Специфика защиты от лазерного излучения. Что такое лазерное излучение. Лазерные поражения глаз

Лазеры и излучение от них используется человечеством уже довольно давно. Помимо медицинской среды эксплуатации подобные устройства получили широкое применение в технических отраслях промышленности. Взяли их на вооружение специалисты из области декорирования и создания спецэффектов. Теперь ни одно масштабное шоу не обходится без сцены с лазерными лучами.

Чуть позже такое излучение перестало принимать только промышленные формы и стало встречаться в быту. Но не все знают, как отражается влияние лазерного излучения на организм человека при регулярном и периодическом облучении.

Что такое лазерное излучение?

Лазерное излучение рождается по принципу создания света. В обоих случаях используются атомы. Но в ситуации с лазерами присутствуют другие физические процессы, и прослеживается воздействие электромагнитного поля внешнего типа. Из-за этого ученые называют излучение от лазеров вынужденным или стимулированным.

В терминологии физики лазерным излучением называют электромагнитные волны, которые распространяются почти параллельно по отношению друг к другу. Из-за этого лазерный луч отличается острой направленностью. Кроме этого такой луч обладает небольшим углом рассеивания совместно с огромной интенсивностью влияния на поверхность, которую облучают.

Главным отличием лазера от стандартной лампы накаливания считается спектральный диапазон. Лампа числится рукотворным источником света, который излучает электромагнитные волны. Спектр освещения у классической лампы составляет почти 360 градусов.

Воздействие лазерного облучения на все живое

Вопреки стереотипам, влияние лазерного излучения на организм человека не всегда подразумевает что-то негативное. Из-за повсеместного использования квантовых генераторов в разных жизненных сферах ученые решили задействовать возможности узконаправленного луча в медицине.

В ходе многочисленных исследований стало понятно, что лазерное облучение имеет несколько характерных свойств:

  • Повреждения от лазера могут производиться не только в процессе прямого воздействия на организм из аппарата. Нанести ущерб может даже рассеянное облучение или отраженные лучи.
  • Между степенью поражения и основными параметрами электромагнитной волны прослеживается прямая связь. Также на тяжесть поражения влияет расположение облученной ткани.
  • Негативный эффект при поглощении тканями энергии может выражаться в тепловом или световом воздействии.

Но вот последовательность при поражении лазером всегда предусматривает идентичный биологический принцип:

  • повышение температуры, которое сопровождается ожогом;
  • закипание межтканевой и клеточной жидкостей;
  • образование пара, создающего весомое давление;
  • взрыв и ударная волна, разрушающие все ткани поблизости.

Зачастую неправильно использованный лазерный излучатель несет, в первую очередь, угрозу для кожных покровов. Если влияние было особенно сильным, то кожа будет выглядеть отечной, со следами многочисленных кровоизлияний. Также на теле будут встречаться большие участки омертвевших клеток.

Задевает такое облучение и внутренние ткани. Но при масштабных внутренних поражениях рассеянное воздействие лучами не столько сильно, как прямое или отраженное зеркально. Подобные повреждения будут гарантировать патологические изменения в функционировании различных систем организма.

Кожный покров, который страдает больше всего, является защитой внутренних органов каждого человека. Из-за этого он берет большую часть негативного воздействия на себя. В зависимости от разных степеней поражения на коже будут проявляться покраснения или прослеживаться некроз.

Исследователи пришли к выводу, что люди с темной кожей менее восприимчивы к глубинным поражениям из-за лазерного облучения.

Схематически все ожоги можно разделить на четыре степени вне зависимости от пигментации:

  • I степень. Подразумевает стандартные ожоги эпидермиса.
  • II степень. Включает ожоги дермы, что выражается в образовании характерных пузырей поверхностного слоя кожи.
  • III степень. Основывается на глубинных ожогах дермы.
  • IV степень. Самая опасная степень, которая отличается деструкцией всей толщины кожи. Поражение охватывает подкожную клетчатку, а также соседствующие к ней слои.

Лазерные поражения глаз

На втором месте в негласном рейтинге возможного отрицательного влияния лазера на организм человека находятся поражения органов зрения. Короткие лазерные импульсы способны за небольшой промежуток времени вывести из строя:

  • сетчатку,
  • роговицу,
  • радужную оболочку,
  • хрусталик.

Причин для подобного воздействия существует несколько. Основными из них выступают:

  • Невозможность вовремя среагировать. Из-за того что длительность импульса составляет не более 0,1 секунды, человек не успевает моргнуть. Из-за этого глаз остается незащищенным.
  • Легкая уязвимость. По своим особенностям хрусталик и роговица считаются сами по себе уязвимыми органами.
  • Оптическая глазная система. Из-за фокусировки лазерного излучения на глазном дне, точка облучения при попадании на сосуд сетчатки способна закупорить его. Так как там нет болевых рецепторов, то повреждение обнаружить мгновенно не получится. Только после того как выжженная территория становится больше, человек замечает отсутствие части изображения.

