Транскрипцией называется процесс. Что такое транскрипция


3. Обратная транскрипция

Транскрипция. Begin - начало транскрипции, End - конец транскрипции, DNA - ДНК.

Транскрипция - процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках. Другими словами, это перенос генетической информации с ДНК на РНК.

Транскрипция катализируется ферментом ДНК-зависимой РНК-полимеразой. Процесс синтеза РНК протекает в направлении от 5"- к 3"- концу, то есть по матричной цепи ДНК РНК-полимераза движется в направлении 3"->5"

Транскрипция состоит из стадий инициации, элонгации и терминации.

Инициация транскрипции

Инициация транскрипции — сложный процесс, зависящий от последовательности ДНК вблизи транскрибируемой последовательности и от наличия или отсутствия различных белковых факторов.

Элонгация транскрипции

Момент перехода РНК-полимеразы от инициации транскрипции к элонгации точно не определен. Три основных биохимических события характеризуют этот переход в случае РНК-полимеразы кишечной палочки: отделение сигма-фактора, первая транслокация молекулы фермента вдоль матрицы и сильная стабилизация транскрипционного комплекса, который кроме РНК-полимеразы включает растущую цепь РНК и транскрибируемую ДНК. Эти же явления характерны и для РНК-полимераз эукариот. Переход от инициации к элонгации сопровождается разрывом связей между ферментом, промотором, факторами инициации транскрипции, а в ряде случаев - переходом РНК-полимеразы в состояние компетентности в отношении элонгации. Фаза элонгации заканчивается после освобождения растущего транскрипта и диссоциации фермента от матрицы.

На стадии элонгации в ДНК расплетено примерно 18 пар нуклеотидов. Примерно 12 нуклеотидов матричной нити ДНК образует гибридную спираль с растущим концом цепи РНК. По мере движения РНК-полимеразы по матрице впереди нее происходит расплетание, а позади - восстановление двойной спирали ДНК. Одновременно освобождается очередное звено растущей цепи РНК из комплекса с матрицей и РНК-полимеразой. Эти перемещения должны сопровождаться относительным вращением РНК-полимеразы и ДНК. Трудно себе представить, как это может происходить в клетке, особенно при транскрипции хроматина. Поэтому не исключено, что для предотвращения такого вращения двигающуюся по ДНК РНК-полимеразу сопровождают топоизомеразы.

Элонгация осуществляется с помощью основных элонгирующих факторов, необходимых, чтобы процесс не останавливался преждевременно.

В последнее время появились данные, показывающие, что регуляторные факторы также могут регулировать элонгацию. РНК-полимераза в процессе элонгации делает паузы на определенных участках гена. Особенно четко это видно при низких концентрациях субстратов. В некоторых участках матрицы длительные задержки в продвижении РНК-полимеразы, т.н. паузы, наблюдаются даже при оптимальных концентрациях субстратов. Продолжительность этих пауз может контролироваться факторами элонгации.

Триптофановый оперон

IV. ТРАНСКРИПЦИЯ

Транскрипция - первая стадия реализации генетической информации в клетке. В ходе процесса образуются молекулы мРНК, служащие матрицей для синтеза белков, а также транспортные, рибосомальные и другие виды молекул РНК, выполняющие структурные, адапторные и каталитические функции (рис. 4-26).

Рис. 4-26. Схема реализации генетической информации в фенотипические признаки. Реализацию потока информации в клетке можно представить схемой ДНК-"РНК-"белок. ДНК-"РНК обозначает биосинтез молекул РНК (транскрипцию); РНК-"белок означает биосинтез полипептидных цепей (трансляцию).

Транскрипция у эукариотов происходит в ядре. В основе механизма транскрипции лежит тот же структурный.принцип комплементарного спаривания оснований в молекуле РНК (G ≡ C, A=U и Т=А). ДНК служит только матрицей и в ходе транскрипции не изменяется. Рибонукле-озидтрифосфаты (ЦТФ, ГТФ, АТФ, УТФ) -субстраты и источники энергии, необходимые для протекания полимеразной реакции, образования 3",5"-фосфодиэфирной связи между рибонуклеозидмонофосфатами.

