по величине клеток треугольной и веретенообразной формы, которые образуют кортикоталамические пути.

I — афферентные пути из таламуса: СТА — специфические таламические афференты; НТА — неспецифические таламические афференты; ЭМВ — эфферентные моторные волокна. Цифрами обозначены слои коры; II — пирамидный нейрон и распределение окончаний на нем: А — неспецифические афферентные волокна из ретикулярной формации и ; Б — возвратные коллатерали от аксонов пирамидных нейронов; В — комиссуральные волокна из зеркальных клеток противоположного полушария; Г — специфические афферентные волокна из сенсорных ядер таламуса

Рис. 1-1. Связи коры больших полушарий.

Клеточный состав коры по разнообразию морфологии, функций, формам связи не имеет себе равных в других отделах ЦНС. Нейронный состав, распределение по слоям в разных областях коры различны. Это позволило выделить в мозге человека 53 цитоархитектонических поля. Разделение коры большого мозга на цитоархитектонические поля более четко формируется по мере совершенствования ее функции в филогенезе.

Функциональной единицей коры является вертикальная колонка диаметром около 500 мкм. Колонка - зона распределения разветвлений одного восходящего (афферентного) таламокортикального волокна. Каждая колонка содержит до 1000 нейронных ансамблей. Возбуждение одной колонки тормозит соседние колонки.

Восходящий путь проходит через все корковые слои (специфический путь). Неспецифический путь также проходит через все корковые слои. Белое вещество полушарий расположено между корой и базальными ганглиями. Оно состоит из большого количества волокон, идущих в разных направлениях. Это проводящие пути конечного мозга. Различают три вида путей.

  • проекционный — связывает кору с промежуточным мозгом и другими отделами ЦНС. Это восходящие и нисходящие пути;
  • комиссуральный - его волокна входят в состав мозговых комиссур, которые соединяют соответствующие участки левого и правого полушарий. Входят в состав мозолистого тела;
  • ассоциативный - связывает участки коры одного и того же полушария.

Зоны коры больших полушарий

По особенностям клеточного состава поверхность коры подразделяют на структурные единицы следующего порядка: зоны, области, подобласти, поля.

Зоны коры головного мозга разделяются на первичные, вторичные и третичные проекционные зоны. В них расположены специализированные нервные клетки, к которым поступают импульсы от определенных рецепторов (слуховых, зрительных и т.д.). Вторичные зоны представляют собой периферические отделы ядер анализаторов. Третичные зоны получают обработанную информацию от первичных и вторичных зон коры больших полушарий и играют важную роль в регуляции условных рефлексов.

В сером веществе коры больших полушарий различают сенсорные, моторные и ассоциативные зоны:

  • сенсорные зоны коры больших полушарий - участки коры, в которых располагаются центральные отделы анализаторов:
    зрительная зона — затылочная доля коры больших полушарий;
    слуховая зона — височная доля коры больших полушарий;
    зона вкусовых ощущений — теменная доля коры больших полушарий;
    зона обонятельных ощущений — гиппокамп и височная доля коры больших полушарий.

Соматосенсорная зона находится в задней центральной извилине, сюда приходят нервные импульсы от проприорецепторов мышц, сухожилий, суставов и импульсы от температурных, тактильных и других рецепторов кожи;

  • моторные зоны коры больших полушарии - участки коры, при раздражении которых появляются двигательные реакции. Располагаются в передней центральной извилине. При ее поражении наблюдаются значительные нарушения движения. Пути, по которым импульсы идут от больших полушарий к мышцам, образуют перекрест, поэтому при раздражении моторной зоны правой стороны коры возникает сокращение мышц левой стороны тела;
  • ассоциативные зоны - отделы коры, находящиеся рядом с сенсорными зонами. Нервные импульсы, поступающие в сенсорные зоны, приводят к возбуждению ассоциативных зон. Особенностью их является то, что возбуждение может возникать при поступлении импульсов от различных рецепторов. Разрушение ассоциативных зон приводит к серьезным нарушениям обучения и памяти.

