Техногенные опасности. II. Чрезвычайные ситуации техногенного характера

Техногенные чрезвычайные ситуации наносят значительный экологический ущерб в результате масштабного загрязнения поверхностных и подземных вод, почв, биоты, атмосферного воздуха опасными для окружающей среды веществами, а также гибели животных и растений, деградации экосистемы. Техногенная чрезвычайная ситуация или авария – это экстремальное событие техногенного происхождения на определенной территории или акватории, сложившаяся в результате возникновения аварии или техногенной катастрофы, которые могут повлечь или повлекли за собой человеческие жертвы, ущерб здоровью людей и окружающей среде, значительные материальные потери и нарушения условий жизнедеятельности людей. Этот урон выражается через последствия техногенного бедствия, являющегося источником чрезвычайной ситуации техногенного характера. Различают техногенные чрезвычайные ситуации по месту их возникновения и по характеру основных поражающих факторов источника чрезвычайного события. Основными источниками техногенных событий являются аварии и катастрофы на ядерно-, радиационно, химически, биологически, пожаровзрыво-, гидродинамически опасных объектах жизнеобеспечения, включая: транспортные аварии и катастрофы; пожары и взрывы, угроза взрывов, аварии на речном (морском) транспорте и других объектах.

Причинами возникновения чрезвычайных ситуаций техногенного характера хорошо известны: изношенность производственных фондов, устаревание технологического оборудования, отсутствие надлежащего контроля за опасными производственными процессами, слабая дисциплина труда, халатное отношение к своим обязанностям. Как правило, именно эти причины приводят к возникновению аварий и катастроф.

Авария – это повреждение машины, станка, оборудования, здания, сооружения. Происходят на коммунально-энергетических сетях, промышленных предприятиях. Если эти происшествия значительны и повлекли за собой серьезные человеческие жертвы, то их относят к разряду катастроф.

Катастрофа – это крупная авария, повлекшая за собой большие человеческие жертвы, ущерб здоровью людей, разрушение либо уничтожение объектов, материальных ценностей в значительных размерах, а также приведшая к серьезному ущербу окружающей природной среде.

Чрезвычайные ситуации техногенного характера подразделяются на аварии (катастрофы):

· промышленные взрывы;

· пожары на промышленных объектах;

· с выбросом АХОВ (аварийно химически опасные вещества) на ХОО (химически опасный объект);

· с выбросом радиоактивных веществ на РОО (радиационно опасный объект);

· с выбросом биологически опасных веществ на БОО (биологически опасный объект);

· на электроэнергетических системах;



· в коммунальных системах жизнеобеспечения;

· на очистных сооружениях;

· гидротехнические;

· гидродинамические (прорывы плотин);

· на пожаро- и взрывоопасных объектах (ПВОО);

· транспортные.

Промышленный взрыв – процесс быстрого неуправляемого физического или химического превращения системы, сопровождающийся переходом её потенциальной энергии в механическую работу. При химических взрывах вещества могут быть твердыми, жидкими, газообразными, а также аэрозолями горючих веществ в воздухе. Физический взрыв чаще всего связан с неконтролируемым высвобождением потенциальной энергии сжатых газов из замкнутых объемов машин и аппаратов, сила взрыва сжатого или сжиженного газа зависит от внутреннего давления этого газа. Люди, как правило, получают травмы различной степени. Установлено, что при избыточном (сверх атмосферном) давлении человек получает легкие травмы (20 – 40 кПа) в виде вывихов, ушибов, порывов ушных перепонок. Средние травмы (50 кПа) – контузия, кровь из носа и ушей. Тяжелые травмы (более 50 кПа) – тяжелые контузии, повреждения внутренних органов, потеря сознания, множественные переломы, смерть.

Пожар на промышленном объекте – процесс неконтролируемого горения, сопровождающийся уничтожением материальных ценностей и создающий опасность для жизни людей. Причины возникновения пожаров на промышленных объектах можно разделить на две группы. Первая – это нарушение противопожарного режима или неосторожное обращение с огнем, вторая – нарушение пожарной безопасности при проектировании и строительстве зданий. Пожары могут возникнуть при взрыве в помещениях или производственных аппаратах при утечках и аварийных выбросах пожаровзрывоопасных сред в объемы производственных помещений. При пожарах существует несколько различных опасных факторов. Первый из них – это повышенные температуры в зоне горения. Они могут привести к тепловым ожогам поверхности кожи и внутренних органов людей, а также вызвать потерю несущей способности строительных конструкций зданий и сооружений. Вторым фактором является поступление в воздух рабочей зоны значительного количества вредных продуктов сгорания, в большинстве случаев приводящее к острым отравлениям людей.

Рис.2.1. Пожар на нефтехранилище.

Аварии с выбросом аварийно химически опасных веществ (АХОВ). АХОВ – это опасное химическое вещество, применяемое в промышленности и сельском хозяйстве, при аварийном выбросе (разливе) которого может произойти заражение окружающей среды, приводящее к поражению людей и живой природы. В зависимости от путей поступления в организм человека и животных АХОВ подразделяются на ингаляционного (при поступлении через органы дыхания), перорального (при поступлении через желудочно-кишечный тракт) и кожно-резорбтивного (при поступлении через кожные покровы) действия. На многих объектах экономики АХОВ являются исходным сырьём, промежуточным и конечным продуктом либо побочной продукцией. Все запасы этих веществ хранятся в резервуарах базисных и расходных складов, содержатся в технологической аппаратуре, транспортных средствах (в трубопроводах, железнодорожных цистернах, контейнерах).

В зависимости от термодинамического состояния жидкости в ёмкости, находящейся при хранении, возможны три варианта протекания процесса при разгерметизации:

1. При больших перегревах жидкость может полностью переходить во взвешенное мелкодисперсное и парообразное состояние с образованием токсичных, вредных и пожароопасных смесей;

2. При низких энергетических параметрах жидкости происходит её пролив на твердую поверхность, а испарение осуществляется путем теплоотдачи от твердой поверхности;

3. Промежуточный режим, когда в начальный момент происходит резкое вскипание жидкости с образованием мелкодисперсной фракции, а затем наступает режим свободного испарения с относительно низкими скоростями.

Используемые в настоящее время в промышленности АХОВ можно подразделить на три типа: нейтральные (азот, гелий и др.), окислители (кислород, сероуглерод и др.), горючие (водород, метан). При выбросе в атмосферу каждого из них в зоне выброса создаются свои специфические опасности. Аварии с выбросом (угрозой выброса) АХОВ возможны: при их производстве, переработке, хранении (захоронении); аварии на транспорте при транспортировке АХОВ; аварии с химическими боеприпасами при их утилизации; утрата химических опасных веществ.

Рис.2.2. Авария на химическом опасном объекте.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Опасные ситуации техногенного характера

Жизнедеятельность человека направлена на преобразование природы и создание комфортной искусственной среды обитания. Развитие науки, техники и технологии вызывает непредвиденные последствия. Увеличилась вероятность возникновения чрезвычайных ситуаций техногенного характера.

Выделяют 4 типа катастроф:

Экологические.

Природные.

Техногенные

Социальные.

Техногенные катастрофы по числу погибших находятся на третьем месте среди всех видов стихийных бедствий. Технический прогресс существенно повышает риск трагедий.

Человек так устроен, что ему необходимы все новые и новые блага цивилизации. Он хочет быстрее передвигаться, выше подниматься в небо, глубже нырять в морские глубины или погружаться в недра Земли. Человеку свойственно окружать себя еще большим комфортом и удобством, и ничто не может его остановить, даже такая страшная плата, как техногенные аварии и катастрофы. Зачастую они происходят из-за нелепого стечения обстоятельств и приводят к необратимым последствиям.

Техногенные опасности -- это опасности, связанные с техническими объектами.

Катастрофа - крупная авария, повлекшая за собой человеческие жертвы, значительный материальный ущерб и другие тяжелые последствия.

Техногенные катастрофы имеют начало, но не имеют окончания, они совершенно непредсказуемы, а степень ущерба после них не уменьшается с годами, поскольку негативные факторы продолжают действовать в среде еще многие годы.

Техногенные катастрофы проявляются в форме аварий технических систем, пожаров, взрывов, заражения атмосферы и местности аварийными химически опасными веществами (АХОВ), радиоактивными веществами (РВ) и других трудно предсказуемых событий. Люди, попавшие в зону техногенной катастрофы, рискуют получить заболевания или травмы различной степени тяжести.

Наиболее опасны аварии на предприятиях, производящих, использующих или хранящих радиоактивные и ядовитые вещества, взрыво- и огнеопасные материалы. Аварии на подобных предприятиях (заводы и комбинаты химической, нефтехимической, нефтеперерабатывающей и ядерной промышленности) могут сопровождаться выбросом в атмосферу ядовитых веществ. Попадая в атмосферу, летучие ядовитые вещества в газообразном или парообразном состоянии образуют зоны химического заражения, размеры которых могут достигать нескольких десятков, а иногда и сотен километров.

Чрезвычайные ситуации классифицируются по разным показателям.

Виды техногенных катастроф

Транспортные аварии грузовых и пассажирских поездов, судов, самолетов, ракетных космических комплексов, космических летательных аппаратов.

Взрывы и их угрозы, пожары в различных зданиях, в том числе культурно-бытового и социального назначения, также на промышленных объектах добычи и переработки, хранения горючих, легковоспламеняющихся и взрывчатых веществ (шахтах и др.).

Аварии с выбросом или угрозой выброса химически опасных веществ, при их переработке, хранении или захоронении.

Аварии с выбросом радиоактивных веществ.

Аварии с выбросом или угрозой выброса биологически опасных веществ.

Гидродинамические техногенные катастрофы - прорывы плотин, дамб, шлюзов и др.

Аварии на электроэнергетических системах - это чрезвычайные происшествия на атомных электростанциях.

Аварии коммунальных систем, необходимых для жизнеобеспечения человека: канализационных сетей с большим выбросом загрязняющих веществ, теплосетей, систем водо- и газоснабжения населения.

Чрезвычайная ситуация на очистных сооружениях, что ведет к массовому загрязнению окружающей среды сточными водами.

Для предупреждения возникновения чрезвычайных ситуаций техногенного характера проводят целый комплекс мероприятий организационного, технического и правового контроля. Это и есть своего рода защита от техногенных катастроф. Основные меры по предупреждению происшествий такого рода: Опасные объекты должны быть размещены на удаленном расстоянии от жилых построек и других сооружений. Необходимо грамотно разрабатывать, производить и применять промышленные установки. Они должны быть безопасными и надежными. Внедрение автоматизированных систем контроля безопасности производства. Повышение надежности систем контроля. Замена изношенного оборудования и техники вовремя. Соблюдение обслуживающим персоналом правил эксплуатации технического оборудования. Своевременное обслуживание техники и оборудования. Совершенствование пожарной защиты и правил пожарной безопасности. Необходимость снижения опасных веществ на объектах в пределах допустимого уровня. Нужно соблюдать необходимые правила при перевозке и хранении опасных грузов. Использовать результаты прогнозов чрезвычайных ситуаций для совершенствования систем безопасности. Правил и различных мероприятий по защите и предупреждению техногенных катастроф существует достаточно много. Для каждой сферы деятельности, кроме общих мер, предписаны сугубо индивидуальные.

15 самых больших техногенных катастроф

техногенный авария катастрофа чрезвычайный

Ужасно осознавать, сколько зла сделал сам себе человек и планете, на которой он живет. Большинство вреда принесли большие индустриальные корпорации, которые не задумываются об уровне опасности деятельности, стремясь получить прибыль. А особенно страшно то, что катастрофы произошли и в результате испытаний различного вида оружия, в том числе и ядерного. Предлагаем 15 самых больших катастроф в мире по вине человека.