Синтез молекул РНК начинается в определённых последовательностях (сайтах) ДНК, которые называют промоторы, и завершается в терминирующих участках (сайты терминации). Участок ДНК, ограниченный промотором и сайтом терминации, представляет собой единицу транскрипции -транскриптон. У эукариотов в состав транскриптона, как правило, входит один ген (рис. 4-27), у прокариотов несколько. В каждом транскриптоне присутствует неинформативная зона; она содержит специфические последовательности нуклеотидов, с которыми взаимодействуют регуляторные транскрипционные факторы.

Транскрипционые факторы - белки, взаимодействующие с определёнными регуляторными сайтами и ускоряющие или замедляющие процесс транскрипции. Соотношение информативной и неинформативной частей в транскриптонах эукариотов составляет в среднем 1:9 (у прокариотов 9:1).

Соседние транскриптоны могут быть отделены друг от друга нетранскрибируемыми участками ДНК. Разделение ДНК на множество транскриптонов позволяет осуществлять с разной активностью индивидуальное считывание (транскрипцию) разных генов.

В каждом транскриптоне транскрибируется только одна из двух цепей ДНК, которая называетсяматричной, вторая, комплементарная ей цепь, называется кодирующей. Синтез цепи РНК идёт от 5"- к З"-концу, при этом матричная цепь ДНК всегда антипараллельна синтезируемой нуклеиновой кислоте (рис. 4-28).

Транскрипция не связана с фазами клеточного цикла; она может ускоряться и замедляться в зависимости от потребности клетки или организма в определённом белке.

РНК-полимеразы

Биосинтез РНК осуществляется ДНК-зависимыми РНК-полимеразами. В ядрах эукариотов обнаружены 3 специализированные РНК-полимеразы: РНК-полимераза I, синтезирующая пре-рРНК; РНК-полимераза II, ответственная за синтез пре-мРНК; РНК-полимераза III, синтезирующая пре-тРНК. РНК-полимеразы - олигомерные ферменты, состоящие из нескольких субъединиц - 2α, β, β", σ. Субъединица о (сигма) выполняет регуляторную функцию, это один из факторов инициации транскрипции, РНК-полимеразы I, II, III, узнающие разные промоторы, содержат разные по строению субъединицы σ.

А. Стадии транскрипции

В процессе транскрипции различают 3 стадии: инициацию, элонгацию и терминацию.

Инициация

Активация промотора происходит с помощью большого белка - ТАТА-фактора, называемого так потому, что он взаимодействует со специфической последовательностью нуклеотидов промотора -ТАТААА- (ТАТА-бокс) (рис. 4-29).

Присоединение ТАТА-фактора облегчает взаимодействие промотора с РНК-полимеразой. Факторы инициации вызывают изменение кон-формации РНК-полимеразы и обеспечивают раскручивание примерно одного витка спирали ДНК, т.е. образуется транскрипционная вилка,

Рис. 4-27. Строение транскриптона.

Рис. 4-28. Транскрипция РНК на матричный цепи ДНК. Синтез РНК всегда происходит в направлении 5" → 3".

Рис. 4-29. Строение промотора эукариотов. Промоторные элементы - специфические последовательности нуклеотидов, характерные для любого промотора, связывающего РНК-полимеразу. Первый промоторный элемент - последовательность АТАТАА- (ТАТА-бокс) отделён от сайта начала транскрипции приблизительно на 25 пар нуклеотидов (п.н.). На расстоянии примерно 40 (иногда до 120) п.н. от него располагается последовательность GGCCAATC- (СААТ-бокс).

в которой матрица доступна для инициации синтеза цепи РНК (рис. 4-30).

После того как синтезирован олигонуклеотид из 8-10 нуклеотидных остатков, σ-субъединица отделяется от РНК-полимеразы, а вместо неё к молекуле фермента присоединяются несколько факторов элонгации.

Элонгация

Факторы элонгации повышают активность РНК-полимеразы и облегчают расхождение цепей ДНК. Синтез молекулы РНК идёт от 5"- к З"-концу комплементарно матричной цепи ДНК. На стадии элонгации, в области транскрипционной

вилки, одновременно разделены примерно 18 нуклеотидных пар ДНК. Растущий конец цепи РНК образует временную гибридную спираль, около 12 пар нуклеотидных остатков, с матричной цепью ДНК. По мере продвижения РНК-полимеразы по матрице в направлении от 3"- к 5"-концу впереди неё происходит расхождение, а позади - восстановление двойной спирали ДНК.

