Теория игр в экономике примеры. Математическая теория игр. Примеры записи и решения игр из жизни

Для человека, не являющегося экспертом в политике, Брюс Буэно де Мескита из Университета Нью-Йорка делает удивительно точные событий. Ему удалось с точностью до нескольких месяцев предсказать уход со своих постов и Переверза Мушарафа. Он точно назвал приемника Аятоллы Хомейни на посту лидера Ирана за 5 лет до его смерти. На вопрос о том, в чем секрет, он отвечает, что ответа не знает - его знает игра. Под игрой здесь имеется в виду математический метод, который изначально был создан для формирования и анализа стратегий различных игр, а именно - теория игр. В экономике она используется наиболее часто. Хотя изначально она была разроботана для построения и анализа стратегий в играх, использующихся для развлечений.

Теория игры - это численный аппарат, позволяющий рассчитать сценарий, или, точнее, вероятность различных сценариев поведения системы или "игры", контролируемой различными факторами. Эти факторы, в свою очередь, определяются некоторым числом "игроков".

Таким образом, теория игр, в экономике получившая главный толчок к развитию, может применятся в самых разных областях человеческой деятельности. Пока рано говорить о том, чтобы эти программы применялись для разрешения военных конфлмктов, но в будущем это вполне реально.

Муниципальное образовательное учреждение
средняя общеобразовательная школа №___

городского округа - город Волжский Волгоградской области

Городская конференция творческих и исследовательских работ обучающихся

«С математикой по жизни»

Научное направление – математика

«Теория игр и её практическое применение»

обучающаяся 9б класса

МОУ СОШ №2

Научный руководитель:

учитель математики Григорьева Н.Д.



Введение

Актуальность выбранной темы предопределена широтой сфер ее применения. Теория игр играет центральную роль в теории отраслевой организации, теории контрактов, теории корпоративных финансов и многих других областях. Область применения теории игр включает не только экономические дисциплины, но и биологию, политологию, военное дело и др.

Целью данного проекта является разработка исследования существующих типов игр, а также возможность их практического применения в различных отраслях.

Цель проекта предопределила его задачи:

Ознакомиться с историей зарождения теории игр;

Определить понятие и сущность теории игр;

Дать характеристику основным типам игр;

Рассмотреть возможные сферы применения данной теории на практике.

Объектом проекта выступила теория игр.

Предмет исследования – сущность и применение теории игр на практике.

Теоретической основой написания работы явилась экономическая литература таких авторов, как Дж. фон Нейман, Оуэн Г., Васин А.А., Морозов В.В., Замков О.О., Толстопятенко А.В., Черемных Ю.Н.

1. Введение в теорию игр

1.1 История

Игра, как особая форма отображения деятельности, возникла необычайно давно. Археологические раскопки обнаруживают предметы, служившие для игры. Наскальные рисунки показывают нам первые признаки межплеменных тактических игр. Со временем, игра совершенствовалась, и достигла привычной формы конфликта нескольких сторон. Родственные связи игры с практической деятельностью становились менее заметными, игра превращалась в особую деятельность общества.

Если история шахмат или карточных игр насчитывает несколько тысячелетий, то первые наброски теории появились, лишь три столетия назад в работах Бернулли. Сначала работы Пуанкаре и Бореля частично давали нам сведения о природе теории игр, и лишь фундаментальный труд Дж. фон Неймана и О. Моргенштерна представил нам всю целостность и многогранность данного раздела науки.

Принято считать монографию Дж. Неймана и О. Моргенштерна “Теория игр и экономическое поведение”, моментом рождения теории игр. После её публикации в 1944 г., многие ученые предсказали революцию в экономических науках благодаря использованию нового подхода. Эта теория описывала рациональное поведение принятия решений во взаимосвязанных ситуациях, помогая решать многие актуальные проблемы в разных научных областях. Монография подчеркивала, что стратегическое поведение, конкуренция, кооперация, риск и неопределенность, являются главными элементами в теории игр и непосредственно связаны с задачами управления.

Начальные работы по теории игр отличались простотой предположений, что делало их менее пригодными для практического использования. За последние 10 – 15 лет положение резко изменилось. Прогресс в промышленности показал плодотворность методов игр в прикладной деятельности.

В последнее время эти методы проникли и в практику управления. Следует отметить, что уже в конце 20 века М. Портер ввел в обиход некоторые понятия теории, такие, как “стратегический ход” и “игрок”, которые впоследствии стали одними из ключевых.

В настоящее время значение теории игр значительно возросло во многих областях экономических и социальных наук. В экономике она применима не только для решения разных задач общехозяйственного значения, но и для анализа стратегических проблем предприятий, разработок структур управления и систем стимулирования.

В 1958-1959 гг. к 1965-1966 гг. была создана советская школа в теории игр, для которой была характерно скопление усилий в области антагонистических игр и строго военных приложений. Изначально это стало причиной отставания от американской школы, так как в то время основные открытия в антагонистических играх уже были сделаны. В СССР математиков до середины 1970-х гг. не допускали в область управления и экономики. И даже тогда, когда советская экономическая система начала рушиться, экономика не стала главным направлением для теоретико-игровых исследований. Профильный институт, занимавшийся и сейчас занимающийся теорией игр - Институт системного анализа РАН.

1.2 Определение теории игр

Теорией игр называют математический метод изучения оптимальных стратегий в играх. Под игрой понимается процесс, в котором участвуют две и более сторон, ведущих борьбу за осуществление своих интересов. Каждая из сторон имеет свою цель и использует некоторую стратегию, которая может вести к выигрышу или проигрышу - в зависимости от своего поведения и поведения других игроков. Теория игр помогает выбрать наиболее выгодные стратегии с учётом соображений о других участниках, их ресурсах и их предполагаемых действиях.

Эта теория представляет собой раздел математики, изучающий конфликтные ситуации.

Как поделить пирог, чтобы все члены семьи признали это справедливым? Как разрешить спор о зарплате между спортивным клубом и профсоюзом игроков? Как предотвратить ценовые войны при проведении аукционов? Это всего лишь три примера задач, которыми занимается одно из главных направлений экономической науки - теория игр

Данный раздел науки анализирует конфликты, используя математические методы. Теория получила своё название, так как простейшим примером конфликта является игра (например, шахматы или крестики-нолики). Как в игре, так и в конфликте каждый игрок имеет свои цели и пытается их достигнуть, принимая разные стратегические решения.

1.3 Виды конфликтных ситуаций

Одна из характерных черт всякого общественного, социально - экономического явления состоит в количестве и разнообразии интересов, а также наличии сторон, которые способны выразить эти интересы. Классическими примерами здесь являются ситуации, где, с одной стороны, имеется один покупатель, с другой - продавец, когда на рынок выходят несколько производителей, обладающих достаточной силой для воздействия на цену товара. Более сложные ситуации возникают, когда имеются объединения или группы лиц, участвующих в столкновении интересов, например, в том случае, когда ставки заработной платы определяются союзами или объ­единениями рабочих и предпринимателей, при анализе результатов голосования в парламенте и т.п.

Конфликт может возникнуть также из различия целей, которые отражают интересы различных сторон, но и многосторонние интересы одного и того же лица. Например, раз­работчик экономической политики обычно преследует разные цели, согласуя противоречивые требования, предъявляемые к ситуации (рост объемов производства, повышение доходов, сниже­ние экологической нагрузки и т.п.). Конфликт может проявляться не только в результате сознательных действий различных участни­ков, но и как результат действия тех или иных "стихийных сил" (случай так называемых "игр с природой")

Игра – математическая модель описания конфликта.

Игры представляют собой строго определённые математические объекты. Игра образуется игроками, набором стратегий для каждого игрока и указания выигрышей, или платежей, игроков для каждой комбинации стратегий.

И наконец, примерами игр являются обычные игры: салонные, спортивные, карточные и др. Математическая теория игр начиналась именно с анализа подобных игр; они и по сей день служат прекрасным материалом для изображения утверждений и выводов этой теории. Эти игры актуальны и на сегодняшний день.

Итак, каждая математическая модель социально-экономического явления, должна иметь при­сущие ему черты конфликта, т.е. описывать:

а) множество заинтересованных сторон. В случае, если число игроков ограниченно (конечно), они различаются по своим номерам или по присваиваемым им именам;

б) возможные действия каждой из сторон, именуемые также стратегиями или ходами;

в) интересы сторон, представленные функциями выигрыша (платежа) для каждого из игроков.

В теории игр предполагается, что функции выигрыша и множес­тво стратегий, доступных каждому из игроков, общеизвестны, т.е. каждый игрок знает свою функцию выигрыша и набор имеющихся в его распоряжении стратегий, а также функции выиграша и стра­тегии всех остальных игроков, и в соответствии с этой информа­цией формирует свое поведение.

2 Виды игр

2.1 Дилемма заключенного

Одним из самых известных и классических примеров теории игр, который способствовал её популяризации, - дилемма заключенного. В теории игрдилемма заключённого (реже употребляется название «дилемма бандита ») - некооперативная игра, в которой игроки стремятся получить выгоду, при этом они либо сотрудничают, либо предают друг друга. Как во всей теории игр , предполагается, что игрок максимизирует, т.е увеличивает свой собственный выигрыш, не заботясь о выгоде других.

Рассмотрим такую ситуацию. Двое подозреваемых находятся под следствием. У следствия недостаточно улик, поэтому разделив подозреваемых, каждому из них предложили сделку. Если один из них будет по-прежнему молчать, а другой свидетельствовать против него, то первый получит 10 лет, а второго отпустят за содействие следствию. Если они оба будут молчать, то получат по 6 месяцев. Наконец, если они оба заложат друг друга, то они получат по 2 года. Вопрос: какой выбор они сделают?

Таблица 1 – Матрица выигрышей в игре «Дилемма заключенного»

Предположим, что эти двое - рациональные люди, которые хотят минимизировать свои потери. Тогда первый может рассуждать так: если второй меня заложит, то мне лучше тоже его заложить: так мы получим по 2 года, а иначе я получу 10 лет. Но если второй меня не будет закладывать, то мне всё равно лучше его заложить - тогда меня отпустят сразу. Поэтому не зависимо от того, что будет делать другой, мне выгоднее его заложить. Второй также понимает, что в любом случае ему лучше заложить первого. В результате оба из них получают по два года. Хотя если бы они не свидетельствовали друг против друга, то получили бы только по 6 месяцев.