Речевая функция связана с сенсорными и двигательными зонами. Двигательный центр речи (центр Брока) находится в нижней части левой лобной доли, при его разрушении нарушается речевая артикуляция; при этом больной понимает речь, но сам говорить не может.

Слуховой центр речи (центр Вернике) расположен в левой височной доле коры больших полушарий, при его разрушении наступает словесная глухота: больной может говорить, излагать устно свои мысли, но не понимает чужой речи; слух сохранен, но больной не узнает слов, нарушается письменная речь.

Речевые функции, связанные с письменной речью — чтение, письмо, — регулируются зрительным центром речи, расположенным на границе теменной, височной и затылочной долей коры головного мозга. Его поражение приводит к невозможности чтения и письма.

В височной доле находится центр, отвечающий за запоминание слое. Больной с поражением этого участка не помнит названия предметов, ему необходимо подсказывать нужные слова. Забыв название предмета, больной помнит его назначение, свойства, поэтому долго описывает их качества, рассказывает, что делают с этим предметом, но назвать его не может. Например, вместо слова «галстук» больной говорит: «это то, что надевают на шею и завязывают специальным узлом, чтобы было красиво, когда идут в гости».

Функции лобной доли:

  • управление врожденными поведенческими реакциями при помощи накопленного опыта;
  • согласование внешних и внутренних мотиваций поведения;
  • разработка стратегии поведения и программы действия;
  • мыслительные особенности личности.

Состав коры больших полушарий

Кора больших полушарий головного мозга является высшей структурой ЦНС и состоит из нервных клеток, их отростков и нейроглии. В составе коры имеются звездчатые, веретенообразные и пирамидные нейроны. Благодаря наличию складок кора имеет большую поверхность. Выделяют древнюю кору (архикортекс) и новую кору (неокортекс). Кора состоит из шести слоев (рис. 2).

Рис. 2. Кора больших полушарий головного мозга

Верхний молекулярный слой образован в основном дендритами пирамидных клеток нижележащих слоев и аксонами неспецифических ядер таламуса. На этих дендритах формируют синапсы афферентные волокна, приходящие от ассоциативных и неспецифических ядер таламуса.

Наружный гранулярный слой образован мелкими звездчатыми клетками и частично малыми пирамидными клетками. Волокна клеток этого слоя расположены преимущественно вдоль поверхности коры, формируя кортикокортикальные связи.

Слой пирамидных клеток малой величины.

Внутренний гранулярный слой, образованный звездчатыми клетками. В нем заканчиваются афферентные таламокортикальные волокна, начинающиеся от рецепторов анализаторов.

Внутренний пирамидный слой состоит из крупных пирамидных клеток, участвующих в регуляции сложных форм движения.

Мультиформный слой состоит из верстеновидных клеток, образующих кортикоталамические пути.

По функциональной значимости нейроны коры подразделяют на сенсорные , воспринимающие афферентные импульсы от ядер таламуса и рецепторов сенсорных систем; моторные , посылающие импульсы к подкорковым ядрам, промежуточному, среднему, продолговатому мозгу, мозжечку, ретикулярной формации и спинному мозгу; и промежуточные , осуществляющие связь между нейронами коры больших полушарий. Нейроны коры больших полушарий находятся в состоянии постоянного возбуждения, не исчезающего и во время сна.

В кору больших полушарий, к сенсорным нейронам поступают импульсы от всех рецепторов организма через ядра таламуса. И каждый орган имеет свою проекцию или корковое представительство, расположенное в определенных областях больших полушарий.

В коре больших полушарий имеется четыре чувствительные и четыре двигательные области.

Нейроны двигательной коры получают афферентную импульсацию через таламус от мышечных, суставных и кожных рецепторов. Основные эфферентные связи двигательной коры осуществляются через пирамидные и экстрапирамидные пути.