Терминация

Раскручивание двойной спирали ДНК в области сайта терминации делает его доступным для фактора терминации. Завершается синтез РНК в

Рис. 4-30. Стадии транскрипции. 1 - присоединение ТАТА-фактора к промотору. Чтобы промотор был узнан РНК-полимера-зой, необходимо образование транскрипционного комплекса ТАТА-фактор/ТАТА-бокс (промотор). ТАТА-фактор остаётся связанным с ТАТА-боксом во время транскрипции, это облегчает использование промотора многими молекулами РНК-полимеразы; 2 - образование транскрипционной вилки; 3 - элонгация; 4.- терминация.

строго определенных участках матрицы - терминаторах (сайты терминации). Фактор терминации облегчает отделение первичного транскрипта (пре-мРНК), комплементарного матрице, и РНК-полимеразы от матрицы. РНК-полимераза может вступить в следующий цикл транскрипции после присоединения субъединицы σ.

Б. Ковалентная модификация (процессинг) матричной РНК

Первичные транскрипты мРНК, прежде чем будут использованы в ходе синтеза белка, подвергаются ряду ковалентных модификаций. Эти модификации необходимы для функционирования мРНК в качестве матрицы.

Модификация 5"-конца

Модификации пре-мРНК начинаются на стадии элонгации. Когда длина первичного транскрипта достигает примерно 30 нуклеотидных остатков, происходит кэпирование его 5"-конца. Осуществляет кэпирование гуанилилтрансфераза. Фермент гидролизует макроэргическую связь в молекуле ГТФ и присоединяет нуклеотиддифосфатный остаток 5"-фосфатной группой к 5"-концу синтезированного фрагмента РНК с образованием 5", 5"-фосфодиэфирной связи. Последующее метилирование остатка гуанина в составе ГТФ с образованием N 7 -метилгуанозина завершает формирование кэпа (рис. 4-31).

Рис. 4-31. Ковалентная модификация концевых нуклеотидных остатков первичного транскрипта мРНК.

Модифицированный 5"-конец обеспечивает инициацию трансляции, удлиняет время жизни мРНК, защищая её от действия 5"-экзонуклеаз в цитоплазме. Кэпирование необходимо для инициации синтеза белка, так как инициирующие триплеты AUG, GUG распознаются рибосомой только если присутствует кэп. Наличие кэпа также необходимо для работы сложной ферментной системы, обеспечивающей удаление нитронов.

Модификация 3"-конца

3"-Конец большинства транскриптов, синтезированных РНК-полимеразой II, также подвергается модификации, при которой специальным ферментом полиА-полимеразой формируется полиА-последовательность (полиА-"хвост"), состоящая из 100-200 остатков аде-ниловой кислоты.

Сигналом к началу полиаденилирования является последовательность -AAUAAA- на растущей цепи РНК. Фермент полиА-полимераза, проявляя экзонуклеазную активность, разрывает 3"-фосфоэфирную связь после появления в цепи РНК специфической последовательности -AAUAAA-. К 3"-концу в точке разрыва полиА-полимераза наращивает по-лиА-"хвост", Наличие полиА-последовательности на 3"-конце облегчает выход мРНК из ядра и замедляет её гидролиз в цитоплазме.

Ферменты, осуществляющие кэширование и полиаденилирование, избирательно связываются с РНК-полимеразой II, и в отсутствие полимеразы неактивны.

Сплайсинг первичных транскриптов мРНК

С появлением методов, позволяющих изучать первичную структуру молекул мРНК в цитоплазме и последовательность нуклеотидов кодирующей её геномной ДНК, было установлено, что они не комплементарны, а длина гена в несколько раз больше "зрелой" мРНК. Последовательности нуклеотидов, присутствующие в ДНК, но не входящие в состав зрелой мРНК, были названы некодирующими, или интроны, а последовательности, присутствующие в мРНК, - кодирующими, или экзоны. Таким образом, первичный транскрипт - строго комплементарная матрице нуклеиновая кислота (пре-мРНК), содержащая как экзоны, так и интроны. Длина интронов варьирует от 80 до 1000 нуклеотидов. Последовательности интронов "вырезаются" из первичного транскрипта, концы экзонов соединяются друг с другом. Такую модификацию РНК называют "сплайсинг" (от англ, to splice - сращивать). Сплайсинг происходит в ядре, в цитоплазму поступает уже "зрелая" мРНК.