В дилемме заключённого предательство строго доминирует над сотрудничеством, поэтому единственное возможное равновесие - предательство обоих участников. Проще говоря, неважно, что сделает другой игрок, каждый выиграет больше, если предаст. Поскольку в любой ситуации предать выгоднее, чем сотрудничать, все рациональные игроки выберут предательство.

Ведя себя по отдельности рационально, вместе участники приходят к нерациональному решению. В этом и заключается дилемма.

Конфликты, подобные этой дилемме, часто встречаются в жизни, например, в экономике (определение бюджета на рекламу), политике (гонка вооружений), спорте (использование стероидов). Поэтому дилемма заключенного и грустное предсказание теории игр получили широкую известность, а работа в области теории игр - единственная возможность для математика получить Нобелевскую премию.

2.2 Классификация игр

Классификацию различных игр проводят, основываясь на некотором принципе: по числу игроков, по числу стратегий, по свойствам функций выигрыша, по возможности предварительных переговоров и взаимодействия между игроками в ходе игры.

Различают игры с двумя, тремя и более участниками - в зависимости от количества игроков. В принципе возможны также игры с бесконечным числом игроков.

Согласно другому принципу классификации различают игры по количеству стра­тегий - конечные и бесконечные. В конечных играх участники имеют конечное число возможных стратегий (на­пример, в игре в орлянку игроки имеют по два возможных хода - они могут выбрать "орел" или "решку"). Сами стратегии в конеч­ных играх зачастую называются чистыми стратегиями. Соответственно, в бесконечных играх игроки имеют бесконечное число возможных стратегий - так, в ситуации Продавец-Покупатель каждый из игроков может назвать любую устраивающую его цену и количество продаваемого (поку­паемого) товара.

Третьим по счету является способ классификации игр - по свойствам функций выигрыша (платежных функций). Важным случаем в теории игр явля­ется ситуация, когда выигрыш одного из игроков равен проигрышу другого, т.е. налицо виден прямой конфликт между игроками. Такие игры называют играми с нулевой суммой, или антагонистическими играми. Игры в орлянку или в очко - типичные примеры антаго­нистических игр. Прямой противоположностью играм такого типа являются игры с постоянной разностью, а которых игроки и выиг­рывают, и проигрывают одновременно, так что им выгодно дей­ствовать сообща. Между этими крайними случаями имеется мно­жество игр с ненулевой суммой, где имеются и конфликты, и согла­сованные действия игроков.

В зависимости от возможности предварительных переговоров между игроками различают кооперативные и некооперативные игры. Кооперативной – называется игра, в которой до её начала игроки образуют коалиции и принимают взаимообязывающие соглашения о своих стратегиях. Некооперативной – называется такая игра, в которой игроки не могут координировать свои стратегии подобным образом. Очевид­но, что все антагонистические игры могут служить примером некооперативных игр. Примером кооперативной игры может служить ситуация образования коалиций в парламенте для принятия путем голосования решения, так или иначе затрагивающего интересы учас­тников голосования.

2.3 Типы игр

Симметричные и несимметричные

А Б
А 1, 2 0, 0
Б 0, 0 1, 2
Несимметричная игра

Игра будет симметричной тогда, когда соответствующие стратегии у игроков будут иметь одинаковые платежи, то есть будут равны. Т.е. если выигрыши за одни и те же ходы не изменятся, при том, что игроки поменяются местами. Многие изучаемые игры для двух игроков - симметричные. В частности, таковыми являются: «Дилемма заключённого», «Охота на оленя», «Ястребы и голуби». В качестве несимметричных игр можно привести «Ультиматум» или «Диктатор».

В примере справа игра, на первый взгляд может показаться симметричной из-за похожих стратегий, но это не так - ведь выигрыш второго игрока при любой из стратегий (1, 1) и (2, 2) будет больше, чем у первого.

С нулевой суммой и с ненулевой суммой

Игры с нулевой суммой - особый вид игр с постоянной суммой, то есть таких, где игроки не могут увеличить или уменьшить имеющиеся ресурсы, или фонд игры. В этом случае сумма всех выигрышей равна сумме всех проигрышей при любом ходе. Посмотрите направо - числа означают платежи игрокам - и их сумма в каждой клетке равна нулю. Примерами таких игр может служить покер, где один выигрывает все ставки других; реверси, где захватываются фишки противника; либо банальное воровство.

Многие изучаемые математиками игры, в том числе уже упоминавшаяся «Дилемма заключённого», иного рода: в играх с ненулевой суммой выигрыш какого-то игрока не обязательно означает проигрыш другого, и наоборот. Исход такой игры может быть меньше или больше нуля. Такие игры могут быть преобразованы к нулевой сумме - это делается введением фиктивного игрока, который «присваивает себе» избыток или восполняет недостаток средств.

Также игрой с отличной от нуля суммой является торговля, где каждый участник извлекает выгоду. К этому виду относятся такие игры, как шашки и шахматы; в двух последних игрок может превратить свою рядовую фигуру в более сильную, получив преимущество. Во всех этих случаях сумма игры увеличивается.

Кооперативные и некооперативные

Игра называется кооперативной, или коалиционной, если игроки могут объединяться в группы, беря на себя некоторые обязательства перед другими игроками и координируя свои действия. Этим она отличается от некооперативных игр, в которых каждый обязан играть за себя. Развлекательные игры редко являются кооперативными, однако такие механизмы нередки в повседневной жизни.

Часто предполагают, что кооперативные игры отличаются именно возможностью общения игроков друг с другом. Но это не всегда верно, так как существуют игры, где коммуникация разрешена, но участники преследуют личные цели, и наоборот.

Из двух типов игр, некооперативные описывают ситуации в мельчайших деталях и выдают более точные результаты. Кооперативные рассматривают процесс игры в целом.

Гибридные игры включают в себя элементы кооперативных и некооперативных игр.

Например, игроки могут образовывать группы, но игра будет вестись в некооперативном стиле. Это значит, что каждый игрок будет преследовать интересы своей группы, вместе с тем стараясь достичь личной выгоды.

Параллельные и последовательные

В параллельных играх игроки ходят одновременно, или они не информированы о выборе других до тех пор, пока все не сделают свой ход. В последовательных, или динамических, играх участники могут делать ходы в заранее установленном либо случайном порядке, но при этом они получают некоторую информацию о предыдущих действиях других. Эта информация может быть даже не совсем полной, например, игрок может узнать, что его противник из десяти своих стратегий точно не выбрал пятую, ничего не узнав о других.

С полной или неполной информацией

Важное подмножество последовательных игр составляют игры с полной информацией. В такой игре участники знают все ходы, сделанные до текущего момента, равно как и возможные стратегии противников, что позволяет им в некоторой степени предсказать последующее развитие игры. Полная информация недоступна в параллельных играх, так как в них неизвестны текущие ходы противников. Большинство изучаемых в математике игр - с неполной информацией. Например, вся суть «Дилеммы заключённого» заключается в ее неполноте.

В то же время есть интересные примеры игр с полной информацией: шахматы, шашки и другие.

Зачастую понятие полной информации путают со сходным понятием - совершенной информации. Для последнего достаточно лишь знание всех доступных противникам стратегий, знание всех их ходов необязательно.

Игры с бесконечным числом шагов

Игры в реальном мире или изучаемые в экономике игры, как правило, длятся конечное число ходов. Математика не так ограничена, и в частности, в теории множеств рассматриваются игры, способные продолжаться бесконечно долго. Причём победитель и его выигрыш не определены до окончания всех ходов…

Здесь вопрос обычно состоит в том, чтобы найти не оптимальное решение, а хотя бы выигрышную стратегию. (Используя аксиому выбора можно доказать, что иногда даже для игр с полной информацией и двумя исходами - «выиграл» или «проиграл» - ни один из игроков не имеет такой стратегии.)

Дискретные и непрерывные игры

В большинстве изучаемых игр число игроков, ходов, исходов и событий конечно, т.е. они - дискретны. Однако эти составляющие могут быть расширены на множество вещественных (материальных) чисел. Игры, включающие такие элементы, часто называются дифференциальными. Они всегда связаны с какой-то вещественной шкалой (обычно - шкалой времени), хотя происходящие в них события могут быть дискретными по природе. Дифференциальные игры находят своё применение в технике и технологиях, физике .

3. Применение теории игр

Теория игр - это раздел прикладной математики. Чаще всего методы теории игр находят применение в экономике, чуть реже в других общественных науках - социологии, политологии, психологии, этике и других. Начиная с 1970-х годов её взяли на вооружение биологи для исследования поведения животных и теории эволюции. Очень важное значение этот раздел математики имеет для искусственного интеллекта и кибернетики, особенно с проявлением интереса к интеллектуальным агентам.

Нейман и Моргенштерн на­писали оригинальную книгу, которая содержала главным образом экономические примеры, поскольку экономическому конфликту легче всего придать численную форму. Во время второй мировой войны и сразу после неё теорией игр серьезно заинтересовались военные, которые увидели в ней аппарат для исследования страте­гических решений. Далее главное внимание снова стало уделяться экономическим проблемам. В наше время ведется большая работа, направ­ленная на расширение сферы применения теории игр.

Двумя основными областями применения являются военное дело и экономика. Теоретико-игровые разработки применяются при проектировании автоматических систем управления для ракетного/противоракетного оружия, выборе форм аукционов по продаже радиочастот, прикладном моделировании закономерностей денежного обращения в интересах центральных банков, и т.п. Международные отношения и стратегическая безопасность обязаны теории игр (и теории принятия решений) в первую очередь концепцией гарантированного взаимного уничтожения. Это заслуга плеяды блестящих умов (в том числе связанных с RAND Corporation в Санта Монике, Калиф.), дух которой до высших руководящих постов дошел в лице Роберта Макнамары. Следует, правда, признать, что сам Макнамара теорией игр не злоупотреблял.

3.1 В военном деле

Информация – один из наиболее значимых в настоящее время ресурсов. И сейчас все

также справедливо высказывание «Кто владеет информацией, тот владеет миром». Более того, на первый план выходит необходимость эффективно использовать имеющуюся информацию. Теория игр в купе с теорией оптимального управления позволяют принимать правильные решения в разнообразных конфликтных и неконфликтных ситуациях.

Теория игр – математическая дисциплина, касающаяся конфликтных задач. Военное

дело, как ярко выраженное существо конфликта, стало одним из первых полигонов применения на практике разработок теории игр.

Изучение задач военных сражений с помощью теории игр (в том числе дифференциальных) – это большой и трудный предмет. Применение теории игр к задачам военного дела означает, что для всех участников могут быть найдены эффективные решения – оптимальные действия, позволяющие максимально решить поставленные задачи.