У животных наиболее развита лобная область коры и ее нейроны участвуют в обеспечении целенаправленного поведения. Если удалить эту долю коры, животное становится вялым, сонливым. В височной области локализуется участок слуховой рецепции, и сюда поступают нервные импульсы от рецепторов улитки внутреннего уха. Область зрительной рецепции находится в затылочных долях коры головного мозга.

Теменная область, внеядерная зона, играет важную роль в организации сложных форм высшей нервной деятельности. Здесь расположены рассеянные элементы зрительного и кожного анализаторов, осуществляется межанализаторный синтез.

Рядом с проекционными зонами располагаются ассоциативные зоны, которые осуществляют связь между сенсорной и двигательной зонами. Ассоциативная кора принимает участие в конвергенции различных сенсорных возбуждений, позволяющей осуществлять сложную обработку информации о внешней и внутренней среде.

Шошина Вера Николаевна

Терапевт, образование: Северный медицинский университет. Стаж работы 10 лет.

Написано статей

Головной мозг современного человека и его сложное строение является наибольшим достижением этого вида и его преимуществом, отличием от других представителей живого мира.

Кора головного мозга – это очень тонкий слой серого вещества, который не превышает 4,5 мм. Он расположен на поверхности и боковых сторонах больших полушарий, покрывая их сверху и по периферии.

Анатомия коры или кортекса, сложная. Каждый участок выполняет свою функцию и играет огромное значение в осуществлении нервной деятельности. Можно считать этот участок высшим достижением физиологического развития человечества.

Строение и кровоснабжение

Кора головного мозга – это слой клеток серого вещества, составляющий примерно 44% от общего объема полушария. Площадь коры среднестатистического человека – около 2200 квадратных сантиметров. Особенности строения в виде чередующихся борозд и извилин призваны максимально увеличить размеры кортекса и в то же время компактно уместить в пределах черепной коробки.

Интересно, что рисунок извилин и борозд столь же индивидуален, как и отпечатки папиллярных линий на пальцах человека. Каждая особь индивидуальна по рисунку и .

Кора полушарий из следующих поверхностей:

  1. Верхнелатеральная. Она примыкает к внутренней стороне костей черепа (свода).
  2. Нижняя. Ее передние и средние отделы находятся на внутренней поверхности основания черепа, а задние опираются о намет мозжечка.
  3. Медиальная. Она направлена к продольной щели мозга.

Наиболее выступающие места носят название полюсов – лобного, затылочного и височного.

Кора больших полушарий симметрично делится на доли:

  • лобная;
  • височная;
  • теменная;
  • затылочная;
  • островковая.

В строении выделяются следующие слои коры человеческого головного мозга:

  • молекулярный;
  • наружный зернистый;
  • слой пирамидальных нейронов;
  • внутренний зернистый;
  • ганглионарный, внутренний пирамидный или слой клеток Беца;
  • слой мультиформатных, полиморфных или веретенообразных клеток.

Каждый слой не является отдельным независимым образованием, а представляет собой единую слаженно функционирующую систему.

Функциональные области

Нейростимуляция выявила, что кортекс подразделяется на следующие отделы коры головного мозга:

  1. Сенсорные (чувствительные, проекционные). Они получают входящие сигналы от рецепторов, находящихся в различных органах и тканях.
  2. Двигательные, отправляемые исходящие сигналы к эффекторам.
  3. Ассоциативные, обрабатывающие и сохраняющие информацию. Они оценивают ранее полученные данные (опыт) и выдают ответ с их учетом.

Структурно-функциональная организация коры головного мозга включает в себя следующие элементы:

  • зрительная, расположенная в затылочной доле;
  • слуховая, занимающая височную долю и часть теменной;
  • вестибулярная в меньшей степени изучена и пока еще представляет проблему для исследователей;
  • обонятельная находится на нижней ;
  • вкусовая размещается в височных отделах мозга;
  • соматосенсорная кора выступает в виде двух областей – I и II, расположенных в теменной доле.