1. Кастл Бра м во (1 марта 1954)

Ядерный взрыв

Соединенные Штаты в марте 1954 года произвели испытательный взрыв ядерного оружия в атолле Бикини, расположенного возле Маршальских островов. Он был в тысячу раз мощнее взрыва на Хиросиме, Япония. Это было частью эксперимента правительства США. Ущерб, нанесенный взрывом, был катастрофическим для окружающей среды на площади 11265.41 км2. Было уничтожено 655 представителей фауны.

2 . Бедствие в Севесо (10 июля 1976)

Промышленная катастрофа недалеко от Милана, Италия, произошла в результате выброса в окружающую среду токсических химических веществ. Во время производственного цикла при получении трихлорфенола опасное облако вредных соединений попало в атмосферу. Выброс мгновенно подействовал губительно на флору и фауну прилежащей к заводу территории. Предприятие в течении 10 дней скрывало факт утечки химических веществ. Случаи заболевания раком возросли, что было доказано впоследствии исследованиями мертвых животных. У жителей маленького города Севесо стали возникать нередкие случаи сердечных патологий, респираторных заболеваний.

3. Катастрофа на Трехмильном острове (28 марта 1979)

Расплавление части ядерного реактора на Трехмильном острове, Пенсильвания, США, привело к выбросу в окружающую среду неизвестного количества радиоактивных газов и йода. Авария произошла вследствие ряда ошибок персонала и механических неполадок. Много спорили о масштабе загрязнений, но официальные органы утаивали конкретные цифры, чтобы не поднимать панику. Они утверждали, что выброс был незначительный и не мог нанести вред флоре и фауне. Однако в 1997 году данные изучили повторно, и был сделан вывод, что у тех, кто жил вблизи реактора в10 раз больше имели место проявления рака и лейкемии, чем у других.

4 . Выброс нефти из танкера Эксон Валдес (24 марта 1989)

В результате аварии на танкере компании «Эксон Вальдес» в океан в районе Аляски попало огромное количество нефти, что привело к загрязнению 2092,15 км береговой линии. Как следствие, был нанесен непоправимый вред экосистеме. И на сегодняшний день она не восстановлена. В 2010 году правительство США заявило, что вред был нанесен 32 видам дикой природы и, только, 13 видов удалось восстановить. Не смогли восстановить подвид касаток и тихоокеанской сельди.

5 . Взрыв нефтяной платформы Horizon Oil (20 апреля 2010)

Взрыв и затопление нефтяной платформы Deepwater Horizon в Мексиканском заливе на месторождении Макондо привело к тому, что произошла утечка нефти и газа в объеме 4.9 млн баррелей. По словам ученым, эта авария стала самой крупной в истории США и унесла 11 жизней работников платформы. Вред был нанесен и обитателя океана. До сих пор отмечают нарушения экосистемы залива.

6 . Бедствие Лав-Канал (1978)

В Ниагара-Фоллз, штат Нью-Йорк, около сотни домов и местная школа были построены на месте свалки промышленных и химических отходов. Со временем химикаты просочились в верхние слои почвы и воду. Люди начали замечать, что возле домов появляются какие-то чёрные болотистые пятна. Когда сделали анализ, то обнаружили содержание восьмидесяти двух химических соединений, одиннадцать из которых были канцерогенными веществами. Среди заболеваний жителей Лав-канала стали появляться такие серьёзные болезни, как лейкемия, а у 98 семей родились дети с серьезными патологиями..

7 . Химическое загрязнение Аннистона, Алабама (1929-1971)

Нужно быть генномодифицированным, чтобы противостоять токсическим веществам и выжить здесь

В Аннистоне в районе, где сельскохозяйственный и биотехнологический гигант Монсанто впервые произвёл вещества, вызывающие онкозаболевания, по непонятным причинам произошел их выброс в реку Сноу Крик. Население Аннистона сильно пострадало. В результате воздействия повысился процент заболеваний диабетом и другими патологиями. В 2002 году Монсанто выплатил 700 млн долларов компенсации за ущерб и спасательные работы..

8. Нефтяные пожары в Кувейте (январь/февраль 1991)

Нефтяные пожары в Кувейте (январь/февраль 1991)

Во время военного конфликта в Персидском заливе в Кувейте Саддам Хусейн поджёг 600 нефтяных скважин, чтобы создать ядовитую дымовую завесу на целых 10 месяцев. Считается, что ежедневно сгорало от 600 до 800 тонн нефти. Около пяти процентов территории Кувейта было покрыто копотью, домашний скот умирал от болезней лёгких, а в стране увеличилось число заболевших раком.

9 . Взрыв на химическом заводе Цзылинь (13 ноября 2005)

Взрыв на химическом заводе Цзылинь

На химическом заводе Цзылинь прогремели несколько мощных взрывов. В окружающую среду было выброшено огромное количество бензола и нитробензола, который обладает губительным токсическим эффектом. Бедствие привело к смерти шести человек и ранению семидесяти.

10 . Загрязнение Таймс-Бич, Миссури (декабрь, 1982)

Распыление нефти, содержащей токсичный диоксин, привело к полному разрушению небольшого города в Миссури. Метод применялся как альтернатива орошению, чтобы сбить пыль с дорог. Положение дел ухудшилось, когда в результате подтопления города водами реки Мерэмек, токсичная нефть распространилась по всему побережью. Жители подверглись воздействию диоксина и сообщали о проблемах с иммунитетом и мышцами.

11 . Большой смог (декабрь, 1952)

В течение пяти дней дым от угольного горения и фабричных выбросов накрывал Лондон плотным слоем. Дело в том, что наступила холодная погода и жители массово начали топить печки углем, чтобы согреть дома. Сочетание производственных и общественных выбросов в атмосферу привело к густому туману и плохой видимости, а 12000 человек умерли от вдыхания токсичных испарений.

12 . Отравление залива Минамата, Япония (1950-е)

Отравление залива Минамата, Япония

За 37 лет производства пластмасс нефтехимическая компания Chisso Corporation сбросила 27 тонн металла ртути в воды залива Минамата. Так как жители его использовали для ловли рыбы, не зная о сливах химических веществ, то отравленная ртутью рыба нанесла серьёзный ущерб здоровью младенцам, родившимся у матерей, которые употребляли рыбу из Минамата в пищу, и убила больше 900 человек в регионе.

1 3. Бедствие Бхопала (2 декабря 1984)

В результате утечки токсичного изоцианата метила с завода по производству пестицидов Union Carbide в Бхопале Индия была признана эпицентром одной из самых губительных техногенных катастроф на производстве в истории. Выброс 27 тонн токсичного газа произошел ночью в районе, где проживали 900000 человек. Людей будил кашель и удушье. Погибло примерно 23000 человек.

14 . Чернобыль (26 апреля 1986)

О радиационном заражении в результате аварии ядерного реактора и пожаре на Чернобыльской атомной станции на Украине знает весь мир. Ее назвали самой ужасной катастрофой на атомной электростанции в истории. Около миллиона человек умерли из-за последствий ядерной катастрофы, главным образом от рака и из-за воздействия высокого уровня радиации.

1 5 . Авария на Фукусиме (11 марта 2011)

После 9-балльного землетрясения и цунами, которые обрушились на Японию, ядерная установка Фукусимы Daiichi осталась без электроснабжения и потеряла способность охлаждать реакторы с атомным топливом. Это привело к радиоактивному заражению большой территории и акватории. Около двухсот тысяч жителей были эвакуированы из-за боязни возникновения тяжёлых заболеваний в результате облучения. Катастрофа еще раз заставила ученых задуматься об опасности атомной энергии и необходимости разработки альтернативных электростанций.

Размещено на Allbest.ru

Подобные документы

    Виды техногенных катастроф и их причины. Классификация чрезвычайных ситуаций техногенного характера. Авария на Саяно-Шушенской ГЭС как пример крупной техногенной катастрофы в России. Техногенные катастрофы за рубежом. Проблема атомной энергетики в США.

    реферат , добавлен 25.06.2013

    Методы повышения безопасности сосудов, работающих под давлением. Параметры испытания сосудов. Причины аварий и катастроф на объектах экономики. Обеспечение личной безопасности при техногенных авариях. Типы чрезвычайных ситуаций техногенного характера.

    контрольная работа , добавлен 06.02.2012

    Сущность и классификация чрезвычайных ситуаций по источникам их возникновения и опасным явлениям. Источники природных, техногенных, биолого-социальных чрезвычайных ситуаций. Характеристика очагов поражения, возникающих в результате аварий, катастроф.

    курсовая работа , добавлен 17.02.2015

    Понятие и причины возникновения катастроф природного и техногенного характера. Нормативная база государственного управления защитой населения от чрезвычайных ситуаций. Анализ деятельности государственной системы предупреждения и ликвидации ЧС в России.

    курсовая работа , добавлен 13.12.2014

    Причины возникновения и экономический ущерб от природных катастроф. Анализ их влияния на окружающую среду. Изучение последствий индустриальных и транспортных антропогенных катастроф. Прогнозирование опасных природных явлений и чрезвычайных ситуаций.

    реферат , добавлен 11.07.2015

    Понятие и классификация чрезвычайных ситуаций техногенного характера, причины их возникновения. Характер проявления аварий и катастроф. Минимизация вероятности возникновения последствий ЧС на промышленных объектах. Мероприятия по прогнозированию ЧС.

    реферат , добавлен 03.10.2014

    Общемировой ущерб от чрезвычайных ситуаций. Условия возникновения чрезвычайных ситуаций техногенного характера. Техногенная авария на Чернобыльской атомной электростанции. Виды катастроф. Аварии с выбросом биологически опасных веществ, их последствия.

    реферат , добавлен 12.08.2013

    Исследование стихийных бедствий, аварий и катастроф, типичных для Республики Беларусь. Описания чрезвычайных ситуаций техногенного, природного и экологического характера. Дорожно-транспортные происшествия. Возможные чрезвычайные ситуации для г. Минска.

    реферат , добавлен 06.01.2015

    Причины техногенных аварий. Аварии на гидротехнических сооружениях, на транспорте. Краткая характеристика крупных аварий и катастроф. Спасательные и неотложные аварийно-восстановительные работы при ликвидации крупных аварий и катастроф.

    реферат , добавлен 05.10.2006

    Понятие и источники техногенных чрезвычайных ситуаций. Причины техногенных чрезвычайных ситуаций, негативные факторы при их возникновении. Классификация чрезвычайных ситуаций по масштабу распространения, по темпу развития и по природе происхождения.

Чрезвычайные ситуации техногенного характера возникают при авариях (катастрофах) на объектах экономики (транспорте и производстве).

Производственные аварии (катастрофы) возникают в резуль­тате внезапного выхода из строя деталей, механизмов, машин и агрегатов и могут сопровождаться серьезными нарушениями производственного процесса, взрывами, катастрофическими затоплениями, образованием очагов пожаров, радиоактивным, хи­мическим заражением местности, увечьем и гибелью людей.

Производственные аварии (катастрофы) могут быть следст­вием стихийных бедствий, однако наиболее распространенными причинами их возникновения являются нарушения технологиче­ских процессов, правил эксплуатации и техники безопасности. Особую опасность несут аварии (катастрофы) на потенциально опасных производственных объектах: пожароопасных, взрыво­опасных, гидродинамически, химически, радиационно опасных. Именно на этих объектах чаще всего происходят аварии (катаст­рофы), сопровождающиеся значительными материальными по­терями, нарушением условий жизнедеятельности, увечьем и ги­белью людей.

Авария на транспорте - это повреждение транспортного сред­ства. Например, потерпеть аварию могут автомобиль, же­лезнодорожный состав, самолет, корабль. При этом авария с трагическими последствиями, свя­занными с гибелью людей, называется катастрофой.