Попытки разбирать военные игры на настольных моделях делались много раз. Но эксперимент в военном деле (как и во всякой другой науке) есть средство, как для подтверждения теории, так и для нахождения новых путей для анализа.

Военный анализ есть вещь гораздо более неопределенная в смысле законов, предсказаний и логики, нежели физические науки. По этой причине моделирование с подробно и тщательно подобранными реалистическими деталями не может дать общего достоверного результата, если партия не будет повторена очень большое число раз. С точки зрения дифференциальных игр единственное, на что можно надеяться, – это на подтверждение заключений теории. Особенно важен случай, когда такие заключения выведены исходя из упрощенной модели (по необходимости это случается всегда).

В некоторых случаях дифференциальные игры в задачах военного дела играют совершенно явную и не требующую особых комментариев роль. Это верно, например, для

большинства моделей, включающих преследование, отступление и другое маневрирование подобного рода. Так, в случае управления автоматизированными сетями связи в условиях сложной радиоэлектронной обстановки были предприняты попытки использовать лишь стохастические многошаговые антагонистические игры. Целесообразным представляется использование дифференциальных игр, поскольку их применение позволяет во многих случаях с большой долей достоверности описать необходимые процессы и найти оптимальное решение задачи.

Довольно таки часто в конфликтных ситуациях противоборствующие стороны объединяются в союзы для достижения лучших результатов. Поэтому возникает необходимость изучения коалиционных дифференциальных игр. Кроме того, идеальных ситуаций, не имеющих каких-либо помех, в мире не существует. А значит, целесообразно исследовать коалиционные дифференциальные игры при неопределенности. Существуют различные подходы к построению решений дифференциальных игр .

Во время второй мировой войны научные разработки фон Неймана оказались бесценными для американской армии – военные начальники говорили, что для Пентагона ученый представляет такое же значение, как целая армейская дивизия. Вот пример использования Теории игр в военном деле. На американских торговых судах устанавливались зенитные установки. Однако за все время войны этими установками так и не был сбит ни один вражеский самолет. Возникает справедливый вопрос: стоит ли вообще оснащать суда, не предназначенные для ведения боевых действий, таким оружием. Группа ученых под руководством фон Неймана, изучив вопрос, пришла к выводу - само знание неприятелем о наличии таких орудий на торговых судах резко уменьшает вероятность и точность их обстрелов и бомбежек, а потому размещение «зениток» на этих судах, вполне доказало свою эффективность .

ЦРУ, Министерство обороны США и крупнейшие корпорации из списка Fortune 500 активно сотрудничают с футурологами. Разумеется, речь идёт о строго научной футурологии, то есть о математических вычислениях объективной вероятности будущих событий. Этим занимается теория игр - одна из новых областей математической науки, применимой практически ко всем областям человеческой жизни. Возможно, вычисления будущего, которые раньше велись в условиях строгой секретности для «элитных» клиентов, скоро выйдут на общедоступный коммерческий рынок. По крайней мере, об этом говорит то, что в одно время сразу два крупных американских журнала опубликовали материалы на данную тему, и оба напечатали интервью с профессором Нью-йоркского университета Брюсом Буэно де Мескита (BruceBuenodeMesquita). Профессору принадлежит консалтинговая фирма, которая занимается компьютерными вычислениями на основе теории игр. За двадцать лет сотрудничества с ЦРУ учёный точно вычислил несколько важных и неожиданных событий (например, приход Андропова к власти в СССР и захват Гонконга китайцами). В общей сложности он рассчитал более тысячи событий с точностью более 90%.Сейчас Брюс консультирует американские спецслужбы относительно политики в Иране. Например, его расчёты показывают, что США не имеет никаких шансов предотвратить запуск Ираном ядерного реактора для гражданских нужд .

3.2 В управлении

В качестве примеров применения теории игр в управлении можно назвать решения по поводу проведения принципиальной ценовой политики, вступления на новые рынки, кооперации и создания совместных предприятий, определения лидеров и исполнителей в области инноваций и т.д. Положения данной теории в принципе можно использовать для всех видов решений, если на их принятие влияют другие действующие лица. Этими лицами, или игроками, необязательно должны быть рыночные конкуренты; в их роли могут выступать субпоставщики, ведущие клиенты, сотрудники организаций, а также коллеги по работе.

Какую пользу могут извлечь компании из анализа на базе теории игр? Известен, например, случай столкновения интересов компаний IВМ и Telex. Компания Telex объявила о вступлении на рынок продаж, в связи с этим состоялось “кризисное” совещание руководства IВМ, на котором были проанализированы действия, направленные на то, чтобы заставить нового конкурента отказаться от намерения проникнуть на новый рынок. Об этих действиях, видимо, стало известно компании Telex. Но проведенный анализ на базе теории игр показал, что угрозы IВМ из-за высоких затрат безосновательны. Это доказывает, что компаниям полезно обдумывать возможные реакции партнеров по игре. Изолированные хозяйственные расчеты, даже опирающиеся на теорию принятия решений, часто носят, как в изложенной ситуации, ограниченный характер. Так, компания-аутсайдер могла бы и выбрать ход “невступление”, если бы предварительный анализ убедил ее в том, что проникновение на рынок вызовет агрессивную реакцию компании-монополиста. В этой ситуации разумно выбрать ход “невступление” при вероятности агрессивного ответа 0,5, в соответствии с критерием ожидаемой стоимости.

Важный вклад в использование теории игр вносят экспериментальные работы . Многие теоретические выкладки отрабатываются в лабораторных условиях, а полученные результаты служат важным элементом для практиков. Теоретически было выяснено, при каких условиях двум эгоистически настроенным партнерам выгодно сотрудничать и добиваться лучших для себя результатов.

Эти знания можно использовать в практике предприятий, чтобы помочь двум фирмам достичь ситуации “выигрыш/выигрыш”. Сегодня консультанты с подготовкой в области игр быстро и однозначно выявляют возможности, которыми предприятия могут воспользоваться для заключения стабильных и долгосрочных договоров с клиентами, субпоставщиками, партнерами по разработкам и т.п. .

3.3 Применение в прочих областях

В биологии

Очень важное направление - это попытки применить теорию игр в биологии и понять, как сама эволюция строит оптимальные стратегии. Здесь, в сущности, тот же метод, который помогает нам объяснить человеческое поведение. Ведь теория игр не говорит, что люди всегда действуют осознанно, стратегически, рационально. Скорее речь идет об эволюции определенных правил, которые дают более полезный результат, если их придерживаться. То есть люди зачастую не просчитывают свою стратегию, она постепенно формируется сама по мере накопления опыта. Эта идея воспринята теперь и в биологии.

В компьютерных технологиях

Еще больше востребованы исследования в сфере компьютерных технологий, например анализ аукционов, которые проводятся компьютерами в автоматическом режиме. Кроме того, теория игр сегодня позволяет еще раз задуматься над тем, как работают компьютеры, каким образом строится кооперация между ними. Скажем, серверы в сети можно рассматривать как игроков, которые пытаются скоординировать свои действия.

В играх (шахматы)

Шахматы - это предельный случай теории игр, поскольку все, что вы делаете, направлено исключительно на вашу победу и вам не нужно заботиться о том, как на это отреагирует партнер. Достаточно убедиться, что он не сможет отреагировать эффективно. То есть это игра с нулевой суммой. И конечно, в других играх культура может иметь определенное значение.

Примеры из другой области

Теория игр используется при поиске подходящей пары донора и реципиента почки. Один человек хочет отдать почку другому, но оказывается, что их группы крови несовместимы. И что следует сделать в этом случае? Прежде всего – расширить список доноров и реципиентов, а потом применить методы подбора, которые дает теория игр. Это очень похоже на брак по расчету. Вернее, на брак это совсем не похоже, но математическая модель этих ситуаций одинакова, применяются те же методы и расчеты. Сейчас на идеях таких теоретиков, как Дэвид Гейл, Ллойд Шапли и другие, выросла настоящая индустрия – практические применения теории в кооперативных играх.

3.4 Почему теорию игр не применяют еще шире

И в политике, и в экономике, и в военном деле специалисты-практики натолкнулись на принципиальные ограничения фундамента современной теории игр – Нэшевской рациональности.

Во-первых, человек не настолько совершенен, чтобы все время мыслить стратегически. Для преодоления этого ограничения теоретики начали исследовать эволюционные формулировки равновесия, для которых свойственны более слабые допущения по уровню рациональности.

В-вторых, исходные предпосылки теории игр по информированности игроков о структуре игры и платежах в реальной жизни соблюдаются не так часто, как хотелось бы. Теория игр весьма болезненно реагирует на малейшие (с точки зрения обывателя) изменения в правилах игры резкими сдвигами в предсказываемых равновесиях.

Как следствие этих проблем, современная теория игр находится в "плодотворном тупике". Лебедь, рак и щука предлагаемых решений тянут теорию игр в разные стороны. По каждому направлению пишутся десятки работ... однако "воз и ныне там".

Примеры задач

Определения, необходимые для решения задач

1. Ситуация называется конфликтной, если в ней участвуют стороны, интересы которых полностью или частично противоположны.

2. Игра - это действительный или формальный конфликт, в котором имеется по крайней мере два участника (игрока), каждый из которых стремиться к достижению собственных целей.

3. Допустимые действия каждого из игроков, направленные на достижение некоторой цели, называются правилами игры.

4. Количественная оценка результатов игры называется платежом.

5. Игра называется парной, если в ней участвуют только две стороны (два лица).

6. Парная игра называется игрой с нулевой суммой, если сумма платежей равна нулю, т.е. если проигрыш одного игрока равен выигрышу другого.

7. Однозначное описание выбора игрока в каждой из возможных ситуаций, при которой он должен сделать личный ход, называется стратегией игрока.

8. Стратегия игрока называется оптимальной, если при многократном повторении игры она обеспечивает игроку максимально возможный выигрыш (или, что то же самое, минимально возможный средний проигрыш).

Пусть имеются два игрока, один из которых может выбрать i-ю стратегию из m возможных стратегий (i=1,m), а второй, не зная выбора первого, выбирает j-ю стратегию из n возможных стратегий (j=1,n) В результате первый игрок выигрывает величину aij, а второй проигрывает эту величину.

Из чисел aij составим матрицу

Строки матрицы A соответствуют стратегиям первого игрока, а столбцы - стратегиям второго. Эти стратегии называются чистыми.

9. Матрица A называется платежной (или матрицей игры).

10. Игру, определяемую матрицей A, имеющей m строк и n столбцов, называют конечной игрой размерности m x n.