Чтобы быстрее сориентироваться при потенциальном поражении, эксперты советуют прислушиваться к таким симптомам:

  • спазмы век,
  • отек век,
  • болевые ощущения,
  • кровоизлияние в сетчатке,
  • помутнение.

Опасности добавляет тот факт, то поврежденные лазером клетки сетчатки теряют возможность восстановиться. Так как интенсивность облучения, влияющего на органы зрения ниже, чем идентичный порог для кожи, врачи призывают к осторожности.

Следует остерегаться инфракрасных лазеров разного типа, а также приборов, которые генерируют излучение с мощностью свыше 5 мвт. Распространяется правило на технику, выдающую лучи видимого спектра.

Взаимосвязь между лазерной волной и ее сферой применения

Каждая из областей применения лазерного излучения ориентируется на строго определенный показатель длины волны.

Данный показатель напрямую зависит от природы. Вернее, от электронного строения рабочего тела. Это означает, что ответственной за длину волны выступает среда, где происходит генерация ее излучения.

В мире имеются разные виды твердотельных и газовых лазеров. Задействованные лучи должны принадлежать к одному из трех наиболее распространенных типов:

  • видимый,
  • ультрафиолетовый,
  • инфракрасный.

При этом рабочий диапазон облучения может колебаться от 180 нм до 30 мнм.

Особенности влияния лазера на человеческий организм базируются на длине волны. Так, например, человек быстрее реагирует на зеленый лазер, чем на красный. Последний не отличается безопасностью для всего живого. Причина кроется в том, что наше зрение почти в 30 раз луче воспринимает зеленый, нежели красный цвет.

Как защититься от лазера?

В большинстве случаев защита от лазерного излучения нужна тем людям, чья работа тесно связана с его постоянным использованием. Если предприятие имеет на своем балансе любой тип квантового генератора, то его руководители обязательно производят инструктаж своих сотрудников.

Эксперты разработали отдельную сводку правил поведения и безопасности, которые позволят защитить сотрудника от возможных последствий излучения. Главным правилом выступает наличие средств индивидуальной защиты. Причем подобные средства могут разительно отличаться в зависимости от прогнозируемой степени опасности.

Всего в международной классификации предусмотрено разделение на четыре класса опасности. Соответствующую маркировку должен указать изготовитель. Только первый класс считается относительно безопасным даже для органов зрения.

Ко второму классу принадлежат излучения прямого типа, которые поражают органы глаз. Также к представленной категории причислено зеркальное отражение.

Гораздо опаснее излучение третьего класса. Его прямое воздействие угрожает глазам. Не менее опасно отраженное излучение диффузного типа на расстоянии 10 см от поверхности. Кожные поражения будут происходить не только при прямом воздействии, но и при зеркально отраженном.

При четвертом классе страдает и кожа, и глаза при различных форматах воздействия.

К коллективным защитным мерам на производстве причисляют:

  • специальные кожухи,
  • защитные экраны,
  • световоды,
  • инновационные методы слежения,
  • сигнализации,
  • блокировки.

Из относительно примитивных, но действенных способов выделяют ограждение зоны, где производится облучение. Это позволит защитить работников от случайного облучения по неосторожности.

Также на особо опасных предприятиях обязательно использовать средства индивидуальной защиты сотрудников. Они подразумевают под собой особый комплект спецодежды. Не обойтись во время работы и без ношения очков, предусматривающих защитное покрытие.

Лазерные гаджеты и их излучение

Многие не подозревают о том, насколько серьезными могут быть последствия бесконтрольной эксплуатации самодельных устройств с лазерным принципом. Касается это самодельных конструкций вроде лазерных:

  • светильников,
  • указок,
  • фонариков.

Особенно это касается старшеклассников, которые стремятся провести ряд опытов, не имея представления о правилах безопасности при их конструировании.

Использовать лазеры домашнего производства в помещениях, где присутствуют люди, недопустимо. Также нельзя направлять лучи на стекла, металлические пряжки и прочие предметы, которые могут давать отблески.

Даже если луч отличается небольшой интенсивностью, он может привести к трагедии. Если навести лазер на глаза водителя во время активного движения, то он может ослепнуть и не справиться с управлением.

Ни при каких обстоятельствах нельзя заглядывать в объектив лазерного источника излучения. Отдельно стоит учитывать то, что очки для работы с лазером должны быть рассчитаны на ту длину волны, которую будут генерировать выбранные аппараты.

Чтобы не допустить серьезной трагедии доктора просят прислушаться к этим рекомендациям и следовать им всегда.