Автомобильная авария - одна из основных причин гибели людей в условиях мирного времени.

В большинстве случаев автомобильные аварии возникают из-за несоблюдения элементарных мер безопасности и правил до­рожного движения, а также недостаточной информированности о последствиях того или иного нарушения правил безопасности до­рожного движения. Например, мало кто знает, что столкновение с неподвижным препятствием на скорости 50 км/ч без ремня безопасности равносильно прыжку лицом вниз с 4-го этажа.

Около 75 % всех аварий на автомобильном транспорте про­исходит из-за нарушения водителями правил дорожного движе­ния. Наиболее опасными видами нарушений по-прежнему оста­ются превышение скорости, игнорирование дорожных знаков, выезд на полосу встречного движения и управление автомоби­лем в нетрезвом состоянии.

Часто приводят к авариям плохие дороги (главным образом скользкие), неисправность машин (на первом месте - тормоза, а втором - рулевое управление, на третьем - колеса и шины). Особенность автомобильных аварий состоит в том, что 80 % ра­неных погибает в первые три часа из-за обильных кровопотерь.

Как показывает статистика, гибель людей на железнодорож­ном транспорте в основном связана с крушениями поездов. По­этому необходимо знать и применять правила и меры безопасно­сти при возникновении этой чрезвычайной ситуации.


Большую опасность для пассажиров железнодорожного транспорта представляет также пожар в вагоне. Это связано с со­средоточением в пассажирских вагонах большого количества людей и трудностью их эвакуации, быстротой повышения тем­пературы и распространения токсичных газов в замкнутых про­странствах, удаленностью поезда, находящегося в пути, от по­жарных подразделений.

Безопасность полетов зависит, прежде всего, от надежности самолетов и профессионализма экипажей и диспетчеров. Однако и вы при пользовании авиационным транспортом должны со­блюдать определенные правила безопасности.

Для своевременного и организованного проведения работ по спасению пассажиров и самого судна на каждом из них разрабо­таны Расписания по тревогам. В них расписаны все действия ко­манды и пассажиров по соответствующим сигналам тревог при возникновении аварийной ситуации. Кроме того, у каждого пас­сажирского места закрепляется каютная карточка пассажира на русском и английском языках, в которой указаны: значение сиг­налов тревоги; место сбора пассажиров по тревоге; номер и ме­стонахождение спасательной шлюпки; иллюстрированная крат­кая инструкция по надеванию индивидуальных спасательных средств с указанием места их хранения.

Поэтому, прежде чем расположиться в каюте, тщательно изучите эту карточку.

Существует три сигнала судовых тревог:

1. «Общесудовая тревога» - один продолжительный сигнал звонком громкого боя в течение 25-30 с, после чего объ­явление «Общесудовая тревога» по общесудовой трансля­ции в принудительном режиме работы. Тревога объявляет­ся при возникновении аварийной ситуации либо в предаварийный период, когда становится ясно, что аварии не избежать. Однако это не означает «Покинуть судно».

2. Тревога «Человек за бортом» - три продолжительных сиг­нала звонком громкого боя подаются 3-4 раза. Вслед за этим по общесудовой трансляции подается объявление го­лосом с указанием номера шлюпки к спуску. Тревога отно­сится только к членам экипажа судна. Выход пассажиров по этой тревоге на открытые палубы запрещен.

3. «Шлюпочная тревога» - семь коротких и один длинный сигнал звонком громкого боя, повторяемые 3-4 раза, и вслед за этим объявление голосом по общесудовой трансля­ции. Подается только в том случае, когда состояние аварий­ного судна не оставляет надежд на успех борьбы за живу­честь и судно должно немедленно погибнуть; объявляется только по распоряжению капитана. По шлюпочной тревоге члены экипажа, ответственные за безопасность пассажиров, выведут вас к месту посадки в коллективные спасательные средства.

Пожароопасные объекты (ПОО) - это объекты, на которых производятся (хранятся, транспортируются) продукты, приобре­тающие при некоторых условиях (авариях, инициировании) спо­собность к возгоранию.

Возгорание - возникновение горения под действием источ­ника зажигания. В случае неконтролируемого процесса горения, сопровождающегося уничтожением материальных ценностей и создающего опасность для жизни людей, говорят о пожаре.

Пожары по своим масштабам и интенсивности подразделя­ются на следующие виды:

Отдельные пожары;

Сплошной пожар;

Огневой шторм;

Массовый пожар.

Отдельный пожар - пожар, возникший в отдельном здании сооружении. Продвижение людей и техники по застроенной территории между отдельными пожарами возможно без средств защиты от теплового излучения.

Сплошной пожар - одновременное интенсивное горение преобладающего количества зданий и сооружений на данном участке застройки (90 % зданий и сооружений). Продвижение людей и техники через участок сплошного пожара невозможно без средств защиты от теплового излучения.

Огневой шторм - особая ферма распространяющегося сплошного пожара, характерными признаками которого являет­ся приток свежего воздуха, со всех сторон со скоростью не менее 50 км/ч по направлению к границам огневого шторма. (Охваты­вает 90 % зданий.)

Массовый пожар - совокупность отдельных и сплошных по­жаров, охвативших более 25 % зданий.

Пожары характеризуются следующими параметрами:

продолжительность пожара - время с момента его возник­новения до полного прекращения горения;

температура внутреннего пожара - среднеобъемная темпе­ратура газовой среды в помещении;

температура открытого пожара - температура пламени;

площадь пожара - площадь проекции зоны горения на го­ризонтальную или вертикальную плоскость;

зона горения - часть пространства, в котором происходят подготовка горючих веществ к горению и их горение;

зона теплового воздействия - часть пространства, примы­кающего к зоне горения, в котором тепловое воздействие приводит к заметному изменению состояния материалов и конструкций и делает невозможным пребывание в нем лю­дей без специальной тепловой защиты;

зона задымления - часть пространства, примыкающего к зоне горения и заполнения дымовыми газами в концентра­циях, создающих угрозу жизни и здоровью людей или за­трудняющих действия пожарных подразделений;

фронт сплошного пожара - граница сплошного пожара, по которой огонь распространяется с наибольшей скоростью;

скорость распространения сплошного пожара - скорость его перемещения;

распространение пожара - процесс распространения зоны горения по поверхности материалов за счет теплопровод­ности, тепловой радиации и конвенции. Основную роль в

распространении пожара играет тепловая радиация пламе­ни. Тепло в окружающую среду передается за счет тепло­проводности, конвенции и излучения. Возникновение пожаров, прежде всего, зависит от характера ооизводства и степени возгораемости или огнестойкости зда­ний и материалов, из которых они изготовлены.

По взрывной, взрывопожарной и пожарной опасности все промышленные производства подразделяются на шесть катего­рий. К наиболее пожароопасным предприятиям относят пред­приятия категорий А, Б, В:

А - нефтеперерабатывающие заводы, химические пред­приятия, трубопроводы, склады нефтепродуктов и пр.;

Б - цехи приготовления и транспортировки угольной пыли, древесной муки, сахарной пудры, выборные и разносольные отделения мельниц;

В - лесопильные, деревообрабатывающие, столярные, мо­дельные, лесотарные и т. п. производства.

Огнестойкость зданий - это способность зданий оказывать сопротивление воздействию высоких температур во времени при сохранении своих эксплуатационных свойств.

Огнестойкость здания зависит от пределов огнестойкости его конструктивных основных частей.

Все строительные материалы по возгораемости (огнестойко­сти) делятся на три группы:

несгораемые - это такие материалы, которые под воздейст­вием огня или высокой температуры не воспламеняются, не тлеют и не обугливаются;

трудно сгораемые - это такие материалы, которые под воз­действием огня или высокой температуры с трудом воспла­меняются, тлеют или обугливаются и продолжают гореть или тлеть только при наличии источника огня, при его от­сутствии процесс горения или тления прекращается;

сгораемые - это материалы, которое под воздействием огня или высокой температуры воспламеняются или тлеют и продолжают гореть или тлеть после удаления источника огня.

Взрывоопасные объекты - объекты, на которых хранятся производятся и транспортируются вещества (продукты), имею­щие или приобретающие при определенных условиях способ­ность к взрыву.

Взрыв - это освобождение большого количества энергии в ограниченном объеме за короткий промежуток времени. Он приводит к образованию сильно нагретого газа (плазмы) с очень высоким давлением, который при моментальном расширении оказывает ударное механическое воздействие (давление, разру­шение) на окружающие тела. Взрыв в твердой среде вызывает ее разрушение и дробление, в воздушной или водной - образует воздушную или гидравлическую ударную волну, которая и ока­зывает разрушающее воздействие на объекты.

К взрывоопасным объектам относятся: предприятия оборон­ной, нефтедобывающей, нефтеперерабатывающей, нефтехими­ческой, химической, газовой, хлебопродуктовой, текстильной и фармацевтической промышленности, склады боеприпасов, лег­ковоспламеняющихся и горючих жидкостей, сжиженных газов. Особую опасность представляют объекты, непосредственно свя­занные с производством, транспортировкой и хранением взрыв­чатых веществ.

Взрывчатыми веществами называются неустойчивые химиче­ские соединения или смеси, чрезвычайно быстро переходящие под воздействием определенного импульса в другие устойчивые вещества с выделением значительного количества тепла и боль­шого объема газообразных продуктов, которые находятся под очень большим давлением и, расширяясь, выполняют ту или иную механическую работу.

Классическими примерами взрывчатых веществ являются химические соединения (гексоген, тротил и др.) и механические смеси (аммиачно-селитренные и нитроглицериновые).

Основными поражающими факторами взрыва являются:

Воздушная ударная волна, возникающая при разного рода взрывах газовоздушных смесей, резервуаров с перегретой жидкостью и резервуаров под давлением;

Тепловое излучение и разлетающиеся осколки;

Токсичные вещества, которые применялись в технологиче­ском процессе или образовались в ходе пожара или других аварийных ситуациях.

Образовавшаяся при взрыве область сильного сжатия окружающих слоев воздуха, расширяясь, передает давление соседним слоям воздуха, сжимая и нагревая их, а те в свою очередь воз­действуют на соседние слои. В результате в воздухе во все сторо­ны от центра взрыва распространяется зона высокого давления. Передняя граница сжатого слоя воздуха называется фронтом ударной волны.

Поражающее действие ударной волны характеризуется вели­чиной избыточного давления. Избыточное давление - это раз­ность между максимальным давлением во фронте ударной волны и нормальным атмосферным давлением перед фронтом волны. Оно измеряется в ньютонах на квадратный метр (Н/м 2). Эта еди­ница давления называется Паскалем (Па). 1 Н/м 2 = 1 Па (1 кПа« «0,01 кгс/см 2).

Действие воздушной ударной волны может вызывать вто­ричные последствия, так как при взрыве взрывчатого вещест­ва в атмосфере возникают ударные волны, распространяю­щиеся с большой скоростью в виде областей сжатия. Ударная волна достигает земной поверхности и отражается от нее на некотором расстоянии от эпицентра взрыва, фронт отражен­ной волны сливается с фронтом падающей волны, вследствие чего образуется так называемая головная волна с вертикаль­ным фронтом.

Ввиду небольших размеров тела человека ударная волна мгновенно охватывает человека и подвергает его сильному сжа­тию в течение нескольких секунд. Мгновенное повышение дав­ления воспринимается живым организмом, как резкий удар. Скоростной напор при этом создает значительное лобовое давле­ние, которое может привести к перемещению тела в пространстве. Косвенные поражения людей и животных могут произойти в результате ударов осколков стекла, шлака, камней, дерева и других предметов, летящих с большой скоростью.