Столь сложное строение кортекса говорит о том, что малейшее нарушение приведет к последствиям, отразившимся на множестве функций организма и вызовет патологии разной интенсивности, зависящие от глубины поражения и расположения участка.

Как связана кора с другими отделами мозга

Все зоны коры человеческого головного мозга не существуют обособленно, они взаимосвязаны и образуют неразрывные двусторонние цепи с расположенными глубже мозговыми структурами.

Наиболее важной и значимой оказывается связь кортекса и таламуса. При травме черепа повреждения оказываются намного значительнее, если вместе с корой травмированным оказывается и таламус. Травмы только кортекса выявляются намного меньшими, и имеют менее значительные последствия для организма.

Почти все связи от разных частей коры проходят через таламус, что дает основание объединять эти части головного мозга в таламокортикальную систему. Прерывание связей таламуса и кортекса приводит к утрате функций соответствующей части коры.

Пути от сенсорных органов и рецепторов к кортесу также пролегают через таламус, за исключением некоторых обонятельных путей.

Интересные факты о коре головного мозга

Человеческий мозг – уникальное творение природы, которое сами владельцы, то есть люди, до сих пор не научились полностью понимать. Не совсем справедливо сравнивать его с компьютером, потому что сейчас даже самые современные и мощные компьютеры не могут справляться с объемами задач, выполняемых мозгов в течение секунды.

Мы привыкли не обращать внимание на привычные функции мозга, связанные с поддержанием нашей ежедневной жизнедеятельности, но произойди в этом процессе хоть мельчайший сбой, сразу бы ощутили его «на своей шкуре».

«Маленькие серые клеточки», как говорил незабвенный Эркюль Пуаро, или с точки зрения науки – кора мозга – это орган, до сих пор остающийся загадкой для ученых. Мы выяснили очень многое, например, знаем, что величина мозга никак не влияет на уровень интеллекта, ведь у признанного гения – Альберта Эйнштейна – мозг имел массу ниже средней, около 1230 граммов. В то же время есть существа, имеющие мозг сходной структуры и даже большего размера, но так и не достигшие уровня развития человека.

Яркий пример – харизматичные и умные дельфины. Кое-кто считает, что когда-то в глубочайшей древности древо жизни раскололось на две ветви. По одному пути прошли наши предки, а по другому – дельфинов, то есть у нас с ними, возможно, были общие предки.

Особенностью коры головного мозга является ее незаменимость. Хотя мозг способен адаптироваться к травмам и даже частично или полностью восстанавливать свою функциональность, при потере части коры утраченные функции не восстанавливаются. Мало того, ученые смогли сделать вывод о том, что эта часть во многом обуславливает личность человека.

При травме лобной доли или наличия здесь опухоли, после операции и удаления уничтоженного участка кортекса больной радикально меняется. То есть перемены касаются не только его поведения, но и личности в целом. Отмечены случаи, когда хороший добрый человек превращался в настоящее чудовище.

Некоторые психологи и криминалисты на основании этого сделали вывод, что внутриутробное повреждение коры головного мозга, особенно его лобной доли, приводит к рождению детей с асоциальным поведением, с социопатическими наклонностями. У таких малышей высокий шанс стать преступником и даже маньяком.

Патологии КГМ и их диагностика

Все нарушения строения и функционирования головного мозга и его коры можно разделить на врожденные и приобретенные. Часть из таких поражений несовместима с жизнью, например, анэнцефалия – полное отсутствие мозга и акрания – отсутствие черепных костей.

Другие заболевания оставляют шанс на выживание, но сопровождаются нарушениями умственного развития, например, энцефалоцеле, при котором часть мозговых тканей и его оболочек выпячивается наружу через отверстие в черепе. В эту же группу попадает и – недоразвитый маленький мозг, сопровождающийся разными формами задержки психического (олигофрения, идиотия) и физического развития.