Принцип действия лазеров основан на использовании вынужденного электромагнитного излучения, возникающего в результате возбуждения квантовой системы. Лазерное излучение является электромагнитным излучением, генерируемым в диапазоне длин волн 0,2-1000мкм. В настоящее время чаще применяются лазеры с длиной волны 0,34;0,49-0,51;0,69;1,06 и 10,6 мкм.

Основные энергетические параметры лазерного излучения являются согласно ГОСТ 15093-75: энергия излучения Е, энергия импульса Еи, мощность излучения Р, плотность энергии излучения Wе. Излучение также характеризуется временными параметрами: длительностью импульса,частотой повторения f, длительностью воздействия излучения t, длиной волны.

При эксплуатации лазерных установок персонал может подвергаться воздействию ряда опасных и вредных факторов. Основную опасность представляет прямое, рассеянное и отраженное излучение. Из-за большой интенсивности прямого лазерного излучения и малой расходимости луча достигается высокая плотность излучения (1011 – 1014 Вт/см2), в то время как для испарения самых твёрдых материалов достаточно 109 Вт/см2.

При эксплуатации лазерных установок наблюдаются сопутствующие опасные и вредные факторы: световое излучение от импульсных ламп накачки, ионизирующее излучение; высокое напряжение в электрической цепи ламп накачки или газового разряда; шум и вибрация; электромагнитные ВИ и СВЧ поля; инфракрасное излучение; запыленность и загазованность воздуха продуктами взаимодействия лазерного луча с мишенью и молекулами воздуха.

Биологические эффекты воздействия лазерного излучения на организм человека зависит от энергетических и временных параметров т. е. от длины волны излучения, длительности импульса, времени воздействия на облучаемый участок, а также от биологических и физико-технических особенностей облучаемых тканей.

Интенсивное облучение кожи лазерным излучением может вызвать в ней различные изменения от легкого покраснения до поверхностного обугливания. Кроме того, возможны повреждения внутренних тканей и органов. Наиболее чувствительным органом к лазерному излучению являются глаза, поэтому даже при незначительных интенсивностях излучения попадание лазерного луча в глаза опасно.

Большое значение в предупреждении неблагоприятного воздействия лазерного излучения на организм человека имеет соблюдение мер лазерной безопасности и санитарных норм. В соответствии с "Санитарными нормами эксплуатации лазеров" установлены предельно допустимые нормы облучения роговицы, сетчатки глаз и кожи.

Предельно допустимые уровни облучения импульсного и непрерывного лазерного излучения выбирают из расчета наименьшей величины энергетической экспозиции, не вызывающей биологических изменений в организме человека с учетом длины волны и длительности излучения. Так для непрерывного лазерного излучения с = 0,3мкм при облучении глаз и кожи в течение рабочего дня предельный допустимый уровень Нпду = 10-4 Дж/см2.

При импульсном излучении, если длительность импульса менее 0,25с, предельно допустимый уровень облучения рассчитывается с учетом частоты повторения импульсов f и длительности воздействия t.

Способы защиты от лазерного излучения подразделяются на коллективные и индивидуальные. Коллективные средства защиты включают телевизионные средства наблюдения за ходом процесса; защитные экраны, системы блокировки и сигнализации, ограждение лазерной опасной зоны.

Для контроля лазерного излучения и определения границ лазерно-опасной зоны применяют ряд приборов, которые разделяют на калориметрические, болометрические, фотоэлектрические. Тепловые действия излучения на приемный элемент используется в калориметрических, болометрических приемниках излучения. Фотоэлектрические методы основаны на применении фотоприемников излучений, в которых поглощение фотонов сопровождается электрически регистрируемым процессом. Фотоэлектрические приборы имеют высокую чувствительность и используются в дозиметрических приборах типа ИЛД-Z.

Лазеры - оптические квантовые генераторы, нашедшие широкое применеие в различных областях науки и техники (обработке металлов, микроэлектронике, биологии, метрологии, медицине, геодезии, связи, сперктроскопии, голографии, вычислительной и бытовой технике и т. д.).

Лазеры бывают импульсного и непрерывного излучения. Импульсное излучение - с длительностью не более 0,25 с, непрерывное - 0,25 с и более.

Промышленностью выпускаются твердотельные, газовые и жидкостные лазеры.

Лазерное излучение может генерироваться в диапазоне длин волн от 0,2 до 1000 мкм, который в соответствии с биологическим действием, разбивается на следующие области спектра:

Ультрафиолетовая – от 0,2 до 0,4 мкм;
- видимая – от 0,4 до 0,75 мкм;
- ближняя инфракрасная – от 0,75 до 1,4 мкм;
- дальняя инфракрасная – более 1,4 мкм.