Степень воздействия ударной волны зависит от мощности. Расстояния, метеоусловий, местонахождения и положения человека легкими, средними, тяжелыми и крайне травмами.

Избыточное давление во фронте ударной волны 10 кПа ц менее для людей и животных, расположенных вне укрытий считаются безопасными. Легкие поражения наступают при из-быточном давлении 20-40 кПа. Они выражаются кратковре­менными нарушениями функций организма (звоном в ушах, го­ловокружением, головной болью). Возможны вывихи, ушибы. Поражения средней тяжести возникают при избыточном давле­нии 40-60 кПа. При этом могут быть вывихи конечностей контузии головного мозга, повреждение органов слуха, кровоте­чения из носа и ушей.

Тяжелые контузии и травмы возникают при избыточном дав­лении 60-100 кПа. Они характеризуются выраженной контузи­ей всего организма, переломами костей, кровотечениями из носа, ушей, возможно повреждение внутренних органов и внут­реннее кровотечение. Крайне тяжелые контузии и травмы у лю­дей возникают при избыточном давлении более 100 кПа. Отме­чаются разрывы внутренних органов, переломы костей, внутрен­ние кровотечения, сотрясение мозга с длительной потерей сознания. Разрывы наблюдаются в органах, содержащих боль­шое количество крови (печени, селезенке, почках) и наполнен­ных жидкостью (головном мозге, мочевом и желчном пузырях). Эти травмы могут привести к смертельному исходу.

Таким образом, взрывы представляют серьезную опасность для людей и объектов. Поэтому на взрывоопасных объектах осо­бое внимание обращают на предотвращение взрывов и защиту персонала и оборудования от поражения и разрушения при взрывах.

Гидродинамически опасные объекты (ГДОО) - это гидротех­нические сооружения или естественные образования, создающее разницу уровней воды до и после этого объекта.

Гидротехническое сооружение - народнохозяйственный объ­ект, находящийся на или вблизи водной поверхности, предна­значенный для:

Использования кинетической энергии движения воды с це­лью преобразования в другие виды энергии;

Охлаждения отработавших паров ТЭС и АЭС;

Мелиорации;

Зашиты прибрежной территории воды;

Забора воды для орошения и водоснабжения; . осушения; . рыбозашиты; . регулирования уровня воды;

Обеспечения деятельности речных и морских портов, судо­строительных и судоремонтных предприятий, судоходства;

Подводной добычи, хранения и транспортировки (трубо­проводы) полезных ископаемых (нефти и газа).

К основным гидротехническим сооружениям относятся: пло­тины, водохранилища, запруды.

Плотины - гидротехнические сооружения (искусственные плотины) или природные образования (естественные плотины), ограничивающие сток, создающие водохранилища и разницу уровней воды по руслу реки.

Водохранилища - водоем, в котором скапливается и сохра­няется вода. Водохранилища могут быть долговременными (как правило, образованными гидротехническими сооружениями; временными и постоянными) и кратковременными (за счет дей­ствия сил природы; оползней, селей, лавин, обвалов, землетря­сений и т. п.).

Запруда - простейшая плотина, обычно в виде насыпи.

Гидродинамическая авария - это чрезвычайное событие, свя­занное с выводом из строя (разрушением) гидротехнического со­оружения или его части и неуправляемым перемещением боль­ших масс воды, несущих разрушения и затопление обширных территорий.

Разрушение (прорыв) гидротехнических сооружений проис-ЭДит в результате действия сил природы (землетрясения, урага- [ " Р аз мывы плотин) или воздействия человека, а также из-за >нструктивных дефектов или ошибок проектирования.

Особенно опасно повреждение в теле плотины (проран), об­разующееся вследствие ее размыва.

Устремляющие в проран поток воды образует волну значительную высоту гребня и скорость движения и обладающую большой разрушительной силой. Скорость продвижения волны прорыва, как правило, находится в диапазоне от 3 до 25 км/ч, а высота 2-50 м.

Основным следствием прорыва плотины при гидродинастности авариях является катастрофическое затопление в стремительном затоплении волной прорыва нижерасположенной местности и возникновении наводнения.

Катастрофическое затопление характеризуется:

Максимально возможными высотой и скоростью волны прорыва;

Расчетным временем прихода гребня и фронта волны про, рыва в соответствующий створ;

Границами зоны возможного затопления;

Максимальной глубиной затопления конкретного участка местности;

Длительностью затопления территории.

При разрушениях гидротехнических сооружений затопляется часть прилегающей к реке местности, которая называется зоной возможного затопления.

В зависимости от последствий воздействия гидропотока, об­разующегося при гидротехнической аварии, на территории воз­можного затопления следует выделять зону катастрофического затопления, в пределах которой распространяется волна проры­ва, вызывающая массовые потери людей, разрушения зданий и сооружений, уничтожение других материальных ценностей.

Время, в течение которого затопленные территории могут находиться под водой, колеблется от 4 часов до нескольких суток.

Химически опасные объекты (ХОО) - это объекты, при ава­рии на которых или разрушении которых может произойти поражение людей, сельскохозяйственных животных и растений, либо химическое заражение окружающей природной среды опасными химическими веществами в концентрациях или количествах, превышающий естественный уровень их содержания в среде.

Главный поражающий фактор при аварии на ХОО - хими­ческое заражение приземного слоя атмосферы; вместе с тем воз­можно заражение водных источников, почвы, растительности. Эти аварии нередко сопровождаются пожарами и взрывами.

Аварийные ситуации с выбросом (угрозой выброса) опасных химических веществ возможны в процессе производства, транс­портировки, хранения, переработки, а также при преднамерен­ном разрушении (повреждении) объектов с химической техноло­гией, складов, мощных холодильников и водоочистных сооруже­ний, газопроводов (продуктопроводов) и транспортных средств, обслуживающих эти объекты и отрасли промышленности.

Наиболее опасны аварии на предприятиях, производящих, использующих или хранящих ядовитые вещества и взрыво­опасные материалы. К. ним относятся заводы и комбинаты химической, нефтехимической, нефтеперерабатывающей про­мышленности. Особую опасность представляют собой аварии на железнодорожном транспорте, сопровождающиеся разливом перевозимых сильнодействующих ядовитых веществ (СДЯВ).

СДЯВ - это токсичные химические вещества, широко обра­щающиеся в промышленности, сельском хозяйстве и на транс­порте и способные при утечке из разрушенных (поврежденных) технологических емкостей, хранилищ и оборудования приводить к заражению воздуха и вызывать массовые поражения людей, сельскохозяйственных животных и растений.

Среди многочисленных ядовитых веществ, используемых в промышленном производстве и экономике, наибольшее распрстранение получили хлор, аммиак, синильная кислота, фосген, окись углерода, ртуть.

Хлор - это газ желто-зеленого цвета с резким запахом,применяется на хлопчатобумажных комбинатах для отбеливанй» тканей, при производстве бумаги, изготовлении резины, на водостанциях для обеззараживания воды. При разливе ее исправных емкостей хлор «дымит». Хлор тяжелее воздуха, скапливается в низинных участках местности, протекает в нижние этажи и подвальные помещения зданий. Хлор но раздражает органы дыхания, глаза и кожу. Признаки от­равления хлором - резкая боль в груди, сухой кашель, рвота, резь в глазах, слезотечение.

Аммиак - бесцветный газ с резким запахом «нашатырного спирта». Он применяется на объектах, где используются холо­дильные установки (мясокомбинаты, овощные базы, рыбокон­сервные заводы), а также при производстве удобрений и другой химической продукции. Аммиак легче воздуха. Острое отравле­ние аммиаком приводит к поражению дыхательных путей и глаз. Признаки отравления аммиаком - насморк, кашель, удушье, слезотечение, учащенное сердцебиение.

Синильная кислота - бесцветная легкоподвижная жидкость с запахом горького миндаля. Синильная кислота широко распро­странена на химических предприятиях и заводах по производст­ву пластмасс, оргстекла и искусственного волокна. Она также применяется как средство борьбы с вредителями сельского хо­зяйства. Синильная кислота легко смешивается с водой и мно­гими органическими растворителями. Смеси паров синильной кислоты с воздухом могут взрываться. Признаки отравления си­нильной кислотой - металлический привкус во рту, слабость, головокружение, беспокойство, расширение зрачков, замедление пульса, судороги.

Фосген - бесцветный, очень ядовитый газ. Его отличает сладковатый запах гнилых фруктов, прелой листвы или мокрого сена. Тяжелее воздуха. Используется в промышленности при производстве различных растворителей, красителей, лекарственныx средств и других веществ. При отравлении фосгеном, как правило, наблюдаются четыре характерных периода. Первый период- контакт с зараженной атмосферой, характеризующийся некоторыми раздражениями дыхательных путей, ощущением неприятного вкуса во рту, небольшим слюнотечением, кашлем.

Второй период наблюдается после выхода из зараженной атмосферы, когда все эти признаки быстро проходят и пострадавший чувствует себя здоровым. Это - период скрытого действия фосгена, во время которого

при внешнем хорошем самочувствии в течении 2-12 часов (в зависимости от тяжести интоксикации)развивается поражение легких. Для третьего периода характерны учащенное дыхание, повышение температуры, головная боль Появляется все усиливающийся кашель с обильным выделением жидкой пенистой мокроты (иногда с кровью), ощущается боль в горле и груди, увеличивается сердцебиение, синеют ногти и губы, а затем лицо и конечности. Четвертый период характеру зуется тем, что в результате развития поражения происходит от­тек легких, который достигает максимума к концу первых суток и длится в течение 1-2 суток. Если в этот период пораженный не погибает, то с 3-4-х суток начинается его постепенное вы­здоровление.

Окись углерода - бесцветный газ, в чистом виде без запаха, немного легче воздуха, плохо растворим в воде. Широко приме­няется в промышленности для получения различных углеводо­родов, спиртов, альдегидов, кетонов и карбоновых кислот. Окись углерода как побочный продукт при использовании неф­ти, угля и биомассы образуется при неполном окислении угле­рода, в условиях недостаточного доступа воздуха. Признаки от­равления окисью углерода - головная боль, головокружение, нарушение координации движений и рефлекторной сферы, ряд сдвигов психической деятельности, напоминающих алкогольное опьянение (эйфория, утрата самоконтроля и т. п.). Характерно покраснение кожи пораженных. Позже развиваются судороги, утрачивается сознание, и, если не принять экстренные меры, че­ловек может погибнуть вследствие остановки дыхания и работы сердца.

Ртуть - жидкий серебристо-белый металл, который исполь­зуют при изготовлении люминесцентных и ртутных ламп, изме­рительных приборов: термометров, барометров, манометров, в производстве амальгам, средств, предотвращающих гниение де­рева, лабораторной и медицинской практике. Симптомы отрав­ления ртутью проявляются через 8-24 ч и выражаются в обшей слабости, головной боли, болях при глотании, повышении тем­пературы. Несколько позже наблюдаются болезненность десен, боли в животе, желудочные расстройства, иногда воспаление легких. Возможен смертельный исход. Хронические интоксика­ции (отравления) развиваются исподволь и длительное время протекают без явных признаков заболевания. Затем появляются повышенная утомляемость, слабость, сонливость, апатия, эмо­циональная неустойчивость, головные боли, головокружения, одновременно развивается дрожание рук, языка, век, а в тяжёлых случаях - ног и всего тела.

Аварии на предприятиях, производящих или использующих ядовитые вещества, могут сопровождаться выбросом в атмосфере этих веществ. Попадая в атмосферу, ядовитые вещества в га­зообразном или парообразном состоянии образуют зоны химического заражения, площадь которых порой достигает несколь­ких десятков километров и более.