Более редким вариантом патологии является макроцефалия, то есть увеличение головного мозга. Патология проявляется умственной отсталостью и судорогами. При нем увеличение мозга может быть частичным, то есть гипертрофия асимметричная.

Патологии, при которых поражается кора головного мозга, представлены следующими заболеваниями:

  1. Голопрозэнцефалия – состояние, при котором полушария не разделены и не существует полноценного деления на доли. Дети при такой болезни рождаются мертвыми или погибают в первые сутки после родов.
  2. Агирия – недоразвитость извилин, при котором нарушаются функции коры. Атрофия сопровождается множественными расстройствами и приводит к смерти младенца в течение первых 12 месяцев жизни.
  3. Пахигирия – состояние, при котором первичные извилины увеличены в ущерб остальным. Борозды при этом короткие и выпрямленные, строение коры и подкорковых структур нарушено.
  4. Микрополигирия, при которой мозг покрыт мелкими извилинами, а кора имеет не 6 нормальных слоев, а всего 4. Состояние бывает диффузным и локальным. Незрелость приводит к развитию плегий и парезов мышц, эпилепсии, которая развивается в первый же год, умственной отсталости.
  5. Фокальная корковая дисплазия сопровождается наличием в височной и лобной доле патологических участков с огромными нейронами и ненормальными . Неправильное строение клеток приводит к возникновению повышенной возбудимости и приступам, сопровождающимся специфическими движениями.
  6. Гетеротопия – скопление нервных клеток, которые в процессе развития не достигли своего места в коре. Одиночное состояние может проявиться после десятилетнего возраста, большие скопления вызывают приступы типа эпилептических припадков и олигофрению.

Приобретенные заболевания в основном являются следствиями перенесенных серьезных воспалений, травм, а также появляются после развития или удаления опухоли – доброкачественной или злокачественной. При таких состояниях, как правило, прерывается импульс, исходящий от коры в соответствующие органы.

Наиболее опасным считается так называемый префронтальный синдром. Эта область – фактически проекция всех органов человека, поэтому повреждения лобной доли приводит к , памяти, речи, движений, мышления, а также к частичной или полной деформации и изменению личности больного.

Ряд патологий, сопровождающихся внешними изменениями или отклонениями в поведении, диагностировать достаточно легко, другие требуют более тщательного изучения, а удаленные опухоли подвергаются гистологическому исследованию, чтобы исключить злокачественную природу.

Тревожными показаниями для проведения процедуры является наличие в семье врожденных патологий или заболеваний, гипоксия плода в беременности, асфиксия в родах, родовая травма.

Методы диагностики врожденных отклонений

Современная медицина помогает препятствовать рождению детей с тяжелейшими пороками развития коры головного мозга. Для этого выполняется скрининг в первом триместре беременности, который позволяет выявить патологии строения и развития мозга на самых ранних стадиях.

У родившегося крохи с подозрением на патологии проводится нейросонография через «родничок», а детей постарше и взрослых обследуют путем проведения . Этот способ позволяет не только обнаружить дефект, но и визуализировать его размеры, форму и расположение.

Если в семье встречались наследственные проблемы, связанные со строением и функционированием коры и всего мозга, требуется консультация генетика и проведение специфических обследований и анализов.

Знаменитые «серые клеточки» – величайшее достижение эволюции и высшее благо для человека. Вызвать повреждения могут не только наследственные заболевания и травмы, но и приобретенные патологии, спровоцированные самим человеком. Врачи призывают беречь здоровье, отказаться от вредных привычек, позволять своему телу и мозгу отдыхать и не давать разуму лениться. Нагрузки полезны не только мышцам и суставам – они не позволяют нервным клеткам стареть и выходить из строя. Тот, кто учится, работает и загружает свой мозг, меньше страдает от его износа и позже приходит к и утрате умственных способностей.