Лазерное излучение характеризуется:

Монохроматичностью (электромагнитное излучение, обладающее малым разбросом частот, в идеале - одной длиной волны );

Высокой когерентностью прямой и отраженной волн (колебания называются когерентными, если разность их фаз остаётся постоянной во времени и при сложении колебаний определяет амплитуду суммарного колебания );

Чрезвычайно малой угловой расходимостью луча;

Интенсивностью (энергетической освещенностью) и дозой (энергетической экспозицией) излучения.

Энергетическая освещенность (интенсивность) (Вт/см ) - это плотность потока энергии излучения, падающего на малый участок поверхности.

Энергетическая экспозиция (доза) (Дж/ см ) - плотность энергии излучения, падающего на малый участок поверхности.

Биологическое воздействие лазерного излучения зависит от:

Интенсивности;

Длительности излучения;

Длины волны излучения;

Частоты следования импульсов;

Продолжительности импульса воздействия;

Площади облучаемого участка;

Биологических и физико-химических особенностей облучаемых тканей и органов.

Лазерное излучение опасно для человека. Биологические эффекты, возникающие при его воздействии на организм человека, делятся на две группы:

Первичные эффекты - органические изменения, возникающие непосредственно в облучаемых тканях;

Вторичные эффекты - неспецифические изменения, появляющиеся в организме в ответ на облучение.

Наиболее подвержен поражению лазерным излучениям глаз человека. Сфокусированный на сетчатке хрусталиком глаза лазерный луч будет иметь вид малого пятна с еще более плотной концентрацией энергии, чем падающее на глаз излучение. Поэтому попадание лазерного излучения в глаз опасно и может вызвать повреждение сетчатой и сосудистой оболочек с нарушением зрения. При малых плотностях энергии происходит кровоизлияние, а при больших - ожег, разрыв сетчатой оболочки, появление пузырьков глаза в стекловидном теле.

Лазерное излучение может вызвать также повреждение кожи и внутренних органов человека. Повреждение кожи лазерным излучением схоже с термическим ожогом. На степень повреждения влияют как входные характеристики лазеров, так и цвет, и степень пигментации кожи. Интенсивность излучения, которая вызывает повреждение кожи, намного выше интенсивности, приводящей к повреждению зрения.

По степени опасности генерируемого излучения лазеры делятся на четыре класса:

1 класс - выходное излучение не представляет опасности для глаз и кожи;

2 класс - представляет опасность для глаз прямым и зеркально отраженным излучением;

3 класс - представляет опасность для глаз прямым и зеркально отраженным излучением, диффузионным излучением на расстоянии 10 см от отражающей поверхности, а также опасность для кожи прямым и зеркально отраженным излучением;

4 класс - представляет опасность для кожи диффузно отраженным излучением на расстоянии 10 см от отражающей поверхности.

Работа лазерных установок может сопровождаться воздействием и других опасных и вредных производственных факторов (шум, вибрация, аэрозоли, газы, электромагнитные и ионизирующие излучения, высокая температура нагреваемых поверхностей и др.).

Методы защиты от лазерного излучения подразделяются на:
- организационные (правильная организация работ, исключающая попадание людей в опасные зоны при работе на лазерных установок; ограничение времени работы);

- инженерно-технические . Для лазеров 2-3 класса необходимо ограждение рабочей зоны либо экранирование пучка излучения. Установки 3-4 класса должны обеспечиваться сигнальными устройствами. Лазеры 4 класса кроме того должны иметь дистанционным управлением и размещаться в специально отведенных помещениях. Во всех случаях луч лазера должен быть направлен на капитальную не отражающую огнестойкую стенку. Все поверхности в помещении окрашиваются в цвета с малым коэффициентом отражения. Не должно быть поверхностей (в том числе и деталей оборудования), обладающих блёсткостью, способных отражать падающие на них лучи. Освещение (общее и местное) в этих помещениях должно быть обильным, чтобы зрачок глаза всегда был максимально сужен;

- средства индивидуальной защиты (очки со светофильтрами, защитные маски, халаты, перчатки).

Лазеры в настоящее время широко используются в народном хозяйстве и, в частности, в машиностроении.

Излучение существующих лазеров охватывает практически весь оптический диапазон и простирается от ультрафиолетовой до дальней инфракрасной облаети спектра электромагнитных волн.

По характеру режима работы лазеры подразделяются на лазеры непрерывного действия, импульсные и импульсные с модуляцией добротности. Модуляция добротности дает возможность генерировать импульсы очень большой мощности и длительностью всего в несколько наносекунд или пикосекунд. Существуют лазеры, излучающие последовательные импульсы с частотой до десятков и даже сотен герц.