Радиационно опасные объекты (РОО) - это объекты, при ава­рии на которых или при разрушении которых может произойти выход радиоактивных продуктов или ионизирующего излучения за предусмотренные проектом для нормальной эксплуатации зна­чения, что может привести к массовому облучению людей, сель­скохозяйственных животных и растений, а также радиоактивному загрязнению природной среды выше допустимых норм.

К типовым РОО относятся, атомные станции, предприятия по переработке отработанного ядерного топ­лива и захоронению радиоактивных отходов, предприятия по изготовлению ядерного топлива, научно-исследовательские и проектные организации, имеющие ядерные установки и стенды, транспортные ядерные энергетические установки, военные объекты.

Радиационная авария - потеря управления источником ионизирующего излучения, вызванная неисправностью оборудования, неправильными действиями работников (персонала), стихийными бедствиями или иными причинами, которые могли привести или привели к облучению людей выше установлении» норм или к радиоактивному загрязнению окружающей среды.

Особую опасность для людей представляют аварии на атомных электростанциях (АЭС). Вся опасность и тяжесть таких ава­рий состоит в том, что из ядерных реакторов выбрасываются в атмосферу радиоактивные вещества в виде мельчайших пылинок и аэрозолей. Под воздействием ветра радиоактивные вещества могут распространяться на значительные расстояния от места аварии. Выпадая из облаков на землю, эти вещества образуют зону радиоактивного загрязнения.

Классификация ЧС по масштабам определена Постановлением Правительства РФ от 21.05.2007 г. № 304.

В зависимости от масштабов ЧС делятся на следующие категории: локального, муниципального, межмуниципального, региональные, межрегионального и федерального характера. К локальным относится ЧС, в результате которой пострадало не более 10 человек, либо материальный ущерб составляет не более 0,1 млн. руб и зона ЧС не выходит за пределы территории объекта производственного или социального назначения. К муниципальной относится ЧС, в результате которой пострадало свыше 10, но не более 50 человек, либо материальный ущерб составляет не более 5 млн. руб. и зона ЧС не выходит за пределы населенного пункта, города, района. Межмуниципальная ЧС имеет те же критерии (пострадало свыше 10, но не более 50 человек, либо материальный ущерб составляет не более 5 млн. руб.) но зона ЧС выходит за пределы 2-х и более населенных пунктов, городов, районов. К региональной относится ЧС, в результате которой пострадало свыше 50, но не более 500 человек, либо материальный ущерб составляет свыше 5 млн. руб., но не более 500 млн. руб. и зона ЧС не выходит за пределы субъекта Российской Федерации. К межрегиональной относится ЧС, в результате которой пострадало свыше 50, но не более 500 человек, либо материальный ущерб составляет свыше 5 млн. руб., но не более 500 млн. руб. и зона ЧС охватывает территорию двух и более субъектов РФ. К федеральной относится ЧС, в результате которой пострадало свыше 500 человек, либо материальный ущерб составляет свыше 500 млн. руб.

К трансграничной относится чрезвычайная ситуация, поражающие факторы которой выходят за пределы РФ, либо чрезвычайная ситуация, которая произошла за рубежом и затрагивает территорию РФ.

Таким образом мы рассмотрели ЧС техногенного характера.

Чрезвычайная ситуация ЧС – обстановка на определенной территории сложившаяся в результате аварии опасного природного явления катастрофы стихийного или иного бедствия которые могут повлечь или повлекли за собой человеческие жертвы ущерб здоровью или окружающей природной среде значительные материальные потери и нарушение условий жизнедеятельности людей. С этой точки зрения ЧС можно подразделить: на внезапные взрывы транспортные аварии землетрясения и т.; стремительные пожары выброс газообразных сильнодействующих ядовитых...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Тема 2 Опасные и чрезвычайные ситуации техногенного характера

2 .1. Понятие об опасных и чрезвычайных ситуациях в техносфере Основные термины и определения

Жизнедеятельность — повседневная деятельность или способ существования человека.

Происшествие — опасное событие, связанное с незначительным причинением ущерба людским, природным или материальным ресурсам.

Опасность — негативное свойство живой и неживой материи, способное причинять ущерб самой материи: людям, природной среде, материальным и культурным ценностям, человеческому сообществу в целом и самой Земле. Источником опасности может быть все живое и неживое. Различают опасности естественного и антропогенного происхождения.

Чем выше преобразующая деятельность человека, тем выше уровень антропогенных опасностей – вредных и травмирующих факторов.

Вредный фактор — негативное воздействие на человека или иные объекты, которое приводит к ухудшению самочувствия или заболеванию (разрушению, отказу в работе).

Травмирующий фактор — негативное воздействие на человека, которое приводит к травме или летальному исходу.

Антропогенные опасности — опасности, возникающие при любом виде жизнедеятельности человека (производство, сельское хозяйство, транспорт, переработка и пр.).

Техногенная опасная ситуация — неблагоприятная обстановка техногенного происхождения, приведшая к выходу из строя, повреждению или разрушению технических устройств, транспортных средств, зданий, сооружений.

Авария — происшествие в технической сфере (системе), не сопровождающееся гибелью людей и непоправимым разрушением технических средств; не всякая авария является источником чрезвычайной ситуации.

Катастрофа — происшествие в технической системе, сопровождающееся гибелью людей, необратимым разрушением технических средств; соответствует признакам чрезвычайной ситуации.

Чрезвычайная ситуация (ЧС) – обстановка на определенной территории, сложившаяся в результате аварии, опасного природного явления, катастрофы, стихийного или иного бедствия, которые могут повлечь или повлекли за собой человеческие жертвы, ущерб здоровью или окружающей природной среде, значительные материальные потери и нарушение условий жизнедеятельности людей. Чрезвычайные ситуации возникают намного реже, чем порождающие их опасные ситуации. Поэтому от ЧС страдает намного меньше людей, чем от повседневных опасностей. Например, в России от опасностей на дорогах ежегодно погибает 35 тыс. человек; но из этих 35 тыс. опасных ситуаций к ЧС относится не более 10%.

Таким образом, ЧС – это более тяжкая разновидность опасной ситуации.__ Система «человек – среда обитания» Человек и окружающая его среда гармонично взаимодействуют и развиваются лишь в условиях, когда потоки энергии, вещества и информации находятся в пределах, благоприятно воспринимаемых человеком и природной средой. При этом любое превышение привычных уровней потоков сопровождается негативным воздействием на человека или природную среду.

В условиях техносферы, когда величина любого потока меняется от минимально значимой до максимально возможной, можно выделить ряд характерных состояний системы «человек – среда обитания»:

Комфортное (оптимальное) – потоки вещества и энергии соответствуют оптимальным условиям взаимодействия, обеспечивают благоприятные условия деятельности и отдыха, создают предпосылки для проявления наивысшей работоспособности и, как следствие, продуктивной деятельности, гарантируют сохранение здоровья человека и целостности компонента «среда обитания»;

Допустимое — потоки веществ и энергии, воздействуя на человека и среду обитания, не оказывают негативного влияния на здоровье, но приводят к дискомфорту, снижая эффективность деятельности человека; соблюдение условий данного состояния не приводит к необратимым негативным процессам у человека и в среде обитания;

Опасное — потоки вещества и энергии превышают допустимые уровни и оказывают негативное воздействие на здоровье человека, при длительном воздействии вызывают заболевания и приводят к деградации природной среды;

Чрезвычайно опасное — потоки высоких уровней за короткий период времени могут нанести травму, привести к летальному исходу, вызвать разрушения в природной среде.

Основные факторы возникновения опасных и чрезвычайных ситуаций техногенного характера Основными факторами возникновения опасностей и ЧС техногенного характера являются:

Неустойчивое (напряженное) состояние объекта (личности, общества, государства, системы), при котором воздействие на него всех потоков вещества, энергии и/или информации превышают максимально допустимые значения (это снижает способности предупреждения, ослабления, устранения и отражения опасностей);

Увеличение энергоемкости, внедрение новых технологий и материалов, опасных для природы и человека;

Несовершенство и устарелость оборудования, снижение технологической и трудовой дисциплины;

Накопление отходов производства и энергетики, в т. ч. химических и радиоактивных;

Недостатки контроля надзорных органов и государственных инспекций;

Нехватка квалифицированных кадров, обладающих культурой безопасности на производстве и в быту;

Недостаточный уровень предупредительных мероприятий по уменьшению масштабов и последствий чрезвычайных ситуаций, снижению риска их возникновения.

Перечисленные факторы повышают риск возникновения опасных ситуаций, аварий и катастроф техногенного характера во всех сферах хозяйственной деятельности.

3.2. Виды опасных и чрезвычайных ситуаций техногенного характера

Классификация ЧС по масштабу распространения Постановление Правительства Российской Федерации от 21 мая 2007 г. № 304 «О классификации чрезвычайных ситуаций природного и техногенного характера» определяет 6 типов ЧС в зависимости от территории распространения, количества людей, погибших или получивших ущерб здоровью, либо размера ущерба:

ЧС локального характера — не выходит за пределы территории объекта, при этом количество пострадавших не более 10 человек или размер ущерба не более 100 тыс. руб.;

ЧС муниципального характера — не выходит за пределы территории одного поселения или внутри городской территории города федерального значения, при этом количество пострадавших составляет не более 50 человек либо размер ущерба составляет не более 5 млн руб.;

ЧС межмуниципального характера — затрагивает территорию двух и более поселений, внутригородских территорий города федерального значения или межселенную территорию, при этом количество пострадавших либо ущерба аналогично критериям ЧС муниципального характера;

ЧС регионального характера — не выходит за пределы территории одного субъекта РФ, количество пострадавших составляет свыше 50 человек, но не более 500 человек, либо размер ущерба составляет свыше 5 млн руб., но не более 500 млн руб.;

ЧС межрегионального характера — затрагивает территорию двух и более субъектов РФ, количество пострадавших либо размер ущерба аналогичен критериям ЧС регионального характера;

ЧС федерального характера — количество пострадавших свыше 500 человек либо размер ущерба свыше 500 млн руб.

Классификация ЧС по темпу развития

Каждому виду чрезвычайных ситуаций свойственна своя скорость распространения опасности, являющаяся важной составляющей интенсивности протекания чрезвычайного события и характеризующая степень внезапности воздействия поражающих факторов. С этой точки зрения ЧС можно подразделить:

На внезапные (взрывы, транспортные аварии, землетрясения и т. д.);

Стремительные (пожары, выброс газообразных сильнодействующих ядовитых веществ, гидродинамические аварии с образованием волн прорыва и т. д.);

Умеренные (выброс радиоактивных веществ, аварии на коммунальных системах и т. д.);

Плавные (аварии на очистных сооружениях, эпидемии и т. д.).

Плавные (медленные) чрезвычайные ситуации могут длиться многие месяцы и годы, например, последствия антропогенной деятельности в зоне Аральского моря.

Классификация ЧС по видам чрезвычайных событий

Для практических нужд общую классификацию ЧС целесообразно строить по типам и видам лежащих в их основе чрезвычайных событий; при этом можно частично в тех или иных звеньях классификационной структуры использовать принадлежность, причинность или масштаб ЧС. По такому комплексу признаков все ЧС мирного времени разбивают на шесть групп (рис. 1).

Рис. 1. Классификация ЧС техногенного характера по виду чрезвычайных событий Перечень ЧС по группам приведен в табл. 3.

Таблица 3 Перечень чрезвычайных ситуаций техногенного характера по группам

Классификация ЧС по природе источника возникновения

По природе источников возникновения все ЧС подразделяются на 5 групп.