Гены эукариотов содержат больше интронов, чем экзонов, поэтому очень длинные молекулы пре-мРНК (около 5000 нуклеотидов) после сплайсинга превращаются в более короткие молекулы цитоплазматической мРНК (от 500 до 3000 нуклеотидов).

Процесс "вырезания" интронов протекает при участии малых ядерных рибонуклеопротеинов (мяРНП). В состав мяРНП входит малая ядерная РНК (мяРНК), нуклеотидная цепь которой связана с белковым остовом, состоящим из нескольких протомеров. В сплайсинге принимают участие различные мяРНП (рис. 4-32).

Нуклеотидные последовательности нитронов функционально неактивны. Но на 5"- и З"-концах они имеют высокоспецифические последовательности - AGGU- и GAGG- соответственно (сайты сплайсинга), которые обеспечивают их удаление из молекулы пре-мРНК. Изменение структуры этих последовательностей влияет на процесс сплайсинга.

На первой стадии процесса мяРНП связываются со специфическими последовательностями первичного транскрипта (сайты сплайсинга), далее к ним присоединяются другие мяРНП. При формировании структуры сплайсосомы 3"-конец одного экзона сближается с 5"-концом следующего экзона. Сплайсосома катализирует реакцию расщепления 3",5"-фосфодиэфирной связи на границе экзона с интроном. Последовательность интрона удаляется, а два экзона соединяются. Образование 3",5"-фосфодиэфирной связи между двумя экзонами катализируют мяРНК (малые ядерные РНК), входящие в структуру сплайсосомы. В результате сплайсинга из первичных транскриптов мРНК образуются молекулы "зрелой" мРНК.

Альтернативный сплайсинг первичных транскриптов мРНЕ

Для некоторых генов описаны альтернативные пути сплайсинга и полиаденилирования одного и того же транскрипта. Экзон одного варианта сплайсинга может оказаться интроном в альтернативном пути, поэтому молекулы мРНК, образованные в результате альтернативного сплайсинга, различаются набором экзонов. Это приводит к образованию разных мРНК и, соответственно, разных белков с одного первичного транскрипта. Так, в парафолликулярных клетках щитовидной железы (рис. 4-33) в ходе транскрипции гена гормона кальцитонина (см. раздел 11) образуется первичный транскрипт мРНК, который состоит из шести экзонов. Матричная РНК кальцитонина образуется путём сплайсинга первых четырёх экзонов (1-4). Последний (четвёртый) экзон содержит сигнал полиаденилирования (последовательность -AAUAAA-), узнаваемый полиА-полимеразой в парафолликулярных клетках щитовидной железы. Этот же первичный транскрипт в клетках головного мозга в ходе другого (альтернативного)

Рис. 4-32. Сплайсинг РНК. В процессе сплайсинга принимают участие различные мяРНП, которые формируют сплайсосому. мяРНП, взаимодействуя с РНК и друг с другом, фиксируют и ориентируют реакционные группы первичного транскрипта. Каталитическая функция сплайсосом обусловлена РНК-составляющими; такие РНК называют рибозимами.

Рис. 4-33. Альтернативный сплайсинг гена кальцитонина. В клетках щитовидной железы сплайсинг первичного транскрипта приводит к образованию кальцитониновои мРНК, включающей 4 экзона и полиА-последовательность, которая образуется после расщепления транскрипта в первом участке сигнала полиаденилирования. В клетках мозга образуется мРНК, содержащая: экзоны 1, 2, 3, 5, 6 и полиА-последовательность, образованную после второго сигнала полиаденилирования.

пути сплайсинга превращается в мРНК кальцитонинподобного белка, отвечающего за вкусовое восприятие. Матричная РНК этого белка состоит из первых трёх экзонов, общих с кальцитониновои мРНК, но включает дополнительно пятый и шестой экзоны, не свойственные мРНК кальцитонина. Шестой экзон тоже имеет сигнал полиаденилирования -AAUAAA-, узнаваемый ферментом полиА-полимеразой в клетках нервной ткани. Выбор одного из путей (альтернативный сплайсинг) и одного из возможных сайтов полиаденилирования играет важную роль в тканеспецифической экспрессии генов.