В качестве источников энергии в твердотельных лазерах служат газоразрядные импульсные лампы или лампы непрерывного горения, а в газовых, как правило, генераторы СВЧ. Электрическая энергия к лампам накачки подводится от высоковольтных батарей конденсаторов. Высокая монохромотичность (одноцветность), когерентность и узкая направленность лазерного излучения позволяет получить плотность потока мощности на поверхности, облучаемой лазером, достигающую 1011 - 1014 Вт/см2 в то время как для испарения самых твердых материалов достаточно плотности 109 Вт/см2. Поток энергии, попадая на биологические ткани, вызывает в них изменения, наносящие вред здоровью человека. Особенно опасно это излучение для органов зрения. Луч лазера, работающего в видимом или ближнем инфракрасном диапазоне длин волн, преломляясь в элементах оптической системы глаза - роговице, хрусталике и стекловидном теле, почти без потерь доходит до сетчатки. Сфокусированный на сетчатке хрусталиком лазерный луч будет иметь вид малого пятна с еще более плотной концентрацией энергии, чем падающее на глаз излучение. Поэтому попадание такого лазерного излучения в глаз опасно и может вызвать повреждение сетчатки и сосудистой оболочки с нарушением зрения.

На характер и степень производимого вредного действия оказывают влияние многие факторы: направленность лазерного луча, длительность импульса излучения, пространственное распределение энергии в луче, различия в структуре различных участков сетчатки и ее пигментации, а также особенности фокусировки каждого отдельного глаза. Особенно опасно, если лазерный луч пройдет вдоль зрительной оси глаза.

Лазерное излучение может также вызывать повреждение кожи и внутренних органов. Повреждение кожи лазерным излучением схоже с термическим ожогом. На степень повреждения влияют как выходные характеристики лазера, так и цвет и степень пигментации кожи.

В ряде случаев имеет место воздействие как прямого, так и зеркально отраженного лазерного излучения на отдельные органы человека, а также диффузно отраженного излучения на организм человека в целом. Результатом такого воздействия в ряде случаев оказываются различные функциональные изменения центральной нервной системы, эндокринных желез, увеличение физического утомления и др.

В утвержденных Министерством здравоохранения РФ Временных санитарных нормах при работе с оптическими квантовыми генераторами установлены максимально допустимые уровни интенсивности облучения роговой оболочки глаза, обеспечивающие безопасность наиболее чувствительной к поражению части глаза - сетчатой оболочки. В частности, для рубиновых лазеров, работающих в импульсном режиме свободной генерации, предельно допустимая ч плотность потока энергии составляет 2 10-8 Дж/см2, для ниодимовых - 2 10-7 Дж/см2; для работающего в непрерывном режиме гелий-неонового лазера предельная плотность потока энергии составляет 1 10-6 Вт/см2.

Для других типов оптических квантовых генераторов и режимов их работы необходимо полностью исключить воздействие излучения на персонал при помощи защитных средств.

Для количественной оценки прямого и отраженного излучения и определения зон безопасности вокруг лазерных установок можно использовать обычные формулы лучевой оптики. Необходимо при этом иметь в виду, что защита расстоянием мало эффективна ввиду слабого расхождения лазерного луча.

Определить зоны безопасности можно также с помощью замеров плотности энергии в определенных точках.

Методы защиты от лазерного излучения подразделяются на организационные, инженерно-технические, планировочные и средства индивидуальной защиты.

Организационные методы защиты направлены на правильную организацию работ, исключающую попадание людей в опасные зоны при работе на лазерных установках.

К работе с лазерами допускаются только специально обученные лица, прошедшие предварительный медицинский отбор, проверку знания инструкции по проведению работ, предотвращению и ликвидации аварий. Доступ в помещение лазерных установок разрешен только лицам, непосредственно на них работающим. Подсобный персонал должен быть размещен вне этих помещений. Опасная зона должна быть четко обозначена и ограждена стойкими непрозрачными экранами. Обязателен постоянный контроль работ и наблюдение за медицинским состоянием персонала.

Инженерно-технические методы защиты предусматривают создание безопасных лазерных установок путем уменьшения мощности применяемого лазера и надежной экранировкой лазерной установки. Правильная планировка лаборатории позволяет использовать расстояние и направленность излучения.

Для лазерных установок отводятся специально оборудованные помещения. Установку размещают так, чтобы луч лазера был направлен на капитальную неотражающую огнестойкую стену. Все поверхности в помещении окрашиваются в цвета с малым коэффициентом отражения. Не должно быть поверхностей (в том числе и деталей

оборудования), обладающих блескостью, способных отражать падающие на них лучи. Освещение (общее и местное) в этих помещениях должно быть обильным, чтобы зрачок глаза всегда имел минимальные размеры. Никакие работы не должны производиться при недостаточном освещении.