1. ЧС, связанные с возникновением аварий на опасных объектах:

Аварии на атомных электростанциях (АЭС);

Утечки радиоактивных газов на предприятиях ядерно-топливного цикла за пределы санитарно-защитной зоны (СЗЗ);

Аварии на атомных судах с радиоактивными загрязнениями акватории порта и прибрежной территории;

Аварии на ядерных установках инженерно-исследовательских центров с радиоактивным загрязнением территории;

Аварийные ситуации во время промышленных и испытательных ядерных взрывов, связанные со сверхнормативным выбросом радиоактивных веществ в окружающую среду;

Падение летательных аппаратов с ядерными энергетическими устройствами на борту с последующим радиоактивным загрязнением местности;

Незначительные загрязнения местности радиоактивными веществами при утере источников ионизирующих излучений, аварий на транспорте, перевозящем радиоактивные препараты, и в некоторых других случаях;

Аварии на химически опасных объектах с выбросом (утечкой) в окружающую среду аварийно химически опасных веществ (АХОВ);

Аварии с выбросом (утечкой) в окружающую среду бактериологических веществ или биологических веществ в концентрациях, превышающих допустимые значения.

2. ЧС, обусловленные пожарами и взрывами и их последствиями:

Пожары в населенных пунктах, на объектах народного хозяйства и транспортных коммуникациях; иных аппаратов);

Взрывы в жилых зданиях.

3. ЧС на транспортных коммуникациях:

Авиационные катастрофы;

Столкновения и сход с рельсов железнодорожных составов (поездов в метрополитене); аварии на водных коммуникациях;

Аварии на трубопроводах, вызвавшие выброс большой массы транспортируемых веществ и загрязнение ими окружающей среды;

Аварии на энерго– и других инженерных сетях, повлекшие нарушение нормальной жизнедеятельности населения в результате возникновения вторичных факторов.

4. ЧС, вызванные стихийными бедствиями:

Землетрясения силой 5 и более баллов по 12-балльной шкале;

Ураганы, смерчи, бури силой 10 и более баллов по 17-балльной шкале;

Катастрофические затопления и наводнения, образовавшиеся в результате разрушения гидротехнических сооружений, землетрясений, горных обвалов и оползней, паводков, половодья или нагонных явлений и цунами;

Сели, оползни, обвалы, лавины, снежные заносы и карстовые явления, вызвавшие разрушения в городах, на транспортных, энергетических и других инженерных сетях, образование завалов и т. п.;

Массовые, лесные и торфяные пожары, принявшие неуправляемый характер и повлекшие нарушение нормальной жизнедеятельности населения региона;

Факторы риска биолого-социального характера: эпидемии, эпизоотии и эпифитотии2.

5. ЧС военно-политического характера в мирное время:

Одиночный (случайный) ракетно-ядерный удар, нанесенный с акватории нейтральных вод кораблем неустановленной принадлежности или падение носителя ядерного оружия со взрывом боевой части;

Падение носителя ядерного оружия с разрушением или без разрушения боевой части;

Вооруженное нападение на штабы, пункты управления, узлы связи, склады войсковых соединений и частей (в т. ч. и ГО).

Эпидемия – массовое распространение инфекционного заболевания людей в какой-либо местности, стране, значительно превышающее обычный уровень заболеваемости этой болезнью.

Эпизоотия – массовое распространение инфекционного заболевания животных в какой-либо местности, значительно превышающее обычный уровень заболеваемости.

Эпифитотия – поражение сельскохозяйственных растений болезнями и вредителями.

1. Дайте определение понятия «чрезвычайная ситуация».

2. Какое состояние системы «человек – среда обитания» называют комфортным?

3. По каким признакам классифицируют чрезвычайные ситуации?

4. Как классифицируются чрезвычайные ситуации по масштабу и числу пострадавших?

5. На какие группы подразделяются чрезвычайные ситуации техногенного характера по природе их возникновения?

Тема 2 Происшествия с выбросом радиоактивных веществ

5.1. Ионизирующее излучение Явление радиоактивности и его применение

Радиоактивность — самопроизвольный распад ядер атомов нестабильных химических элементов (изотопов), сопровождающийся выделением (излучением) потока элементарных частиц и квантов электромагнитной энергии. При взаимодействии такого потока с веществом происходит образование ионов разного (положительного и отрицательного) знака, поэтому это явление называют еще ионизирующим излучением.

Явление радиоактивности – одно из свойств, присущее, подобно массе или температуре, любому веществу Вселенной. В повседневной жизни мы постоянно подвергаемся воздействию излучения, поскольку естественные радиоактивные вещества (радионуклиды) рассеяны в живой и неживой природе.

Явление радиоактивности (ионизации) было открыто в 1896 году Анри Беккерелем, обнаружившим способность солей урана испускать «таинственные лучи», проникающие повсюду. Пьер и Мария Кюри сумели объяснить это явление и выделить новые радиоактивные элементы – полоний и радий. С тех пор радиоактивность интенсивно изучается.

Сегодня явления радиоактивности широко используются – это ядерное оружие, ядерная энергетика, а также новые системы переработки радиоактивного сырья и отходов, широкое применение радиоактивных элементов в различных областях науки, техники, медицины.

Энергетический кризис человечеству не грозит, так как в ядре атома, ничтожно малом объеме вещества, хранится огромное количество энергии: всего 30 г урана-235 вполне достаточно, чтобы в течение суток питать энергией электростанцию мощностью 5 тыс. кВт, обычно сжигающую за этот время около 100 т угля.

Виды ионизирующих излучений Ионизирующие излучения (ИИ) — потоки элементарных частиц (электронов, позитронов, протонов, нейтронов) и квантов электромагнитной энергии, прохождение которых через вещество приводит к ионизации (образованию разнополярных ионов) и возбуждению его атомов и молекул.

Ионизация — превращение нейтральных атомов или молекул в электрически заряженные частицы – ионы.

ИИ попадают на Землю в виде космических лучей, возникают в результате радиоактивного распада атомных ядер (απ β-частицы, γ– и рентгеновские лучи), создаются искусственно на ускорителях заряженных частиц.

Практический интерес представляют наиболее часто встречающиеся виды ИИ – потоки а– и β-частиц, γ-излучение, рентгеновские лучи и потоки нейтронов.

Альфа-излучение (а) – поток положительно заряженных частиц – ядер гелия. В настоящее время известно более 120 искусственных и естественных альфа-радиоактивных ядер, которые, испуская α-частицу, теряют 2 протона и 2 нейтрона. Скорость частиц при распаденостью, длина их пробега (расстояние от источника до поглощения) в теле равна 0,05 мм, в воздухе – 8–10 см. Они не могут пройти даже через лист бумаги, но плотность ионизации на единицу величины пробега очень велика (на 1 см до десятка тысяч пар), поэтому эти частицы обладают наибольшей ионизирующей способностью и опасны внутри организма.

Бета-излучение (β) – поток отрицательно заряженных частиц. В настоящее время известно около 900 бета-радиоактивных изотопов. Масса β-частиц в несколько десятков тысяч раз меньше α-частиц, но они обладают бо́льшей проникающей способностью. Их скорость равна 200–300 тыс. км/с. Длина пробега потока от источника в воздухе составляет 1800 см, в тканях человека – 2,5 см. β-частицы полностью задерживаются твердыми материалами (алюминиевой пластиной в 3,5 мм, органическим стеклом); их ионизирующая способность в 1000 раз меньше, чем у α-частиц.

Гамма-излучение (γ) – электромагнитное излучение с длиной волны от 1 · 10-7 м до 1 · 10-14 м; испускается при торможении быстрых электронов в веществе. Оно возникает при распаде большинства радиоактивных веществ и обладает большой проникающей способностью; распространяется со скоростью света. В электрических и магнитных полях γ-лучи не отклоняются. Это излучение обладает меньшей ионизирующей способностью, чем а– и βизлучение, так как плотность ионизации на единицу длины очень низкая.

Рентгеновское излучение может быть получено в специальных рентгеновских трубках, в электронных ускорителях, при торможении быстрых электронов в веществе и при переходе электронов с внешних электронных оболочек атома на внутренние, когда создаются ионы.

Рентгеновские лучи, как и γ-излучение, обладают малой ионизирующей способностью, но большой глубиной проникновения.

Нейтроны — элементарные частицы атомного ядра, их масса в 4 раза меньше массы αчастиц. Время их жизни – около 16 мин. Нейтроны не имеют электрического заряда. Длина пробега медленных нейтронов в воздухе составляет около 15 м, в биологической среде – 3 см; для быстрых нейтронов – соответственно 120 м и 10 см. Последние обладают высокой проникающей способностью и представляют наибольшую опасность.

Выделяют два вида ионизирующих излучений: корпускулярное, состоящее из частиц с массой покоя, отличной от нуля (α-, β– и нейтронное излучения); электромагнитное (γ– и рентгеновское излучение) – с очень малой длиной волны.

Для оценки воздействия ионизирующего излучения на любые вещества и живые организмы используются специальные величины – дозы излучения.

Основная характеристика взаимодействия ионизирующего излучения и среды – это ионизационный эффект. В начальный период развития радиационной дозиметрии чаще всего приходилось иметь дело с рентгеновским излучением, распространявшимся в воздухе.

Поэтому в качестве количественной меры поля излучения использовалась степень ионизации воздуха рентгеновских трубок или аппаратов. Количественная мера, основанная на величине ионизации сухого воздуха при нормальном атмосферном давлении, достаточно легко поддающаяся измерению, получила название экспозиционная доза.

Экспозиционная доза определяет ионизирующую способность рентгеновских и γлучей и выражает энергию излучения, преобразованную в кинетическую энергию заряженных частиц в единице массы атмосферного воздуха. Экспозиционная доза – это отношение суммарного заряда всех ионов одного знака в элементарном объеме воздуха к массе воздуха в этом объеме. В системе СИ единицей измерения экспозиционной дозы является кулон, деленный на килограмм (Кл/кг). Внесистемная единица – рентген (Р). 1 Кл/кг = 3880 Р.

При расширении круга известных видов ионизирующего излучения и сфер его приложения оказалось, что мера воздействия ионизирующего излучения на вещество не поддается простому определению из-за сложности и многообразности протекающих при этом процессов. Важнейшим из них, дающим начало физико-химическим изменениям в облучаемом веществе и приводящим к определенному радиационному эффекту, является поглощение энергии ионизирующего излучения веществом. В результате этого возникло понятие поглощенная доза.

Поглощенная доза показывает, какое количество энергии излучения поглощено в единице массы любого облучаемого вещества, и определяется отношением поглощенной энергии ионизирующего излучения на массу вещества. За единицу измерения поглощенной дозы в системе СИ принят грэй (Гр). 1 Гр – это такая доза, при которой массе 1 кг передается энергия ионизирующего излучения 1 Дж. Внесистемной единицей поглощенной дозы является рад. 1 Гр = 100 рад.

Изучение отдельных последствий облучения живых тканей показало, что при одинаковых поглощенных дозах различные виды радиации производят неодинаковое биологическое воздействие на организм. Обусловлено это тем, что более тяжелая частица (например, протон) производит на единице пути в ткани больше ионов, чем легкая (например, электрон).

При одной и той же поглощенной дозе радиобиологический разрушительный эффект тем выше, чем плотнее ионизация, создаваемая излучением. Чтобы учесть этот эффект, было введено понятие эквивалентной дозы.

Эквивалентная доза рассчитывается путем умножения значения поглощенной дозы на специальный коэффициент – коэффициент относительной биологической эффективности (ОБЭ) или коэффициент качества. Значения коэффициента для различных видов излучений приведены в табл. .

7Таблица 7 Коэффициент относительной биологической эффективности для различных видов излучений

Единицей измерения эквивалентной дозы в СИ является зиверт (Зв). Величина 1 Зв равна эквивалентной дозе любого вида излучения, поглощенной в 1 кг биологической ткани и создающей такой же биологический эффект, как и поглощенная доза в 1 Гр фотонного излучения. Внесистемной единицей измерения эквивалентной дозы является бэр (биологический эквивалент рада). 1 Зв = 100 бэр.