Разные варианты сплайсинга могут приводить к образованию разных изоформ одного и того же белка. Например, ген тропонина состоит из 18 экзонов и кодирует многочисленные изоформы этого мышечного белка. Разные изоформы тропонина образуются в разных тканях на определённых стадиях их развития.

В. Процессинг первичных транскриптов рибосомной РНК и транспортной РНК

Гены, кодирующие большую часть структурных РНК, транскрибируются РНК-полимера-зами I и III. Нуклеиновые кислоты - предшественники рРНК и тРНК - подвергаются в ядре расщеплению и химической модификации (процессингу).

Посттранскрипционные модификации первичного транскрипта тРНК (процессинг тРНК)

Первичный транскрипт тРНК содержит около 100 нуклеотидов, а после процессинга - 70-90 нуклеотидньгх остатков. Посттранскрипционные модификации первичных транскриптов тРНК происходят при участии РНК-аз (рибонуклеаз). Так, формирование 3"-конца тРНК катализирует РНК-аза, представляющая собой 3"-экзонуклеазу, "отрезающую" по одному нук-леотиду, пока не достигнет последовательности -ССА, одинаковой для всех тРНК. Для некоторых тРНК формирование последовательности -ССА на 3"-конце (акцепторный конец) происходит в результате последовательного присоединения этих трёх нуклеотидов. Пре-тРНК содержит всего один интрон, состоящий из 14-16 нуклеотидов. Удаление интрона и сплайсинг приводят к формированию структуры, называемой "антикодон", - триплета нуклеотидов, обеспечивающего взаимодействие тРНК с комплементарным кодоном мРНК в ходе синтеза белков (рис. 4-34).

Посттранскрипционные модификации (процессинг) первичного транскрипта рРНК. Формирование рибосом

В клетках человека содержится около сотни копий гена рРНК, локализованных группами на пяти хромосомах. Гены рРНК транскрибируются РНК-полимеразой I с образованием идентичных транскриптов. Первичные транскрипты имеют длину около 13 000 нуклеотид-ных остатков (45S рРНК). Прежде чем покинуть ядро в составе рибосомной частицы, молекула 45 S рРНК подвергается процессин-гу, в результате образуется 28S рРНК (около 5000 нуклеотидов), 18S рРНК (около 2000 нуклеотидов) и 5,88 рРНК (около 160 нуклеотидов), которые являются компонентами рибосом (рис. 4-35). Остальная часть транскрипта разрушается в ядре.

Рис. 4-34. Процессинг пре-тРНК. Определённые азотистые основания нукпеотидов тРНК в ходе процессинга метилируются под действием РНК-метилазы и превращаются, например, в 7-метилгуанозин и 2-метилгуанозин (минорные основания). В молекуле тРНК содержатся и другие необычные основания - псевдоуридин, дигидроуридин, которые также модифицируются во время процессинга.

Рис. 4-35. Образование и выход из ядра субъединиц рибосом. В результате процессинга из молекулы предшественника 45S рРНК образуются три типа рРНК: 18S, входящая в состав малой субъединицы рибосом, а также 28S и 5,8S, локализующиеся в большой субъединице. Все три рРНК образуются в равных количествах, так как они происходят из одного и того же первичного транскрипта. 5S рРНК большой субъединицы рибосом транскрибируется отдельно от первичного транскрипта 45S рРНК. Рибосомальные РНК, образованные в ходе посттранскрипционных модификаций, связываются со специфическими белками, и образуется рибосома.

Рибосома - органелла клетки, участвующая в биосинтезе белка. Рибосома эукариотов (80S) состоит из двух, большой и малой, субъединиц: 60S и 40S. Белки рибосом выполняют структурную, регуляторную и каталитическую функции.