Важно автоматизировать и сделать дистанционным управление и наблюдение за работой установок. Полезно применить автоматическую сигнализацию и блокировку. Генератор и лампу накачки помещают в светонепроницаемую камеру. Лампа накачки снабжается блокировкой, запрещающей вспышку при открытом экране.

В качестве средств индивидуальной защиты применяют защитные очки со светофильтрами типов: СЗС-22 (ГОСТ 9411-66) - для защиты от излучений с длинами волн 0,69-1,06 мкм, ОС-14 - с длинами волн 0,49-0,53 мкм. Иногда защитные очки монтируют в маску, защищающую лицо. Для защиты кожи рук и тела применяют перчатки и халат.

Для контроля и определения плотности энергии и мощности существуют приборы, использующие калориметрический и фотометрический методы. Калориметрический метод основан на поглощении энергии излучения и превращении ее в тепловую, а фотометрический - на преобразовании энергии излучения и преобразовании энергии потока излучения в электрическую энергию.

При эксплуатации лазеров возникает не только опасность поражения излучением, по и ряд других опасностей - высокое напряжение зарядных устройств, загрязнение воздушной среды химическими веществами, ультрафиолетовое излучение импульсных ламп, интенсивный шум, электромагнитные поля, взрывы, пожары. Все эти факторы необходимо также учитывать при эксплуатации и проектировании лазерных установок.

Полезная информация:

Оптические квантовые генераторы или лазеры находят все более широкое применение в промышленности. Их использование возможно благодаря таким уникальным свойствам, как монохроматичность и высокая плотность излучаемых колебаний, а также благодаря возможности формирования с помощью в генераторов очень узких пучков излучения с высокой концентрацией в них электромагнитной энергии.

Можно выделить два направления применения лазеров и отрасли. Первое направление связано о целенаправленным воздействием на обрабатываемое вещество (микросварка, термообработка, резка хрупких и твердых материалов, подгонка параметров микросхем и др.), второе направление находит все большее развитие в применении лазеров (измерение и контроль параметров изделий микроэлектроники, передача и обработка информации).

Диапазон длин волн, излучаемых лазерами, охватывает видимый спектр и распространяется в инфракрасную и ультрафиолетовую области. Чаще всего используются лазеры с длинами волн:0,49 - 0,51; 0,53 - 0,63; 0,694; 1,06; 10,6 мкм.

Действие лазерного излучения бывает: тепловым – заключается в том, что при (фокусировке излучения выделяется значительное количество тепле в небольшом объеме за короткий промежуток времени; энергетическим – определяется высоким градиентом электрического поля, который может вызвать поляризацию молекул, резонансные и другие эффекты, фотохимическим – проявляется и выцветании некоторых красителей; механическим – характеризуется возникновением колебаний типа ультразвуковых в облучаемом организме.

Основную опасность при эксплуатации лазера представляет прямое лазерное излучение. Из-за его большой интенсивности и малой расходимости луча возникает возможность получения высокой плотности излучения, достигающей иногда 1011 - 1014 Вт/см2, в то время, как для испарения самых твердых материалов достаточно 109 Вт/см2.

Излучение лазера, выходящее из резонатора, направляется через различные оптические элементы (фильтры, линзы, призмы, светоотделительные пластинки и т.д.) на какую-либо мишень. Все эти элементы в некоторой степени отражают или рассеивают излучение оптических квантовых генераторов. Зеркально-отраженное излучение опасно в той же мере, что и прямое. Кроме того, зеркально-отраженный луч лазера может многократно зеркально или диффузно отражаться от различных поверхностей.

Степень потенциальной опасности лазерного излучения зависит от мощности источника, длины волны, длительности импульса и чистоты его следования, окружающих условий, отражения и рассеяния излучения.

Кроме воздействия лазерного излучения возникают и другие опасные факторы.

Вредное влияние на глаза может оказать световая энергия от импульсных ламп накачки. Во время разряда лампа накачки излучает энергию, достигающую десятков килоджоулей. Кроме того, спектр излучения импульсных ламп содержит длинноволновые ультрафиолетовые лучи, которые могут дополнительно вызывать специфическую реакцию глаз.

К сопутствующим опасным факторам, возникающим при эксплуатации лазерных установок, можно отнести:

Высокое напряжение зарядных устройств, питающих батарею конденсаторов большей емкости. После разряда конденсаторов на лампы вспышки они могут сохранять электрический разряд высокого потенциала;

Загрязнение воздушной среды химическими веществами, образующимися при разрядке импульсных ламп накачки (озон, окислы азота), в результате испарения материала мишени при сварке, сверлении и других технологических операциях (окись углерода, свинец, ртуть, продукты термоокислительного разложения материала мишени, побочные продукты реакции лазера);

Интенсивный шум, возникающий в момент работы некоторых лазеров;

Рентгеновское излучение при фокусировании излучения лазера в газе в режиме модулирования добротности и образование сгустка высокоионизированной плазмы с плотностью электронов 1015 - 1020 см-3.