11. Число называется нижней ценой игры или максимином, а соответствующая ему стратегия (строка) - максиминной.

12. Число называется верхней ценой игры или минимаксом, а соответствующая ему стратегия (столбец) - минимаксной.

13. Если α=β=v, то число v называется ценой игры.

14. Игра, для которой α=β, называется игрой с седловой точкой.

Для игры с седловой точкой нахождение решения состоит в выборе максиминной и минимаксной стратегией, которые являются оптимальными.

Если игра, заданная матрицей, не имеет седловой точки, то для нахождения ее решения используют смешанные стратегии.
Задачи

1.Орлянка. Это игра с нулевой суммой. Принцип состоит в том, что, когда игроки выбирают одинаковые стратегии, то первый выигрывает один рубль, а когда разные – проигрывает один рубль.

Если рассчитывать стратегии по принципу maxmin и minmax, то можно увидеть, что нельзя высчитать оптимальную стратегию, в этой игре вероятности проигрыша и выигрыша равны.

2. Числа. Суть игры состоит, в том, что каждый из игроков загадывает целые числа от 1 до 4, причем выигрыш первого игрока равен разности загаданного им числа и числа, загаданного другим игроком.

имена Игрок В
Игрок А стратегии 1 2 3 4
1 0 -1 -2 -3
2 1 0 -1 -2
3 2 1 0 -1
4 3 2 1 0

Решаем задачу по теории maxmin и minmax, аналогично предыдущей задаче получается, что maxmin = 0, minmax = 0, появилась седловая точка, т.к. верхняя и нижняя цены равны. Стратегии обоих игроков равны 4.

3. Рассмотрим задачу эвакуации людей в пожарном случае.

Пожарная ситуация 1:Время возникновения пожара - 10 часов, лето.

Плотность людского потока D = 0,2 ч /м 2 , скорость движения потока v = 60

м /мин. Необходимое время эвакуации Tэв = 0,5 мин.

Пожарная ситуация 2:Время возникновения пожара 20 ч, лето. Плотность людского потока D = 0,83 ч /мин. скорость движения потока

v = 17 м /мин. Необходимое время эвакуации Tэв = 1,6 мин.

Возможны различные варианты эвакуации Li которые определяются

конструкционными и планировочными особенностями здания, наличием

незадымляемых лестничных клеток, этажностью здания и другими факторами.

В примере мы рассматриваем вариант эвакуации как маршрут, по которому должны пройти люди при эвакуации из здания. Пожарной ситуации 1 будет соответствовать такой вариант эвакуации L1, при котором эвакуация происходит по коридору в две лестничные клетки. Но возможен и худший вариант эвакуации – L2, при котором эвакуация

происходит в одну лестничную клетку и путь эвакуации максимальный.

Для ситуации 2, очевидно, подходят варианты эвакуации L1 и L2, хотя

L1 предпочтительней. Описание возможных пожарных ситуаций на объекте защиты и вариантов эвакуации оформляется в виде платежной матрицы, при этом:

N - возможные ситуации на пожаре:

L - варианты эвакуации;

а 11 – а nm результат эвакуации: "a" меняется от 0 (абсолютный проигрыш) - до 1 (максимальный выигрыш).

Например, при пожарных ситуациях:

N1- задымление общего коридора и охват его пламенем происходят

через 5 мин. после возникновения пожара;

N2 - задымление и охват пламенем коридора происходят через 7 мин;

N3 - задымление и охват коридора пламенем происходят через 10 мин.

Возможны следующие варианты эвакуации:

L1 - обеспечивающий эвакуацию за 6 мин;

L2 - обеспечивающий эвакуацию за 8 мин;

L3 - обеспечивающий эвакуацию за 12 мин.

а 11 = N1 / L1 = 5/ 6 = 0,83

а 12 = N1 / L2 = 5/ 8 = 0,62

а 13 = N1 / L3 = 5/ 12 = 0,42

а 21 = N2 / L1 = 7/ 6 = 1

а 22 = N2 / L2 = 7/ 8 = 0,87

а 23 = N2 / L3 = 7/ 12 = 0,58

а 31 = N3 / L1 = 10/ 6 = 1

а 32 = N3 / L2 = 10/ 8 = 1

а 33 = N3 / L3 = 10/ 12 = 0,83

Таблица. Платёжная матрица результатов эвакуации

L1 L2 L3
N1 0,83 0,6 0,42
N2 1 0,87 0,58
N3 1 1 0,83

Необходимое время эвакуации рассчитывать в процессе руководства

эвакуацией нет необходимости, его можно заложить в программу в готовом виде.

Данная матрица заносится в ЭВМ и по численному значению величины а ij подсистема автоматически подбирает оптимальный вариант эвакуации.

Заключение

В заключение следует особо подчеркнуть, что теория игр является очень сложной областью знания. При обращении с ней надо соблюдать известную осторожность и четко знать границы применения. Слишком простые толкования, принимаемые фирмой самостоятельно или с помощью консультантов, таят в себе скрытую опасность. Анализ и консультации на основе теории игр из-за их сложности рекомендуются лишь для особо важных проблемных областей. Опыт фирм показывает, что использование соответствующего инструментария предпочтительно при принятии однократных, принципиально важных плановых стратегических решений, в том числе при подготовке крупных кооперационных договоров. Однако применение теории игр облегчает нам понимание сущности происходящего, а многогранность данного раздела науки позволяет нам успешно использовать методы и свойства этой теории в различных областях нашей деятельности.

Теория игр прививает человеку дисциплину ума. От лица, принимающего решения, она требует систематической формулировки возможных альтернатив поведения, оценки их результатов, и самое главное - учета поведения других объектов. Человек, знакомый с теорией игр, реже считает других глупее себя, - и потому избегает многих непростительных ошибок. Однако теория игр не может, да и не рассчитана на то, чтобы придать решительности, настойчивости в достижении целей, невзирая на неопределенность и риск. Знание основ теории игр не дает нам явного выигрыша, но оберегает нас от свершения глупых и ненужных ошибок.

Теория игр всегда имеет дело с особым типом мышления, стратегическим.


Библиографический список

1. Дж. фон Нейман, О. Моргенштерн. «Теория игр и экономическое поведение», Наука, 1970.

2. Замков О.О., Толстопятенко А.В., Черемных Ю.Н. «Математические методы в экономике», Москва 1997, изд. «ДИС».

3. Оуэн Г. «Теория Игр». – М.: Мир, 1970.

4. Раскин М. А. «Введение в теорию игр» // Летняя школа «Современная математика». – Дубна: 2008.

5. http://ru.wikipedia.org/wiki

6. http://dic.academic.ru/dic.nsf/ruwiki/104891

7. http://ru.wikipedia.org/wiki

8. http://www.rae.ru/zk/arj/2007/12/Stepanenko.pdf

9. http://banzay-kz.livejournal.com/13890.html

10. http://propolis.com.ua/node/21

11. http://www.cfin.ru/management/game_theory.shtml

12. http://konflickt.ru/16/

13. http://www.krugosvet.ru/enc/nauka_i_tehnika/matematika/IGR_TEORIYA.html

14. http://matmodel.ru/article.php/20081126162627533

15. http://www.nsu.ru/ef/tsy/ec_cs/kokgames/prog3k.htm

Тео́рия игр - математический метод изучения оптимальных стратегий в играх. Под игрой понимается процесс, в котором участвуют две и более сторон, ведущих борьбу за реализацию своих интересов. Каждая из сторон имеет свою цель и использует некоторую стратегию, которая может вести к выигрышу или проигрышу - в зависимости от поведения других игроков. Теория игр помогает выбрать лучшие стратегии с учётом представлений о других участниках, их ресурсах и их возможных поступках.

Теория игр - это раздел прикладной математики, точнее - исследования операций. Чаще всего методы теории игр находят применение в экономике, чуть реже в других общественных науках - социологии, политологии, психологии, этике и других. Начиная с 1970-х годов её взяли на вооружение биологи для исследования поведения животных и теории эволюции . Очень важное значение она имеет для искусственного интеллекта и кибернетики, особенно с проявлением интереса к интеллектуальным агентам.

История.

Оптимальные решения или стратегии в математическом моделировании предлагались ещё в XVIII в. Задачи производства и ценообразования в условиях олигополии, которые стали позже хрестоматийными примерами теории игр, рассматривались в XIX в. А. Курно и Ж.Бертраном. В начале XX в. Э.Ласкер, Э.Цермело, Э.Борель выдвигают идею математической теории конфликта интересов.

Математическая теория игр берёт своё начало из неоклассической экономики . Впервые математические аспекты и приложения теории были изложены в классической книге 1944 года Джона фон Неймана и Оскара Моргенштерна «Теория игр и экономическое поведение»(англ. Theory of Games and Economic Behavior ).

Эта область математики нашла некоторое отражение в общественной культуре. В 1998 году американская писательница и журналистка Сильвия Назар издала книгу о судьбе Джона Нэша, нобелевского лауреата по экономике и учёного в области теории игр; а в 2001 по мотивам книги был снят фильм «Игры разума ». Некоторые американские телевизионные шоу, например, «Friend or Foe », «Alias» или «NUMB3RS», периодически ссылаются на теорию в своих эпизодах.

Дж. Нэш в 1949 году пишет диссертацию по теории игр, через 45 лет он получает Нобелевскую премию по экономике. Дж. Нэш после окончания Политехнического института Карнеги с двумя дипломами - бакалавра и магистра - поступил в Принстонский университет, где посещал лекции Джона фон Неймана. В своих трудах Дж. Нэш разработал принципы «управленческой динамики». Первые концепции теории игр анализировали антагонистические игры, когда есть проигравшие и выигравшие за их счет игроки. Нэш разрабатывает методы анализа, в которых все участники или выигрывают, или терпят поражение. Эти ситуации получили названия «равновесие по Нэшу», или «некооперативное равновесие», в ситуации стороны используют оптимальную стратегию, что и приводит к созданию устойчивого равновесия. Игрокам выгодно сохранять это равновесие, так как любое изменение ухудшит их положение. Эти работы Дж. Нэша сделали серьёзный вклад в развитие теории игр, были пересмотрены математические инструменты экономического моделирования. Дж. Нэш показывает, что классический подход к конкуренции А.Смита, когда каждый сам за себя, неоптимален. Более оптимальны стратегии, когда каждый старается сделать лучше для себя, делая лучше для других.

Хотя теория игр первоначально и рассматривала экономические модели, вплоть до 1950-х она оставалась формальной теорией в рамках математики. Но уже с 1950-х гг. начинаются попытки применить методы теории игр не только в экономике, но в биологии, кибернетике, технике, антропологии. Во время Второй мировой войны и сразу после нее теорией игр серьёзно заинтересовались военные, которые увидели в ней мощный аппарат для исследования стратегических решений.