Инициация транскрипции

Элонгация транскрипции

Момент перехода РНК-полимеразы от инициации транскрипции к элонгации точно не определен. Три основных биохимических события характеризуют этот переход в случае РНК-полимеразы кишечной палочки : отделение сигма-фактора, первая транслокация молекулы фермента вдоль матрицы и сильная стабилизация транскрипционного комплекса, который кроме РНК-полимеразы включает растущую цепь РНК и транскрибируемую ДНК. Эти же явления характерны и для РНК-полимераз эукариот. Переход от инициации к элонгации сопровождается разрывом связей между ферментом, промотором , факторами инициации транскрипции, а в ряде случаев - переходом РНК-полимеразы в состояние компетентности в отношении элонгации (например, фосфорилирование CTD-домена у РНК-полимеразы II). Фаза элонгации заканчивается после освобождения растущего транскрипта и диссоциации фермента от матрицы (терминация).

Элонгация осуществляется с помощью основных элонгирующих факторов, необходимых, чтобы процесс не останавливался преждевременно .

В последнее время появились данные, показывающие, что регуляторные факторы также могут регулировать элонгацию. РНК-полимераза в процессе элонгации делает паузы на определенных участках гена . Особенно четко это видно при низких концентрациях субстратов . В некоторых участках матрицы длительные задержки в продвижении РНК-полимеразы, т. н. паузы, наблюдаются даже при оптимальных концентрациях субстратов. Продолжительность этих пауз может контролироваться факторами элонгации.

Терминация

У бактерий есть два механизма терминации транскрипции:

  • ро-зависимый механизм, при котором белок Rho (ро) дестабилизирует водородные связи между матрицей ДНК и мРНК , высвобождая молекулу РНК.
  • ро-независимый, при котором транскрипция останавливается, когда только что синтезированная молекула РНК формирует стебель-петлю , за которой расположено несколько урацилов (…УУУУ), что приводит к отсоединению молекулы РНК от матрицы ДНК.

Терминация транскрипции у эукариот менее изучена. Она завершается разрезанием РНК, после чего к её 3" концу фермент добавляет несколько аденинов (…АААА), от числа которых зависит стабильность данного транскрипта .

Транскрипционные фабрики

Существует ряд экспериментальных данных, свидетельствующих о том, что транскрипция осуществляется в так называемых транскрипционных фабриках: огромных, по некоторым оценкам, до 10 Да комплексах, которые содержат около 8 РНК-полимераз II и компоненты последующего процессинга и сплайсинга , а также корректирования новосинтезированного транскрипта . В ядре клетки происходит постоянный обмен между пулами растворимой и задействованной РНК-полимеразы. Активная РНК-полимераза задействована в таком комплексе, который в свою очередь является структурной организовывающей компактизацию хроматина единицей. Последние данные свидетельствуют о том, что транскрипционные фабрики существуют и в отсутствие транскрипции, они фиксированы в клетке (пока не ясно, взаимодействуют ли они с ядерным матриксом клетки или нет) и представляют собой независимый ядерный субкомпартмент. Комплекс транскрипционных фабрик, содержащих РНК полимеразу I, II или III, был проанализирован с помощью масс-спектрометрии.

Обратная транскрипция

Схема обратной транскрипции

Некоторые вирусы (такие как ВИЧ , вызывающий СПИД), имеют возможность транскрибировать РНК в ДНК. ВИЧ имеет РНК-геном , который встраивается в ДНК. В результате, ДНК вируса может быть объединено с геномом клетки-хозяина. Главный фермент , ответственный за синтез ДНК из РНК, называется ревертазой . Одной из функций ревертазы является создание комплементарной ДНК (кДНК) из вирусного генома. Ассоциированый фермент рибонуклеаза H расщепляет РНК, а ревертаза синтезирует кДНК из двойной спирали ДНК. кДНК интегрируется в геном клетки-хозяина с помощью интегразы . Результатом является синтез вирусных протеинов клеткой-хозяином, которые образуют новые вирусы. В случае с ВИЧ так же программируется апоптоз (смерть клетки) Т-лимфоцитов . В иных случаях клетка может остаться распростанителем вирусов.

Некоторые клетки эукариотов содержат фермент теломеразу , так же проявляющую активность обратной транскрипции. С её помощью синтезируются повторяющиеся последовательности в ДНК. Теломераза часто активирутся в раковых клетках для бесконечной дупликации генома без потери кодирующей протеины последовательности ДНК.