Биологические эффекты, возникающие при воздействии лазерного излучения на организм человека, делятся на две группы:

1) Первичные эффекты - органические изменения, возникающие непосредственно в облучаемых тканях;

2) Вторичные эффекты - неспецифические изменения, появляющиеся в организме в ответ на облучение.

Наиболее подвержен поражению лазерным излучениям глаз человека. Сфокусированный на сетчатке хрусталиком глаза лазерный луч будет иметь вид малого пятна с еще более плотной концентрацией энергии, чем падающее на глаз излучение. Поэтому попадание лазерного излучения в глаз опасно и может вызвать повреждение сетчатой и сосудистой оболочек с нарушением зрения. При малых плотностях энергии происходит кровоизлияние, а при больших - ожег, разрыв сетчатой оболочки, появление пузырьков глаза в стекловидном теле.

Излучение лазера, работающего в ультрафиолетовом и дальнем инфракрасном диапазоне длин волн, почти полностью будет поглощаться прозрачными средами глаза, содержащими большое количество жидкости. Вследствие этого их повреждения могу наступить при сравнительно небольших интенсивностях излучения, обычно эти повреждения имеют характер ожогов.

Лазерное излучение может вызвать также повреждение кожи и внутренних органов человека. Повреждение кожи лазерным излучением схоже с термическим ожегом. На степень повреждения влияют как входные характеристики лазеров, так и цвет, и степень пигментации кожи. Интенсивность излучения, которая вызывает повреждение кожи, намного выше интенсивности, приводящей к повреждению глаза. Кроме ожегов кожи лазерное излучение способно вызвать повреждения внутренних органов, даже в тех случаях, когда на теле возникают относительно слабые поверхностные повреждения. Эти повреждения имеют характер отеков, кровоизлияний, омертвления тканей, свертывания и распада крови. В ряде случаев имеет место воздействие как прямого, так и зеркально отраженного лазерного излучения на отдельные органы человека, а также диффузно отраженного излучения на весь организм человека. Результатом такого воздействия оказываются различные функциональные изменения центральной нервной системы, сердечно-сосудистой системы, эндокринных желез, физическое утомление и др.

В соответствии с “Санитарными нормами и правилами устройства и эксплуатации лазеров” лазеры подразделяются по степени опасности генерируемого ими излучения на четыре класса.

К лазерам класса I относятся лазеры, выходное излучение которых не представляет опасности для глаз и кожи.

К лазерам класса II относятся лазеры, выходное излучение которых представляет опасность при облучении глаз прямыми или зеркально отраженным излучением.

У лазеров класса III выходное излучение представляет опасность при облучении глаз прямым, зеркально и диффузно отраженным излучением на расстоянии десяти сантиметров от диффузно отражающей поверхности и при облучении кожи прямым и зеркально отраженным излучением.

Лазеры класса IV представляют опасность при облучении кожи диффузно отраженным излучением на расстоянии десяти сантиметров от отражающей поверхности.

Классификация технологических лазерных установок проводится измерением уровней лазерного излучения в рабочей зоне и сравнением их с предельно-допустимым уровнем (ПДУ).

Кроме прямого лазерного излучения на организм человека при эксплуатации лазеров различных классов могут воздействовать сопутствующие опасные и вредные производственные факторы (табл.3.1).

Таблица 3.1.

Сопутствующие опасные и вредные производственные факторы при эксплуатации лазеров

* Знак “+” означает наличие вредного фактора, знак “-” - его отсутствие.

При разработке и монтаже лазерных установок необходимо знать интенсивность облучения для определения зоны безопасности и обеспечения необходимой защиты.

Энергетическую экспозицию, освещенность лазерного излучения H,E Вт/см2 (Дж/см2) на расстоянии R от источника при условии равномерного распределения энергии в пятне можно определить по формуле

где P - мощность энергии излучения, Вт (Дж); q - угол расхождения луча;
;d - коэффициент ослабления излучения лазера воздушной средой.

Во многих случаях необходимо знать, какой интенсивностью обладает в данной точке пространства отраженный луч (от объекта, стен помещения и т.п.). В условиях диффузного отражения энергетическую экспозицию, освещенность в заданной точке можно определить по формуле

(в которую при необходимости добавляется сомножитель
)

Где P n - энергия (мощность), падающая на отраженную поверхность, Дж (Вт); К о - коэффициент отражения поверхности; b - угол между нормалью к поверхности и направлением на глаз; K n - коэффициент, учитывающий размер пятна; если
(- радиус пятна), то
.