В 1960-1970 гг. интерес к теории игр угасает, несмотря на значительные математические результаты, полученные к тому времени. С середины 1980-х гг. начинается активное практическое использование теории игр, особенно в экономике и менеджменте. За последние 20 - 30 лет значение теории игр и интерес значительно растет, некоторые направления современной экономической теории невозможно изложить без применения теории игр.

Большим вкладом в применение теории игр стала работа Томаса Шеллинга, нобелевского лауреата по экономике 2005 г. «Стратегия конфликта». Т.Шеллинг рассматривает различные «стратегии» поведения участников конфликта. Эти стратегии совпадают с тактиками управления конфликтами и принципами анализа конфликтов в конфликтологии (это психологическая дисциплина) и в управлении конфликтами в организации (теория менеджмента). В психологии и других науках используют слово «игра» в других смыслах, нежели чем в математике. Некоторые психологи и математики скептически относятся к использованию этого термина в других смыслах, сложившихся ранее. Культурологическое понятие игры было дано в работе Йохана Хёйзинга «Homo Ludens» (статьи по истории культуры), автор говорит об использовании игр в правосудии, культуре, этике.. говорит о том, что игра старше самого человека, так как животные тоже играют. Понятие игры встречается в концепции Эрика Бёрна «Игры, в которые играют люди, люди, которые играют в игры». Это сугубо психологические игры, основанные на трансакционном анализе. Понятие игры у Й.Хёзинга отличается от интерпретации игры в теории конфликтов и математической теории игр. Игры также используются для обучения в бизнес-кейсах, семинарах Г. П. Щедровицкого, основоположника организационно-деятельностного подхода. Во время Перестройки в СССР Г. П. Щедровицкий провел множество игр с советскими управленцами. По психологическому накалу ОДИ (организационно-деятельностные игры) были так сильны, что служили мощным катализатором изменений в СССР. Сейчас в России сложилось целое движение ОДИ. Критики отмечают искусственную уникальность ОДИ. Основой ОДИ стал Московский методологический кружок (ММК).

Математическая теория игр сейчас бурно развивается, рассматриваются динамические игры. Однако математический аппарат теории игр затратен. Его применяют для оправданных задач: политика, экономика монополий и распределения рыночной власти и т. п. Ряд известных ученых стали Нобелевскими лауреатами по экономике за вклад в развитие теории игр, которая описывает социально-экономические процессы. Дж. Нэш, благодаря своим исследованиям в теории игр, стал одним из ведущих специалистов в области ведения «холодной войны», что подтверждает масштабность задач, которыми занимается теория игр.

Нобелевскими лауреатами по экономике за достижения в области теории игр и экономической теории стали: Роберт Ауманн , Райнхард Зелтен, Джон Нэш, Джон Харсаньи, Уильям Викри, Джеймс Миррлис, Томас Шеллинг, Джордж Акерлоф, Майкл Спенс, Джозеф Стиглиц , Леонид Гурвиц, Эрик Мэскин, Роджер Майерсон, Ллойд Шепли, Элвин Рот.

Применение теории игр.

Теория игр, как один из подходов в прикладной математике, применяется для изучения поведения человека и животных в различных ситуациях. Первоначально теория игр начала развиваться в рамках экономической науки, позволив понять и объяснить поведение экономических агентов в различных ситуациях. Позднее область применения теории игр была расширена на другие социальные науки; в настоящее время теория игр используется для объяснения поведения людей в политологии, социологии и психологии. Теоретико-игровой анализ был впервые использован для описания поведения животных Рональдом Фишером в 30-х годах XX века (хотя даже Чарльз Дарвин использовал идеи теории игр без формального обоснования). В работе Рональда Фишера не появляется термин «теория игр». Тем не менее, работа по существу выполнена в русле теоретико-игрового анализа. Разработки, сделанные в экономике, были применены Джоном Майнардом Смитом в книге «Эволюция и теория игр». Теория игр используется не только для предсказания и объяснения поведения; были предприняты попытки использовать теорию игр для разработки теорий этичного или эталонного поведения. Экономисты и философы применяли теорию игр для лучшего понимания хорошего (достойного) поведения. Вообще говоря, первые теоретико-игровые аргументы, объясняющие правильное поведения, высказывались ещё Платоном.

Описание и моделирование.

Первоначально теория игр использовалась для описания и моделирования поведения человеческих популяций. Некоторые исследователи считают, что с помощью определения равновесия в соответствующих играх они могут предсказать поведение человеческих популяций в ситуации реальной конфронтации. Такой подход к теории игр в последнее время подвергается критике по нескольким причинам. Во-первых, предположения, используемые при моделировании, зачастую нарушаются в реальной жизни. Исследователи могут предполагать, что игроки выбирают поведения, максимизирующее их суммарную выгоду (модель экономического человека), однако на практике человеческое поведение часто не соответствует этой предпосылке. Существует множество объяснений этого феномена - нерациональность, моделирование обсуждения, и даже различные мотивы игроков (включая альтруизм). Авторы теоретико-игровых моделей возражают на это, говоря, что их предположения аналогичны подобным предположениям в физике. Поэтому даже если их предположения не всегда выполняются, теория игр может использовать как разумная идеальная модель, по аналогии с такими же моделями в физике. Однако, на теорию игр обрушился новый вал критики, когда в результате экспериментов было выявлено, что люди не следуют равновесным стратегиям на практике. Например, в играх «Сороконожка», «Диктатор» участники часто не используют профиль стратегий, составляющий равновесие по Нэшу. Продолжаются споры о значении подобных экспериментов. Согласно другой точке зрения, равновесие по Нэшу не является предсказанием ожидаемого поведения, но лишь объясняет, почему популяции, уже находящиеся в равновесии по Нэшу, остаются в этом состоянии. Однако вопрос о том, как эти популяции приходят к равновесию Нэша, остается открытым. Некоторые исследователи в поисках ответа на этот вопрос переключились на изучение эволюционной теории игр. Модели эволюционной теории игр предполагают ограниченную рациональность или нерациональность игроков. Несмотря на название, эволюционная теория игр занимается не только и не столько вопросами естественного отбора биологических видов. Этот раздел теории игр изучает модели биологической и культурной эволюции, а также модели процесса обучения.

Нормативный анализ (выявление наилучшего поведения).

С другой стороны, многие исследователи рассматривают теорию игр не как инструмент предсказания поведения, но как инструмент анализа ситуаций с целью выявления наилучшего поведения для рационального игрока. Поскольку равновесие Нэша включает стратегии, являющиеся наилучшим откликом на поведение другого игрока, использование концепции равновесия Нэша для выбора поведения выглядит вполне обоснованным. Однако, и такое использование теоретико-игровых моделей подверглось критике. Во-первых, в некоторых случаях игроку выгодно выбрать стратегию, не входящую в равновесие, если он ожидает, что другие игроки также не будут следовать равновесным стратегиям. Во-вторых, знаменитая игра «Дилемма заключенного » позволяет привести ещё один контрпример. В «Дилемме заключенного » следование личным интересам приводит к тому, что оба игрока оказываются в худшей ситуации в сравнении с той, в которой они пожертвовали бы личными интересами.

Типы игр

Кооперативные и некооперативные.

Игра называется кооперативной, или коалиционной , если игроки могут объединяться в группы, взяв на себя некоторые обязательства перед другими игроками и координируя свои действия. Этим она отличается от некооперативных игр, в которых каждый обязан играть за себя. Развлекательные игры редко являются кооперативными, однако такие механизмы нередки в повседневной жизни.

Часто предполагают, что кооперативные игры отличаются именно возможностью общения игроков друг с другом. В общем случае это неверно. Существуют игры, где коммуникация разрешена, но игроки преследуют личные цели, и наоборот.

Из двух типов игр, некооперативные описывают ситуации в мельчайших деталях и выдают более точные результаты. Кооперативные рассматривают процесс игры в целом. Попытки объединить два подхода дали немалые результаты. Так называемая программа Нэша уже нашла решения некоторых кооперативных игр как ситуации равновесия некооперативных игр.

Гибридные игры включают в себя элементы кооперативных и некооперативных игр. Например, игроки могут образовывать группы, но игра будет вестись в некооперативном стиле. Это значит, что каждый игрок будет преследовать интересы своей группы, вместе с тем стараясь достичь личной выгоды.

Симметричные и несимметричные.

Игра будет симметричной тогда, когда соответствующие стратегии у игроков будут равны, то есть иметь одинаковые платежи. Иначе говоря, если игроки могут поменяться местами и при этом их выигрыши за одни и те же ходы не изменятся. Многие изучаемые игры для двух игроков - симметричные. В частности, таковыми являются: «Дилемма заключённого», «Охота на оленя », «Ястребы и голуби». В качестве несимметричных игр можно привести «Ультиматум » или «Диктатор ».

В примере справа игра на первый взгляд может показаться симметричной из-за похожих стратегий, но это не так - ведь выигрыш второго игрока при профилях стратегий (А, А) и (Б, Б) будет больше, чем у первого.

С нулевой суммой и с ненулевой суммой.

Игры с нулевой суммой - особая разновидность игр с постоянной суммой , то есть таких, где игроки не могут увеличить или уменьшить имеющиеся ресурсы, или фонд игры. В этом случае сумма всех выигрышей равна сумме всех проигрышей при любом ходе. Посмотрите направо - числа означают платежи игрокам - и их сумма в каждой клетке равна нулю. Примерами таких игр может служить покер, где один выигрывает все ставки других; реверси, где захватываются фишки противника; либо банальное воровство .

Многие изучаемые математиками игры, в том числе уже упоминавшаяся «Дилемма заключённого», иного рода: в играх с ненулевой суммой выигрыш какого-то игрока не обязательно означает проигрыш другого, и наоборот. Исход такой игры может быть меньше или больше нуля. Такие игры могут быть преобразованы к нулевой сумме - это делается введением фиктивного игрока , который «присваивает себе» излишек или восполняет недостаток средств.

Ещё игрой с отличной от нуля суммой является торговля , где каждый участник извлекает выгоду. Широко известным примером, где она уменьшается, является война .

Параллельные и последовательные.

В параллельных играх игроки ходят одновременно, или, по крайней мере, они не осведомлены о выборе других до тех пор, пока все не сделают свой ход. В последовательных, или динамических , играх участники могут делать ходы в заранее установленном либо случайном порядке, но при этом они получают некоторую информацию о предшествующих действиях других. Эта информация может быть даже не совсем полной , например, игрок может узнать, что его противник из десяти своих стратегий точно не выбрал пятую, ничего не узнав о других.