Одни органы и ткани человека более чувствительны к действию радиации, чем другие: например, при одинаковой эквивалентной дозе возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения разных органов и тканей следует учитывать с разным коэффициентом, который называется коэффициентом радиационного риска.

Умножив значение эквивалентной дозы на соответствующий коэффициент радиационного риска и просуммировав по всем тканям и органам, получим эффективную дозу, отражающую суммарный эффект для организма. Взвешенные коэффициенты устанавливают эмпирически и рассчитывают таким образом, чтобы их сумма для всего организма составляла единицу. Единицы измерения эффективной дозы совпадают с единицами измерения эквивалентной дозы. Она также измеряется в зивертах или бэрах.

Радиоактивные вещества и их активность Радиоактивные вещества принято оценивать по их активности.

Активность определяется числом распадов, происходящих в данном количестве вещества за единицу времени. Активность изотопа чаще определяется периодом полураспада.

Период полураспада радиоактивного изотопа — промежуток времени, за который число радиоактивных атомов данного изотопа уменьшается вдвое. Так, для урана-238 он составляет приблизительно 4,5 млрд лет, а для полония-212 – около 3 · 10-7 с.

Наиболее опасны те радиоактивные вещества, период полураспада которых близок к продолжительности жизни человека. Большую опасность для здоровья человека представляют наиболее распространенные в природе изотопы, например, стронций-90 (имеющий период полураспада 28 лет) и цезий-137 (период полураспада 33 года). Из короткоживущих радиоактивных изотопов наиболее распространен радон-222, составляющий 1/3 естественной радиации. Период его полураспада равен 3,8 суток.

В системе СИ активность измеряется в беккерелях (Бк). 1 Бк равен одному распаду ядра в секунду. Часто пользуются внесистемной единицей – кюри (Ки); 1 Ки = 3,7 · 1010 Бк.

Активность в ряде случаев измеряют в милликюри (мКи), составляющей 10-3 кюри, и микрокюри (мкКи) = 10-6кюри.

Воздействие ионизирующего излучения на живые организмы Биологическое действие ионизирующих излучений на организм имеет ряд особенностей:

Неся в себе огромную опасность для здоровья и жизни, оно неощутимо человеком;

Существует скрытый (инкубационный) период проявления действия ионизирующего излучения, который может быть весьма продолжительным;

Одним из видов последствий облучения являются так называемые генетические эффекты – разнообразные наследственные заболевания, возникающие в результате мутаций (изменений) в половых клетках;

Получаемые человеком дозы излучений накапливаются в организме (кумулятивный эффект), поэтому вероятность возникновения заболеваний пропорциональна длительности воздействия радиации;

Наиболее чувствительны к облучению дети в период роста;

Степень чувствительности к облучению различных органов и тканей человека неодинакова;

Радиочувствительность живых организмов также весьма различна (смертельная доза для бактерий в 100 раз превышает дозу для млекопитающих).

5.2. Радиационно опасные объекты и аварии на них

Радиационно опасные объекты Ядерные технологии несут в себе опасность радиационного загрязнения окружающей среды и лучевого воздействия на живые организмы. Эксплуатация ядерных объектов показала, что, несмотря на все принимаемые меры, на них нельзя исключить возможность аварий, в т. ч. и с выбросом радиоактивных веществ в окружающую среду.

Радиационная авария — нарушение пределов безопасной эксплуатации ядерно-энергетической установки, оборудования или устройства, при которых произошел выход радиоактивных продуктов или ионизирующего излучения за предусмотренные проектом пределы их безопасной эксплуатации, приводящий к облучению населения и загрязнению окружающей среды. Причинами аварии могут быть нарушения барьеров безопасности, предусмотренных проектом реактора; образование критической массы при перегрузке, транспортировке и хранении ТВЭлов; нарушение контроля и управления цепной ядерной реакцией.

Радиационно опасные объекты (РОО) — научные, народнохозяйственные (промышленные) или оборонные объекты, при разрушениях которых могут произойти массовые радиационные поражения людей, животных и растений, а также заражение среды.

Радиационные аварии и их классификации В зависимости от вида радиационно опасного объекта, масштабов и опасности последствий существует несколько различных классификаций радиационных аварий, происшествий и инцидентов. В табл. 8 приведена одна из них, принятая Международным агентством по атомной энергии (МАГАТЭ) для оценки происшествия.

Таблица 8 Международная шкала оценки происшествий на АЭС, адаптированная для России

Зоны радиационно опасных объектов В период функционирования РОО с целью профилактики и контроля выделяют две основные зоны безопасности:

Санитарно-защитная зона (СЗЗ) — территория вокруг объекта, на которой уровень облучения людей в условиях нормальной эксплуатации объекта может превысить предельно допустимую дозу (ПДД);

Зона наблюдения — территория, где возможно влияние радиоактивных сбросов и выбросов РОО и где облучение проживающего населения может достигать установленной предельно допустимой дозы. На случай радиационной аварии рассматривают 5 зон, имеющих различную степень опасности для здоровья людей:

Зона возможного опасного радиоактивного загрязнения — территория, в пределах которой прогнозируются дозовые нагрузки, не превышающие 10 рад в год; зона ограничений — территория, в пределах которой доза γ-облучения может превысить 10 рад (но не более 25 рад), а доза облучения щитовидной железы радиоактивным йодом – не более 30 рад;

Зона профилактических мероприятий — территория, в пределах которой доза внешнего γ-облучения населения за время формирования радиоактивного следа выброса при аварии на РОО может превысить 25 рад (но не более 75 рад), а доза облучения щитовидной железы радиоактивным йодом составляет около 30 рад (максимально – 50 рад);

Зона экстренных мер защиты населения — территория, в пределах которой доза внешнего γ-излучения населения может превысить 75 рад, а доза внутреннего облучения щитовидной железы радиоактивным йодом – 250 рад;

Зона радиационной аварии — территория, на которой могут быть превышены пределы дозы и пределы годового поступления.

После стабилизации радиационной обстановки в районе аварии устанавливаются зоны: зона отчуждения (загрязнение по γ-излучению – свыше 20 мрад/ч; по цезию – свыше 40 Ки/км2; по стронцию – свыше 10 Ки/км2);

Зона временного отселения (загрязнение по γ-излучению – от 5 до 20 мрад/ч; по цезию – от 15 до 40 Ки/км2; по стронцию – от 3 до 10 Ки/км2);

Зона жесткого контроля (загрязнение по γ-излучению – от 3 до 5 мрад/ч; по цезию – до 15 Ки/км2; по стронцию – до 3 Ки/км2).

5.3. Уровень радиации и предельно допустимые дозы облучения

Мощность дозы естественного (природного и техногенного) радиоактивного фона на территории РФ составляет 0,01–0,02 мР/ч.

Согласно Федеральному закону «О радиационной безопасности населения» № 3-ФЗ от 9 января 1996 г. и поправке к ст. 9 от 1999 г. с января 2000 года для населения средняя годовая эффективная доза равна 0,001 зиверта или эффективная доза за период жизни (70 лет) – 0,07 зиверта; в отдельные годы допустимы бо́льшие значения эффективной дозы при условии, что средняя годовая эффективная доза, исчисленная за пять последовательных лет, не превысит 0,001 зиверта.

После Чернобыльской аварии в РФ установлены следующие допустимые пределы радиационного фона: 15–19 мР/ч (миллирентген в час) – безопасно; 20–60 мР/ч – относительно безопасно; 61–120 мР/ч – зона повышенного внимания; 121 мР/ч и более – опасная зона.

Международная комиссия по радиационной защите (МКРЗ) рекомендует считать предельно допустимую дозу (ПДД) разового аварийного облучения – 25 бэр; ПДД профессионального хронического облучения – до 5 бэр в год; для ограниченных групп населения – 0,5 бэр. Генетически значимые дозы для населения находятся в пределах 7–55 мбэр/год.

Доза облучения может быть однократной и многократной. Однократным считается облучение, полученное за первые четверо суток. Если продолжительность облучения превышает этот срок, то оно считается многократным.

При облучении человека дозой менее 100 бэр отмечаются лишь легкие реакции организма, проявляющиеся в формуле крови, изменении вегетативных функций. При дозах более 100 бэр развивается острая лучевая болезнь, тяжесть течения которой зависит от дозы облучения. Признаки поражения организма человека при превышении так называемых пороговых значений доз облучения приведены в табл. 9.

Таблица 9 Признаки поражения человека в зависимости от дозы облучения

При радиоактивном заражении местности образуются зоны разной степени опасности для людей, которые характеризуются как мощностью дозы излучения (уровнем радиации) на неопределенное время после аварии, так и дозой, получаемой за определенное время.

По степени опасности зараженную местность на следе выброса и распространения радиоактивных веществ принято делить на следующие 5 зон:

Зона M (радиационной опасности) – 14 мрад/ч;

Зона А (умеренного заражения) – 140 мрад/ч;

Зона Б (сильного заражения) – 1,4 рад/ч;

Зона В (опасного заражения) – 4,2 рад/ч; зона Г (чрезвычайно опасного заражения) – 14 рад/ч.

5.4. Мероприятия по предотвращению радиационных аварий, снижению потерь и ущерба

Основными мерами по предотвращению радиационных аварий и снижению ущерба от них являются:

Рациональное размещение РОО с учетом возможных последствий аварий;

Создание автоматизированной системы контроля радиационной обстановки (АСКРО);

Создание локальной системы оповещения персонала населения в 30-километровой зоне;

Первоочередное строительство и приведение в готовность защитных сооружений в радиусе 30 км вокруг АЭС, а также использование подвальных, встроенных и других легко герметизируемых помещений;

Определение количества населенных пунктов и населения, подлежащих защите на месте эвакуации;

Создание запасов медикаментов, средств индивидуальной защиты и других средств, необходимых для защиты населения и его жизнеобеспечения;

Разработка оптимальных режимов поведения населения и подготовка его к действиям во время аварии;

Создание на АЭС специальных формирований для ликвидации последствий возможных аварий;

Прогнозирование радиационной разведки;

Периодическое проведение учений по ГО на АЭС и прилегающей территории.

5.5. Защита населения от ионизирующих излучений

Основные меры радиационной защиты, обеспечивающие снижение дозы облучения населения загрязненной территории и вводимые в зависимости от ее величины, включают:

Нормирование облучения;

Добровольное отселение жителей с загрязненных территорий;

Ограничение проживания и функционирования населения на отдельных участках загрязненной территории;

Регулирование возвращения жителей на загрязненные территории;

Дезактивацию отдельных участков загрязненной территории, строений и других объектов;

Систему мер в цикле сельскохозяйственных технологий и производств по снижению содержания радионуклидов в местной растительной и животной пищевой продукции, включая рекомендации для жителей по ведению личных приусадебных хозяйств;

Радиационный контроль и бракераж сельскохозяйственной, рыбной, лесной продукции, а также поставки радиационно чистых продуктов питания и фуража;

Радиационный контроль и бракераж производимых на загрязненных территориях товаров;

Обеспечение безопасных условий труда на загрязненных радионуклидами территориях;

Уменьшение доз медицинского облучения на основе принципа оптимизации, а также снижение уровней природного облучения, в частности, за счет ограничения поступления радона в жилые и производственные помещения.

В случаях завершившегося аварийного облучения населения дальнейшее ограничение накопленной дозы может осуществляться, как правило, только за счет уменьшения содержания радона в помещениях и оптимизации профилактических и диагностических рентгенорадиологических исследований.