Для определения безопасного расстояния R приведенные формулы преобразуются заменой H на допустимые значения Н пду .

Министерством Здравоохранения СССР утверждены в 1981г “Санитарные нормы и правила устройства и эксплуатации лазеров”, в которых установлены ПДУ облучения роговой оболочки сетчатки глаз и кожи.

На ПДУ влияют следующие параметры:

Длина волны лазерного излучения l;

Длительность импульса t;

Частота повторения импульса f;

Длительность воздействия t;

Угол расхождения луча: для лабораторных условий берется равным 20`, для полевых условий при
(где R - расстояние от глаза до излучателя; d - диаметр пучка на выходе генератора) принят I¢;

Диаметр зрачка глаза: при работе в дневных условиях принимается равным четырем миллиметрам, а в ночных - восьми миллиметрам.

Для лазеров с моноимпульсным и непрерывным режимом излучения нормируется энергетическая освещенность E (облученность - отношения потока излучения, падающего на рассматриваемый участок поверхности, к площади этого участка, иначе: произведение энергетической освещенности (облученности) на длительность облучения (ГОСТ 7601-78)).

При одновременном воздействии лазерного излучения с различными параметрами на один и тот же участок тела и при условии суммирования биологических эффектов сумма отношений уровней лазерного излучения H n к величине ПДУ H пду не должна превышать единицы, т.е.

H 1 /H пду(1) +Н 2 /Н пду(2) +...+Н n /Н пду(n) 1.

Для контроля лазерного излучения и определения границ опасной зоны в условиях производства применяют ряд приборов. В зависимости от типа приемника излучения приборы разделяют на калориметрические, фотоэлектрические, фотохимические, механические и др. Наибольшее распространение получили первые два вида приборов.

Калориметрический метод основан на поглощении энергии излучения приемником прибора и превращении ее в тепловую энергию. Однако этот метод не точен вследствие наложения на показания колебаний температуры внешней среды.

При фотоэлектрическом методе измерений происходит преобразование энергии излучения в электрическую энергию. Этот метод позволяет достичь высокой чувствительности и поэтому в настоящее время является основным при дозиметрии лазерного излучения. На этом принципе основаны приборы “Измеритель-1”, ИЛД-2. Прибор “Измеритель-1” предназначен для измерения службами охраны труда непосредственно на рабочих местах плотностей мощности и энергии отраженного лазерного излучения с длинами волн 0,53; 0,63; 0,69 и 1,069 мкм. Прибор ИЛД-2 измеряет энергетические характеристики направленного или отраженного лазерного излучения с длиной волны 0,49 - 1,15 и 2 - 11 мкм в заданной точке пространства.

Величину лазерного излучения определяют на рабочих местах на уровне глаз работающего и открытых частей его тела.

По результатам измерений строится диаграмма направленности уровней плотности отраженной энергии, что дает возможность оценить опасность и разработать комплекс защитных мероприятий.

Методы и средства защиты от воздействия лазерного излучения можно подразделить на организационные, инженерно-технические и средства индивидуальной защиты.

Организационные методы защиты обеспечивают правильную организацию работ, исключающую попадание людей в опасные зоны при работе на лазерных установках.

Инженерно-технические методы предусматривают создание безопасных лазерных установок за счет уменьшения мощности применяемого лазера, надежной экранировки лазерной установки и дистанционного управления. Надежной защитой от случайного попадания на человека является экранирование луча световодом на всем пути его действия. Для снижения уровня отраженного излучения линзы, призмы и другие твердые предметы с зеркальной поверхностью на пути следования луча снабжают блендами, а перед облученным объектом устанавливают защитные экраны - диафрагмы с отверстием, диаметром несколько превышающим диаметр луча.

В качестве средств индивидуальной защиты применяются специальные защитные очки, стекла в которых подбираются в соответствии с ГОСТ 9411-81Е; технологические халаты и перчатки, изготавливаемые из хлопчатобумажной ткани светло-зеленого или голубого цвета.

Для уменьшения опасности необходима защита от сопутствующих опасностей, источниками которых являются сама лазерная установка и обрабатываемые объекты. Для уменьшения загрязнения воздуха парами и аэрозолями испаряющихся веществ мишени, а также образующегося в воздухе озона в рабочих помещениях предусматривают специальную систему вентиляции. Применяют также необходимые меры защиты от высокого напряжения (защитные и предохранительные блокировки), воздействие электромагнитных полей (защитные экраны), шума (звукоизолирующие кожухи), жесткого рентгеновского излучения, ионизации воздуха, взрывов и пожаров. Выполнение мер защиты обеспечивает безопасность работ, проводимых с лазерными установками.