Различия в представлении параллельных и последовательных игр рассматривались выше. Первые обычно представляют в нормальной форме, а вторые - в экстенсивной.

С полной или неполной информацией.

Важное подмножество последовательных игр составляют игры с полной информацией. В такой игре участники знают все ходы, сделанные до текущего момента, равно как и возможные стратегии противников, что позволяет им в некоторой степени предсказать последующее развитие игры. Полная информация не доступна в параллельных играх, так как в них неизвестны текущие ходы противников. Большинство изучаемых в математике игр - с неполной информацией. Например, вся «соль» Дилеммы заключённого или Сравнения монеток заключается в их неполноте.

В то же время есть интересные примеры игр с полной информацией: «Ультиматум», «Многоножка ». Сюда же относятся шахматы, шашки, го, манкала и другие.

Часто понятие полной информации путают с похожим - совершенной информации . Для последнего достаточно лишь знание всех доступных противникам стратегий, знание всех их ходов необязательно.

Игры с бесконечным числом шагов.

Игры в реальном мире или изучаемые в экономике игры, как правило, длятся конечное число ходов. Математика не так ограничена, и в частности, в теории множеств рассматриваются игры, способные продолжаться бесконечно долго. Причём победитель и его выигрыш не определены до окончания всех ходов.

Задача, которая обычно ставится в этом случае, состоит не в поиске оптимального решения, а в поиске хотя бы выигрышной стратегии . Используя аксиому выбора, можно доказать, что иногда даже для игр с полной информацией и двумя исходами - «выиграл» или «проиграл» - ни один из игроков не имеет такой стратегии. Существование выигрышных стратегий для некоторых особенным образом сконструированных игр имеет важную роль в дескриптивной теории множеств .

Дискретные и непрерывные игры.

Большинство изучаемых игр дискретны : в них конечное число игроков, ходов, событий, исходов и т. п. Однако эти составляющие могут быть расширены на множество вещественных чисел. Игры, включающие такие элементы, часто называются дифференциальными. Они связаны с какой-то вещественной шкалой (обычно - шкалой времени), хотя происходящие в них события могут быть дискретными по природе. Дифференциальные игры также рассматриваются в теории оптимизации, находят своё применение в технике и технологиях, физике.

Метаигры.

Это игры, результатом которых является набор правил для другой игры (называемой целевой или игрой-объектом ). Цель метаигр - увеличить полезность выдаваемого набора правил. Теория метаигр связана с теорией оптимальных механизмов .

по материалам wikipedia.org

Возникшая в сороковых годах XX века математическая теория игр чаще всего применяется именно в экономике. Но как с помощью концепции игр смоделировать поведение людей в обществе? Зачем экономисты изучают, в какой угол чаще бьют пенальти футболисты, и как выиграть в «Камень, ножницы, бумагу» в своей лекции рассказал старший преподаватель кафедры микроэкономического анализа ВШЭ Данил Федоровых.

Джон Нэш и блондинка в баре

Игра - это любая ситуация, в которой прибыль агента зависит не только от его собственных действий, но и от поведения остальных участников. Если вы раскладываете дома пасьянс, с точки зрения экономиста и теории игр, это не игра. Она подразумевает обязательное наличие столкновения интересов.

В фильме «Игры разума» о Джоне Нэше, нобелевском лауреате по экономике, есть сцена с блондинкой в баре. В ней показана идея, за которую ученый и получил премию, - это идея равновесия по Нэшу, которое он сам называл управляющей динамикой.

Игра - любая ситуация, в которой выигрыши агентов зависят друг от друга.

Стратегия - описание действий игрока во всех возможных ситуациях.

Исход - комбинация выбранных стратегий.

Итак, с точки зрения теории, игроками в этой ситуации являются только мужчины, то есть те, кто принимает решение. Их предпочтения просты: блондинка лучше брюнетки, а брюнетка лучше, чем ничего. Действовать можно двумя способами: пойти к блондинке или к «своей» брюнетке. Игра состоит из единственного хода, решения принимаются одновременно (то есть нельзя посмотреть, куда пошли остальные, и после походить самому). Если какая-то девушка отвергает мужчину, игра заканчивается: невозможно вернуться к ней или выбрать другую.

Каков вероятный финал этой игровой ситуации? То есть какова ее устойчивая конфигурация, из которой все поймут, что сделали лучший выбор? Во-первых, как правильно замечает Нэш, если все пойдут к блондинке, ничем хорошим это не кончится. Поэтому дальше ученый предполагает, что всем нужно пойти к брюнеткам. Но тогда, если известно, что все пойдут к брюнеткам, ему следует идти к блондинке, ведь она лучше.

В этом и заключается настоящее равновесие - исход, в котором один идет к блондинке, а остальные - к брюнеткам. Может показаться, что это несправедливо. Но в ситуации равновесия никто не может пожалеть о своем выборе: те, кто пойдут к брюнеткам, понимают, что от блондинки они все равно ничего б не получили. Таким образом, равновесие по Нэшу - это конфигурация, при которой никто по отдельности не хочет менять выбранную всеми стратегию. То есть, рефлексируя в конце игры, каждый участник понимает, что даже зная, как походят другие, он сделал бы то же самое. По-другому можно назвать это исходом, где каждый участник оптимальным образом отвечает на действия остальных.

«Камень, ножницы, бумага»

Рассмотрим другие игры на предмет равновесия. Например, в «Камне, ножницах, бумаге» нет равновесия по Нэшу: во всех ее вероятных исходах нет варианта, в котором оба участника были бы довольны своим выбором. Тем не менее, существует Чемпионат мира и World Rock Paper Scissors Society, собирающее игровую статистику. Очевидно, что вы можете повысить свои шансы на победу, если будете что-то знать об обычном поведении людей в этой игре.

Чистая стратегия в игре - это такая стратегия, при которой человек всегда играет одинаково, выбирая одни и те же ходы.

По данным World RPS Society, камень является самым часто выбираемым ходом (37,8%). Бумагу ставят 32,6%, ножницы - 29,6%. Теперь вы знаете, что нужно выбирать бумагу. Однако, если вы играете с тем, кто тоже это знает, вам уже не надо выбирать бумагу, потому что от вас ожидается то же самое. Есть знаменитый случай: в 2005 году два аукционных дома Sotheby“s и Christie”s решали, кому достанется очень крупный лот - коллекция Пикассо и Ван Гога со стартовой ценой в 20 миллионов долларов. Собственник предложил им сыграть в «Камень, ножницы, бумагу», и представители домов отправили ему свои варианты по электронной почте. Sotheby“s, как они позже рассказали, особо не задумываясь, выбрали бумагу. Выиграл Christie”s. Принимая решение, они обратились к эксперту - 11-летней дочери одного из топ-менеджеров. Она сказала: «Камень кажется самым сильным, поэтому большинство людей его выбирают. Но если мы играем не с совсем глупым новичком, он камень не выбросит, будет ожидать, что это сделаем мы, и сам выбросит бумагу. Но мы будем думать на ход вперед, и выбросим ножницы».

Таким образом, вы можете думать на ход вперед, но это не обязательно приведет вас к победе, ведь вы можете не знать о компетенции вашего соперника. Поэтому иногда вместо чистых стратегий правильнее выбирать смешанные, то есть принимать решения случайно. Так, в «Камне, ножницах, бумаге» равновесие, которое мы до этого не нашли, находится как раз в смешанных стратегиях: выбирать каждый из трех вариантов хода с вероятностью в одну третью. Если вы будете выбирать камень чаще, соперник скорректирует свой выбор. Зная это, вы скорректируете свой, и равновесия не выйдет. Но никто из вас не начнет менять поведение, если каждый просто будет выбирать камень, ножницы или бумагу с одинаковой вероятностью. Все потому что в смешанных стратегиях по предыдущим действиям невозможно предугадать ваш следующий ход.

Смешанные стратегии и спорт

Более серьезных примеров смешанных стратегий очень много. Например, куда подавать в теннисе или бить/принимать пенальти в футболе. Если вы ничего не знаете о вашем сопернике или просто постоянно играете против разных, лучшей стратегией будет поступать более-менее случайно. Профессор Лондонской школы экономики Игнасио Паласиос-Уэрта в 2003 году опубликовал в American Economic Review работу, суть которой заключалась в поиске равновесия по Нэшу в смешанных стратегиях. Предметом исследования Паласиос-Уэрта выбрал футбол и в связи с этим просмотрел более 1400 ударов пенальти. Разумеется, в спорте все устроено хитрее, чем в «Камне, ножницах, бумаге»: там учитывается сильная нога спортсмена, попадания в разные углы при ударе со всей силы и тому подобное. Равновесие по Нэшу здесь заключается в расчете вариантов, то есть, к примеру, определении углов ворот, в которые надо бить, чтобы выиграть с большей вероятностью, зная свои слабые и сильные стороны. Статистика по каждому футболисту и найденное в ней равновесие в смешанных стратегиях, показало, что футболисты поступают примерно так, как предсказывают экономисты. Вряд ли стоит утверждать, что люди, которые бьют пенальти, читали учебники по теории игр и занимались довольно непростой математикой. Скорее всего, есть разные способы научиться оптимально себя вести: можно быть гениальным футболистом, и чувствовать, что делать, а можно - экономистом, и искать равновесие в смешанных стратегиях.

В 2008 году профессор Игнасио Паласиос-Уэрта познакомился с Авраамом Грантом, тренером «Челси», который играл тогда в финале Лиги чемпионов в Москве. Ученый написал записку тренеру с рекомендациями по серии пенальти, которые касались поведения вратаря соперника - Эдвина ван дер Сара из «Манчестер Юнайтед». Например, по статистике, он почти всегда отбивал удары на среднем уровне и чаще бросался в естественную для пробивающего пенальти сторону. Как мы определили выше, правильнее все-таки рандомизировать свое поведение с учетом знаний о сопернике. Когда счет по пенальти был уже 6:5, Николя Анелька, нападающий «Челси», должен был забивать. Показывая перед ударом в правый угол, ван дер Сар будто спросил у Анелька, не собирается ли он бить туда.