Осуществление мер радиационной защиты населения в послеаварийной ситуации может приводить к нежелательному вмешательству в его нормальную жизнь. Защита населения осуществляется с помощью мероприятий (переселение, дезактивация, ограничения в питании, поведении и хозяйственной деятельности и др.), которые могут сопровождаться негативными психологическими эффектами, нарушениями здоровья, экологическим ущербом и значительными материальными затратами. Поэтому при введении этих мер защиты и планировании их объема должны учитываться негативные последствия вмешательства.

Схема организации защиты населения от ионизирующих излучений приведена на рис. 3.

Рис. 3. Схема организации защиты населения от ионизирующего излучения

5.6. Радиационные происшествия в России

Радиационно-опасными объектами в РФ являются 29 энергоблоков на 9 АЭС и 18 энергоблоков строящихся станций, 113 исследовательских ядерных установок, 9 атомных судов с объектами их обеспечения, 13 промышленных предприятий ядерно-топливного цикла (ПЯТЦ), около 13 тыс. других предприятий, осуществляющих деятельность с использованием радиоактивных веществ. Среди аварий, возникающих на промышленных объектах, по объему разрушений и человеческим жертвам исключительно опасны аварии на атомных станциях, где выход из строя энергетических установок (реакторов) с ядерным топливом может привести не только к разрушению больших площадей, но и к образованию ударной волны. Доля атомной электроэнергетики в общем балансе РФ составляет 16,7%. Источником радиационной опасности на атомных станциях являются реакторы энергоблоков, бассейны выдержки ядерного топлива, хранилища жидких и сухих отходов. В потенциально опасных зонах, прилегающих к действующим АЭС, проживает более 4 млн человек. К настоящему времени в мире зафиксировано более 150 аварий на атомных электростанциях (АЭС) с утечкой радиоактивности.

Кроме того, на дне Мирового океана находится шесть затонувших атомных подлодок, девять атомных реакторов, 50 ядерных боеприпасов и одна водородная бомба ВМФ США.

В российской энергетике одной из главных экологических проблем является утилизация радиоактивных отходов (РАО). За 50 лет использования атомной энергии не выработано безопасной системы захоронения и обезвреживания РАО. Все эти годы основным способом избавления от накапливающихся объемов РАО был сброс в моря, океаны, открытые наземные и речные сбросы. Радиоактивные отходы складируются на списанные суда ВМФ, и когда они наполняются, их буксируют в океан и топят. При этом не соблюдаются международные нормы ни по содержимому контейнеров, ни по глубине затопления. Так, недалеко от архипелага Новая Земля обнаружены контейнеры с уровнем радиации 160 Р/ч, затопленные на глубине от 18 до 270 м (вместо положенного минимума 4000 м).

В 1992 году аппарат Президента РФ рассекретил данные о загрязнении северных и дальневосточных морей: за 1959–1992 годы наша страна сбросила в северные моря жидкие радиоактивные отходы суммарной активностью около 20 тыс. кюри и твердые РАО активностью около 2,3 млн кюри; в моря Дальнего Востока – отходы активностью соответственно 12,3 и 6,2 тыс. кюри.

Одной из острых экологических проблем России остается проблема утилизации атомного подводного флота и обращения с РАО и отработанным ядерным топливом на объектах ВМФ. По данным официального доклада Минприроды РФ, с 1996 года из эксплуатации выведена 121 атомная подводная лодка. После запрещения в 1993 году сброса в моря и океаны отходов ядерного топлива (ОЯТ) береговые и плавучие хранилища полностью загружены, часть РАО и ОЯТ складируются на открытых площадках. По экспертным оценкам, очистка ядерных военных комплексов и восстановление нарушенных экосистем потребует не менее 50–60 лет с общими минимальными затратами 300–400 млрд долл. Отходы ядерного топлива накапливаются во время реакции в тепловыделяющих элементах (ТВЭл). Процесс деления в ТВЭл длится несколько лет, поскольку загрузка реакторов ядерным топливом осуществляется, как правило, через три года. За этот период короткоживущие изотопы распадаются, одновременно идет накопление радионуклидов с большим периодом полураспада.

При этом ОЯТ – не просто отходы, а ценнейший материал для переработки. Например, в природном уране содержится 0,7% урана-235, а в ОЯТ – до 1,5%. Переработанные ОЯТ можно использовать как для изготовления свежего ядерного топлива (уран, плутоний), так ив различных отраслях промышленности и медицине. Уран и плутоний, извлеченные из 100 г ОЯТ, по энергетической ценности равны примерно 2 т нефти или 4–8 т угля.

Наша страна до сих пор переживает экологические последствия множества радиационных воздействий:

714 ядерных взрывов при испытании ядерного оружия (из них 467 – в Казахстане, 132 – на северном полигоне Новая Земля);

183 испытания в атмосфере, отразившиеся на экосистеме Крайнего Севера и Алтая (продолжительность жизни населения региона – 42 года);

115 подземных взрывов в различных регионах страны (для создания хранилищ природного газа, с целью глубинного сейсмического зондирования земной коры и т. д.).

При аварии на Чернобыльской АЭС 26 апреля 1986 года выброс радиоактивных отходов составил 63 кг, или 3,5% радионуклидов реактора. Для сравнения: мощность атомной бомбы, сброшенной на Хиросиму, составляла 20 кт с образованием 740 г радиоактивных отходов. Следовательно, авария на ЧАЭС эквивалентна 85 атомным бомбам мощностью по 20 кт. В ходе ликвидации последствий этой аварии была проведена дезактивация 600 населенных пунктов, эвакуировано 115 тыс. человек, йодной профилактикой охвачено 5,4 млн человек, 650 тыс. ликвидаторов получили различные дозы облучения.

В целом радиоактивному заражению подверглись 19 субъектов РФ с населением более 30 млн человек, а также территории 10 государств Европы.

Контрольные вопросы и задания

1. Какие виды ионизирующих излучений вы знаете?

2. Расскажите о механизме воздействия радиации на человека.

3. Какие объекты относятся к радиационно опасным?

4. Дайте характеристику зон объектов (АЭС) по степени опасности для здоровья в случае радиационной аварии.

5. Назовите единицы измерения радиоактивности.

6. Какие дозы облучения являются предельно допустимыми?

7. Охарактеризуйте радиационную безопасность в России.

PAGE \* MERGEFORMAT 1

Другие похожие работы, которые могут вас заинтересовать.вшм>

Все блага современной цивилизации стали возможными только благодаря появлению новых технологий. Освещение в квартире, горячая вода, холодильник и прочее оборудование значительно облегчает нашу жизнь. Но нередко, эти же технологии становятся причиной гибели человека. Пожары, взрывы, затопления — все это входит в определение чрезвычайная ситуация (ЧС) техногенного характера.

Общие сведения о техногенных авариях

Под чрезвычайной ситуацией техногенного характера понимается создание условий на технических или производственных объектах в результате которых возникает угроза жизни человека, разрушения его имущества и объектов экономики страны.

Любые аварии берут свое начало всегда с отклонения от норм протекания технологического процесса. Причина этого в большинстве случаев заключается в человеческом факторе. Применение некачественных материалов, халатность технического персонала, просчеты и ошибки — это неполный перечень предпосылок для возникновения ЧС.

После того, как накопилось достаточное количество дефектов появляются первые признаки будущей аварийной ситуации.

Если не заметить и не остановить текущее развитие событий на этом этапе, начинается активная фаза ЧС с распространением поражающих факторов. По своей физической природе они подразделяются на:

  • Механическое воздействие. Разрушение происходит в результате распространения значительного объема кинетической энергии на производственные объекты и сооружения.
  • При тепловом воздействии повреждение осуществляется за счет значительного повышения температур, как правило, приводящее к разному роду пожаров и взрывов.
  • Радиационное воздействие считается наиболее опасным в силу отсутствия видимых признаков разрушения. Ионизирующее излучение губительно для живых организмов. Оно становиться причиной образования лучевой болезни у человека, а также ответственно за генетическое изменение организма.
  • Химические факторы воздействия заключается в распространении отравляющих веществ, которые служат причиной образования ожогов и отравления у человека. Также отрицательно химикаты влияют на производительность сельскохозяйственной отрасли и качество ее продукции.

Далее следует фаза ликвидации чрезвычайной ситуации техногенного характера. Ответственность за это лежит на учреждениях и организациях, на территории которых непосредственно произошло ЧС. По мере увеличения количества поражающих факторов на помощь приходит органы местного самоуправления и другие представители исполнительной власти Российской федерации.

Классификация ЧС техногенного характера

По характеру происхождения техногенные катастрофы подразделяются на:

  1. Аварийные ситуации на очистных сооружениях. Под этим понимается массовый выброс загрязняющих веществ в очистные емкости в результате чего резко снижается качество проточной воды.
  2. Авария коммунальных систем. Это — разрушение различных участков канализации, трубопровода горячего и холодного водоснабжения, подвода питьевой воды.
  3. Нарушение работ электроэнергетических системы. С этим связаны аварии на электростанции с продолжительным периодом прекращения подачи электричества населению.
  4. Обрушение зданий. В силу тех или иных причин происходит обвал несущей конструкции сооружения, создавая тем самым опасность для жизни человека.
  5. Гидродинамические аварии. Обширное затопление и отложение наносов на территории расположения производственных объектов и домов населения. Причиной аварии может быть прорыв дамб и плотин. В некоторых случаях затопление сопровождается волной прорыва, также несущее в себе механический фактор разрушения.
  6. Выброс биологически и химически опасных веществ. Сюда относятся аварии техногенного характера на предприятиях и лабораториях, связанных с производством разного рода химикатов. Также в эту группу входят аварии во время транспортировки опасных веществ.
  7. Аварии с выбросом радиации. Это следствие нарушения работы атомных электростанций и ядерных промышленных установок. Также сюда входят аварии в следствии неправильного хранения ядерных боеприпасов.
  8. Взрывы и пожары. Под этим имеется ввиду разного рода взрывы и возгорания в жилых и промышленных помещениях, лесах и объектах по добыче полезных ископаемых, складах хранения горючих и взрывоопасных веществ.
  9. Транспортные аварии. Это всевозможные разновидности дорожно-транспортных происшествий и аварии, связанные с перевозкой каких-либо грузов.

Помимо природы возникновения чрезвычайные ситуации техногенного характера классифицируются по степени нанесения ущерба и католичеству потерь. Под потерей здесь подразумевается количество людей погибших или не способных выполнять свою обычную трудовую деятельность. Ущерб показывает тот финансовый урон, который был нанесен экономическому сектору.

Существуют следующие разновидности ЧС:

  • Локальные. Потери среди населения здесь не более 10 человек, нарушение условий жизни при этом менее 100 человек. ЧС в данном случае остается в границах одного объекта. Материальный ущерб входит в сумму 100 000 рублей.
  • Местные. Количество пострадавших находится в пределах 10-50 человек. Техногенная авария не выходит за границы населенного пункта с ущербом экономике не более 5 000 000 рублей.
  • Территориальные. Последствия аварии составляет в потерях среди населения от 50 до 500 человек и нарушением условий жизни до 5000 человек. Материальный урон уже равняется 50 000 000 рублей, а масштаб ЧС не выходит за рамки субъекта РФ: области, края и прочее.
  • Региональные. Количество пострадавших в этом случае равняется до 5 000 чел. Урон экономике 500 000 000 рублей. Область распространения ЧС покрывает 2 субъекта федерации.
  • Федеральные. Имеют наибольший масштаб последствий в результате аварий техногенного характера с количеством пострадавших более 10 000 человек и нанесенным материальным ущербом свыше 500 000 000 рублей.

Меры предотвращения техногенных аварий

Все прекрасно понимают, что профилактика куда выгоднее нежели устранение последствий от техногенной катастрофы. По этой причине разработаны правила и нормы для пресечения возникновения предпосылок к развитию аварийных ситуаций. К подобным мерам прежде всего относятся.