Суть в том, что все предыдущие удары «Челси» были нанесены именно в правый от пробивающего угол. Мы не знаем точно почему, может быть, из-за консультации экономиста бить в неестественную для них сторону, ведь по статистике к этому менее готов ван дер Сар. Большинство футболистов «Челси» были правшами: ударяя в неестественный для себя правый угол, все они, кроме Терри, забивали. Видимо, стратегия была в том, чтобы Анелька пробил туда же. Но ван дер Сар, похоже, это понял. Он поступил гениально: показал в левый угол дескать «туда собрался бить?», от чего Анелька, наверное, пришел в ужас, ведь его разгадали. В последний момент он принял решение действовать по-другому, ударил в естественную для себя сторону, что и было нужно ван дер Сару, который взял этот удар и обеспечил «Манчестеру» победу. Эта ситуация учит случайному выбору, ведь в ином случае ваше решение может быть просчитано, и вы проиграете.

«Дилемма заключенного»

Наверное, самая известная игра, с которой начинаются университетские курсы о теории игр, - это «Дилемма заключенного». По легенде двух подозреваемых в серьезном преступлении поймали и заперли в разные камеры. Есть доказательство, что они хранили оружие, и это позволяет посадить их на какой-то небольшой срок. Однако доказательств, что они совершили это страшное преступление, нет. Каждому по отдельности следователь рассказывает об условиях игры. Если оба преступника сознаются, оба же сядут на три года. Если сознается один, а подельник будет молчать, сознавшийся выйдет сразу, а второго посадят на пять лет. Если, наоборот, первый не сознается, а второй его сдаст, первый сядет на пять лет, а второй выйдет сразу. Если же не сознается никто, оба сядут на год за хранение оружия.

Равновесие по Нэшу здесь заключается в первой комбинации, когда оба подозреваемых не молчат и оба садятся на три года. Рассуждения каждого таковы: «если я буду говорить, я сяду на три года, если молчать - на пять лет. Если второй будет молчать, мне тоже лучше говорить: не сесть лучше, чем сесть на год». Это доминирующая стратегия: говорить выгодно, независимо от того, что делает другой. Однако в ней есть проблема - наличие варианта получше, ведь сесть на три года хуже, чем сесть на год (если рассматривать историю только с точки зрения участников и не учитывать вопросы морали). Но сесть на год невозможно, ведь, как мы поняли выше, молчать обоим преступникам невыгодно.

Улучшение по Парето

Есть известная метафора про невидимую руку рынка, принадлежащая Адаму Смиту. Он говорил, что если мясник будет сам для себя стараться заработать деньги, от этого будет лучше всем: он сделает вкусное мясо, которое купит булочник на деньги от продажи булок, которые он, в свою очередь, тоже должен будет делать вкусными, чтобы они продавались. Но оказывается, эта невидимая рука не всегда работает, и таких ситуаций, когда каждый действует за себя, а всем плохо, очень много.

Поэтому иногда экономисты и специалисты по теории игр думают не об оптимальном поведении каждого игрока, то есть не о равновесии по Нэшу, а об исходе, при котором будет лучше всему обществу (в «Дилемме» общество состоит из двух преступников). С этой точки зрения, исход эффективен, когда в нем нет улучшения по Парето, то есть невозможно сделать кому-то лучше, не сделав при этом хуже другим. Если люди просто меняются товарами и услугами, это Парето-улучшение: они делают это добровольно, и вряд ли кому-то от этого плохо. Но иногда, если просто дать людям взаимодействовать и даже не вмешиваться, то, к чему они придут, не будет оптимальным по Парето. Это и происходит в «Дилемме заключенного». В ней, если мы даем каждому действовать так, как им выгодно, оказывается, что всем от этого плохо. Всем было бы лучше, если бы каждый действовал не оптимально для себя, то есть молчал.

Трагедия общины

«Дилемма заключенного» - это игрушечная стилизованная история. Вряд ли вы ожидаете оказаться в подобной ситуации, но похожие эффекты есть везде вокруг нас. Рассмотрим «Дилемму» с большим количеством игроков, ее иногда называют трагедией общины. Например, на дорогах - пробки, и я решаю, как ехать на работу: на машине или на автобусе. Это же делают остальные. Если я поеду на машине, и все решат сделать то же самое, будет пробка, но мы доедем с комфортом. Если я поеду на автобусе, пробка-то все равно будет, но ехать я буду некомфортно и не особо быстрее, поэтому такой исход еще хуже. Если же в среднем все ездят на автобусе, то я, сделав то же самое, довольно быстро доеду без пробки. Но если при таких условиях поехать на машине, я тоже доеду быстро, но еще и с комфортом. Итак, наличие пробки не зависит от моих действий. Равновесие по Нэшу здесь - в ситуации, когда все выбирают ехать на машине. Что бы не делали остальные, мне лучше выбрать машину, потому что будет там пробка или нет, неизвестно, но я в любом случае доеду с комфортом. Это доминирующая стратегия, поэтому в итоге все едут на машине, и мы имеем то, что имеем. Задача государства - сделать поездку на автобусе лучшим вариантом хотя бы для некоторых, поэтому появляются платные въезды в центр, парковки и так далее.

Другая классическая история - рациональное незнание избирателя. Представьте, что вы не знаете исход выборов заранее. Вы можете изучить программу всех кандидатов, послушать дебаты и после проголосовать за самого лучшего. Вторая стратегия - прийти на участок и проголосовать как попало или за того, кого чаще показывали по телевизору. Какое поведение оптимально, если от моего голоса никогда не зависит, кто выиграет (а в 140-миллионной стране один голос никогда ничего не решит)? Конечно, я хочу, чтобы в стране был хороший президент, но я же знаю, что никто больше не будет изучать программы кандидатов внимательно. Поэтому не тратить на это время - доминирующая стратегия поведения.

Когда вас призывают прийти на субботник, ни от кого в отдельности не будет зависеть, станет двор чистым или нет: если я выйду один, я не смогу убрать все, или, если выйдут все, то не выйду я, потому что все и без меня уберут. Другой пример - перевозка грузов в Китае, о котором я узнал в замечательной книге Стивена Ландсбурга «Экономист на диване». 100-150 лет назад в Китае был распространен способ перевозки грузов: все складывалось в большой кузов, который тащили семь человек. Заказчики платили, если груз доставлялся вовремя. Представьте, что вы - один из этих шести. Вы можете прилагать усилия, и тянуть изо всех сил, и если все будут так делать, груз доедет вовремя. Если кто-нибудь один так делать не будет, все тоже доедут вовремя. Каждый думает: «Если все остальные тянут как следует, зачем это делать мне, а если все остальные тянут не со всей силы, то я ничего не смогу изменить». В итоге, со временем доставки все было очень плохо, и сами грузчики нашли выход: они стали нанимать седьмого и платить ему деньги за то, чтобы он стегал лентяев плетью. Само наличие такого человека заставляло всех работать изо всех сил, потому что иначе все попадали в плохое равновесие, из которого никому в отдельности с выгодой не выйти.

Такой же пример можно наблюдать в природе. Дерево, растущее в саду, отличается от того, что растет в лесу, своей кроной. В первом случае она окружает весь ствол, во втором - находится только вверху. В лесу это является равновесием по Нэшу. Если бы все деревья договорились и выросли одинаково, они бы поровну распределили количество фотонов, и всем было бы лучше. Но никому в отдельности так делать невыгодно. Поэтому каждое дерево хочет вырасти немного выше окружающих.

Сommitment device

Во многих ситуациях одному из участников игры может понадобиться инструмент, который убедит остальных, что тот не блефует. Он называется commitment device. Например, закон некоторых стран запрещает платить выкуп похитителям людей, чтобы снизить мотивацию преступников. Однако это законодательство часто не работает. Если вашего родственника захватили, и у вас есть возможность спасти его, обойдя закон, вы это сделаете. Представим ситуацию, что закон можно обойти, но родственники оказались бедными и выкуп им платить нечем. У преступника в этой ситуации два пути: отпустить или убить жертву. Убивать он не любит, но тюрьму он не любит больше. Отпущенный пострадавший, в свою очередь, может либо дать показания, чтобы похититель был наказан, либо молчать. Самый лучший исход для преступника: отпустить жертву, которая его не сдаст. Жертва же хочет быть отпущенной и дать показания.

Равновесие здесь в том, что террорист не хочет быть пойманным, а значит, жертва погибает. Но это не равновесие по Парето, потому что существует вариант, при котором всем лучше - жертва на свободе хранит молчание. Но для этого надо сделать так, чтобы молчать ей было выгодно. Где-то я прочитал вариант, когда она может попросить террориста устроить эротическую фотосессию. Если преступника посадят, его подельники выложат фотографии в интернет. Теперь, если похититель останется на свободе - это плохо, но фотографии в открытом доступе - еще хуже, поэтому получается равновесие. Для жертвы это способ остаться в живых.

Другие примеры игр:

Модель Бертрана

Раз уж мы говорим об экономике, рассмотрим экономический пример. В модели Бертрана два магазина продают один и тот же товар, покупая его у производителя по одной цене. Если цены в магазинах одинаковы, то примерно одинакова и их прибыль, ведь тогда покупатели выбирают магазин случайно. Единственное равновесие по Нэшу здесь - продавать товар по себестоимости. Но магазины хотят зарабатывать. Поэтому если один поставит цену 10 рублей, второй снизит ее на копейку, увеличив тем самым свою выручку вдвое, так как к нему уйдут все покупатели. Поэтому участникам рынка выгодно снижать цены, распределяя тем самым прибыль между собой.

Разъезд на узкой дороге

Рассмотрим примеры выбора между двумя возможными равновесиями. Представьте, что Петя и Маша едут навстречу друг другу по узкой дороге. Дорога настолько узкая, что им обоим нужно съехать на обочину. Если они решат повернуть налево или направо от себя, они просто разъедутся. Если же один повернет направо, а другой налево от себя, или наоборот, случится авария. Как выбрать, куда съехать? Чтобы помогать искать равновесие в подобных играх, существуют, например, правила дорожного движения. В России каждому нужно повернуть направо.

В забаве Chiken, когда два человека едут на большой скорости навстречу друг другу, тоже есть два равновесия. Если оба сворачивают на обочину, возникает ситуация, которая называется Chiken out, если оба не сворачивают, то погибают в страшной аварии. Если я знаю, что мой соперник едет прямо, мне выгодно съехать, чтобы выжить. Если я знаю, что мой соперник съедет, то мне выгодно ехать прямо, чтобы после получить 100 долларов. Сложно предсказать, что случится на самом деле, однако, у каждого из игроков есть свой метод выиграть. Представьте, что я закрепил руль так, что его нельзя повернуть, и показал это своему сопернику. Зная, что у меня нет выбора, соперник отскочит.

QWERTY-эффект

Иногда бывает очень сложно перейти из одного равновесия в другое, даже если оно означает пользу для всех. Раскладка QWERTY была создана, чтобы замедлить скорость печати. Поскольку если бы все печатали слишком быстро, головки печатной машинки, которые бьют по бумаге, цеплялись бы друг за друга. Поэтому Кристофер Шоулз разместил часто стоящие рядом буквы на максимально далеком расстоянии. Если вы зайдете в настройки клавиатуры на своем компьютере, вы сможете выбрать там раскладку Dvorak и печатать гораздо быстрее, так как сейчас нет проблемы аналоговых печатных машин. Дворак рассчитывал, что мир перейдет на его клавиатуру, но мы по-прежнему живем с QWERTY. Конечно, если бы мы перешли на раскладку Дворака, будущее поколение было бы нам благодарно. Все мы приложили бы усилия и переучились, в результате вышло бы равновесие, в котором все печатают быстро. Сейчас мы тоже в равновесии - в плохом. Но никому не выгодно быть единственным, кто переучится, потому что за любым компьютером, кроме личного, работать будет неудобно.

Из популярного американского блога Cracked.

Теория игр занимается тем, что изучает способы сделать лучший ход и в результате получить как можно больший кусок выигрышного пирога, оттяпав часть его у других игроков. Она учит подвергать анализу множество факторов и делать логически взвешенные выводы. Я считаю, её нужно изучать после цифр и до алфавита. Просто потому что слишком многие люди принимают важные решения, основываясь на интуиции, тайных пророчествах, расположении звёзд и других подобных. Я тщательно изучил теорию игр, и теперь хочу рассказать вам о её основах. Возможно, это добавит здравого смысла в вашу жизнь.

1. Дилемма заключенного

Берто и Роберт были арестованы за ограбление банка, не сумев правильно использовать для побега угнанный автомобиль. Полиция не может доказать, что именно они ограбили банк, но поймала их с поличным в украденном автомобиле. Их развели по разным комнатам и каждому предложили сделку: сдать сообщника и отправить его за решетку на 10 лет, а самому выйти на свободу. Но если они оба сдадут друг друга, то каждый получит по 7 лет. Если же никто ничего не скажет, то оба сядут на 2 года только за угон автомобиля.

Получается, что, если Берто молчит, но Роберт сдает его, Берто садится в тюрьму на 10 лет, а Роберт выходит на свободу.

Каждый заключенный - игрок, и выгода каждого может быть представлена в виде «формулы» (что получат они оба, что получит другой). Например, если я ударю тебя, моя выигрышная схема будет выглядеть так (я получаю грубую победу, ты страдаешь от сильной боли). Поскольку у каждого заключенного есть два варианта, мы можем представить результаты в таблице.

Практическое применение: Выявление социопатов

Здесь мы видим основное применение теории игр: выявление социопатов, думающих лишь о себе. Настоящая теория игр - это мощный аналитический инструмент, а дилетантство часто служит красным флагом, с головой выдающим человека, лишенного понятия чести. Люди, делающие расчеты интуитивно, считают, что лучше поступить некрасиво, потому что это приведет к более короткому тюремному сроку независимо от того, как поступит другой игрок. Технически это правильно, но только если вы недальновидный человек, ставящий цифры выше человеческих жизней. Именно поэтому теория игра так популярна в сфере финансов.

Настоящая проблема дилеммы заключенного в том, что она игнорирует данные. Например, в ней не рассматривается возможность вашей встречи с друзьями, родственниками, или даже кредиторами человека, которого вы посадили в тюрьму на 10 лет.

Хуже всего то, что все участники дилеммы заключенного действуют так, как будто никогда не слышали ней.

А лучший ход - хранить молчание, и через два года вместе с хорошим другом пользоваться общими деньгами.

2. Доминирующая стратегия

Это ситуация, при которой ваши действия дают наибольший выигрыш, независимо от действий оппонента. Что бы ни происходило - вы всё сделали правильно. Вот почему многие люди при «дилемме заключенного» считают: предательство приводит к «наилучшему» результату независимо от того, что делает другой человек, а игнорирование действительности, свойственное этому методу, заставляет всё выглядеть супер-просто.

Большинство игр, в которые мы играем, не имеет строго доминирующих стратегий, потому что иначе они были бы просто ужасны. Представьте, что вы всегда делали бы одно и то же. В игре «камень-ножницы-бумага» нет никакой доминирующей стратегии. Но если бы вы играли с человеком, у которого на руках надеты прихватки, и он мог показать только камень или бумагу, у вас была бы доминирующая стратегия: бумага. Ваша бумага обернет его камень или приведет к ничьей, и вы не сможете проиграть, потому что соперник не может показать ножницы. Теперь, когда у вас есть доминирующая стратегия, нужно быть дураком, чтобы попробовать что-нибудь другое.

3. Битва полов

Игры интереснее, когда у них нет строго доминирующей стратегии. Например, битва полов. Анджали и Борислав идут на свидание, но не могут выбрать между балетом и боксом. Анджали любит бокс, потому что ей нравится, когда льется кровь на радость орущей толпе зрителей, считающих себя цивилизованными только потому, что они заплатили за чьи-то разбитые головы.

Борислав хочет смотреть балет, потому что он понимает, что балерины проходят через огромное количество травм и сложнейших тренировок, зная, что одна травма может положить конец всему. Артисты балета - величайшие спортсмены на Земле. Балерина может ударить вас ногой в голову, но никогда этого не сделает, потому что ее нога стоит гораздо дороже вашего лица.

Каждый из них хочет пойти на своё любимое мероприятие, но они не хотят наслаждаться им в одиночестве, таким образом, получаем схему их выигрыша: наибольшее значение - делать то, что им нравится, наименьшее значение - просто быть с другим человеком, и ноль - быть в одиночестве.

Некоторые люди предлагают упрямо балансировать на грани войны: если вы, несмотря ни на что, делаете то, что хотите, другой человек должен подстроиться под ваш выбор или потерять все. Как я уже говорил, упрощённая теория игр отлично выявляет глупцов.

Практическое применение: Избегайте острых углов

Конечно, и у этой стратегии есть свои значительные недостатки. Прежде всего, если вы относитесь к вашим свиданиям как к «битве полов», она не сработает. Расстаньтесь, чтобы каждый из вас мог найти человека, который ему понравится. А вторая проблема заключается в том, что в этой ситуации участники настолько не уверены в себе, что не могут этого сделать.

По-настоящему выигрышная стратегия для каждого - делать то, что они хотят, а после, или на следующий день, когда они будут свободны, пойти вместе в кафе. Или же чередовать бокс и балет, пока в мире развлечений не произойдет революция и не будет изобретен боксерский балет.

4. Равновесие Нэша

Равновесие Нэша - это набор ходов, где никто не хочет сделать что-то по-другому после свершившегося факта. И если мы сможем заставить это работать, теория игр заменит всю философскую, религиозную, и финансовую систему на планете, потому что «желание не прогореть» стало для человечества более мощной движущей силой, чем огонь.

Давайте быстро поделим 100$. Вы и я решаем, сколько из сотни мы требуем и одновременно озвучиваем суммы. Если наша общая сумма меньше ста, каждый получает то, что хотел. Если общее количество больше ста, тот, кто попросил наименьшее количество, получает желаемую сумму, а более жадный человек получает то, что осталось. Если мы просим одинаковую сумму, каждый получает 50 $. Сколько вы попросите? Как вы разделите деньги? Существует единственный выигрышный ход.

Требование 51 $ даст вам максимальную сумму независимо от того, что выберет ваш противник. Если он попросит больше, вы получите 51 $. Если он попросит 50 $ или 51 $, вы получите 50 $. И если он попросит меньше 50 $, вы получите 51 $. В любом случае нет никакого другого варианта, который принесет вам больше денег, чем этот. Равновесие Нэша - ситуация, в которой мы оба выбираем 51 $.

Практическое применение: сначала думайте

В этом вся суть теории игр. Не обязательно выиграть и тем более навредить другим игрокам, но обязательно сделать лучший для себя ход, независимо от того, что подготовят для вас окружающие. И даже лучше, если этот ход будет выгоден и для других игроков. Это своего рода математика, которая могла бы изменить общество.

Интересный вариант этой идеи - распитие спиртного, которое можно назвать Равновесием Нэша с временной зависимостью. Когда вы достаточно много пьете, то не заботитесь о поступках других людей независимо от того, что они делают, но на следующий день вы очень жалеете, что не поступили иначе.

5. Игра в орлянку

В орлянке участвуют Игрок 1 и Игрок 2. Каждый игрок одновременно выбирает орла или решку. Если они угадывают, Игрок 1 получает пенс Игрока 2. Если же нет - Игрок 2 получает монету Игрока 1.

Выигрышная матрица проста…

…оптимальная стратегия: играйте полностью наугад. Это сложнее, чем вы думаете, потому что выбор должен быть абсолютно случайным. Если у вас есть предпочтения орла или решки, противник может использовать его, чтобы забрать ваши деньги.

Конечно, настоящая проблема здесь заключается в том, что было бы намного лучше, если бы они просто бросали один пенс друг в друга. В результате их прибыль была бы такой же, а полученная травма могла бы помочь этим несчастным людям почувствовать что-то, кроме ужасной скуки. Ведь это худшая игра из существующих когда-либо. И это идеальная модель для серии пенальти.

Практическое применение: Пенальти

В футболе, хоккее и многих других играх, дополнительное время - это серия пенальти. И они были бы интереснее, если бы строились на том, сколько раз игроки в полной форме смогут сделать «колесо», потому что это, по крайней мере, было бы показателем их физических способностей и на это было бы забавно посмотреть. Вратари не могут чётко определить движение мяча или шайбы в самом начале их движения, потому что, к огромному сожалению, в наших спортивных состязаниях роботы все еще не участвуют. Вратарь должен выбрать левое или правое направление и надеяться, что его выбор совпадет с выбором противника, бьющего по воротам. В этом есть что-то общее с игрой в монетку.

Однако обратите внимание, что это не идеальный пример сходства с игрой в орла и решку, потому что даже при правильном выборе направления вратарь может не поймать мяч, а нападающий может не попасть по воротам.

Итак, каково же наше заключение согласно теории игр? Игры с мячом должны заканчиваться способом «мультимяча», где каждую минуту игрокам один на один выводится дополнительный мяч/шайба, до получения одной из сторон определенного результата, который был показателем настоящего мастерства игроков, а не эффектным случайным совпадением.

В конце концов, теория игр должна использоваться для того, чтобы сделать игру умнее. А значит лучше.