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Транскрипция (биология)" в других словарях:

    - (от лат. transcriptio, букв. переписывание), биосинтез молекул РНК, на соотв. участках ДНК; первый этап реализации генетич. информации в живых клетках. Осуществляется ферментом ДНК зависимой РНК полимеразой, к рая у большинства изученных… … Биологический энциклопедический словарь

    биология - БИОЛОГИЯ (от греч. bio жизнь и logos слово, учение) совокупность наук о жизни во всем разнообразии проявления ее форм, свойств, связей и отношений на Земле. Впервые термин был предложен одновременно и независимо друг от друга в 1802… … Энциклопедия эпистемологии и философии науки

    Наука о жизни, включающая все знания о природе, структуре, функциях и поведении живых существ. Биология имеет дело не только с великим множеством форм различных организмов, но также с их эволюцией, развитием и с теми отношениями, которые… … Энциклопедия Кольера

    БИОЛОГИЯ - совокупность наук о жизни во всем разнообразии проявления ее форм, свойств, связей и отношений на Земле. Впервые термин был предложен одновременно и независимо друг от друга в 1802 г. выдающимся французским ученым Ж.Б. Ламарком и немецким… … Философия науки: Словарь основных терминов

    I Транскрипция (от лат. transcriptio переписывание) письменное воспроизведение слов и текстов с учётом их произношения средствами определённой графической системы. Т. бывает научная и практическая. Научная Т. применяется в лингвистических …

    - (от лат. transcriptio, букв переписывание), биосинтез РНК на матрице ДНК; первая стадия реализации генетич. информации, в ходе к рой нуклеотидная последовательность ДНК считывается в виде нуклеотидной последовательности РНК (см. Генетический код) … Химическая энциклопедия

    Пре мРНК со стеблем петлёй. Атомы азота в основаниях выделены голубым, кислорода в фосфатном остове молекулы красным Рибонуклеиновые кислоты (РНК) нуклеиновые кислоты, полимеры нуклеотидов, в состав которых входят остаток ортофосфорной кислоты … Википедия

    Наука, ставящая своей задачей познание природы явлений жизнедеятельности путём изучения биологических объектов и систем на уровне, приближающемся к молекулярному, а в ряде случаев и достигающем этого предела. Конечной целью при этом… … Большая советская энциклопедия

    Обратная транскрипция это процесс образования двуцепочечной ДНК на матрице одноцепочечной РНК. Данный процесс называется обратной транскрипцией, так как передача генетической информации при этом происходит в «обратном», относительно… … Википедия

    Запрос «Вирус» перенаправляется сюда. Cм. также другие значения. ? Вирусы Ротавирус Научная классификация Надцарство … Википедия

Жизнь в углеродной форме существует благодаря наличию белковых молекул. И биосинтез белка в клетке является единственной возможностью для экспрессии гена. Но для реализации этого процесса требуется запуск ряда процессов, связанных с «распаковкой» генетической информации, поиска нужного гена, его считывания и воспроизведения. Термин "транскрипция" в биологии как раз обозначает процесс переноса информации с гена на информационную РНК. Это старт биосинтеза, то есть непосредственной реализации генетической информации.

Хранение генетической информации

В клетках живых организмов генетическая информация локализована в ядре, митохондриях, хлоропластах и плазмидах. В митохондриях и хлоропластах имеется незначительное количество ДНК животных и растений, тогда как плазмиды бактерий являются местом хранения генов, ответственных за быстрое приспособление к окружающим условиям.

В вирусных телах наследственная информация также хранится в виде РНК или ДНК-полимеров. Но процесс ее реализации также связан с необходимостью транскрипции. В биологии этот процесс имеет исключительную важность, так как именно он приводит к реализации наследственной информации, запуская биосинтез белка.

В животных клетках наследственная информация представлена полимером ДНК, который компактно упакован внутри ядра. Потому перед тем синтезом белка или считыванием любого гена должны пройти некоторые этапы: раскручивание конденсированного хроматина и «освобождение» нужного гена, его распознавание ферментными молекулами, транскрипция.

В биологии и биологической химии эти этапы уже изучены. Они приводят к синтезу белка, первичная структура которого была закодирована в считанном гене.

Схема транскрипции в эукариотических клетках

Транскрипция в биологии хоть и изучена недостаточно, но ее последовательность традиционно представляется в виде схемы. Она состоит из инициации, элонгации и терминации. Это значит, что весь процесс делится на три составляющие его явления.

Инициация — это совокупность биологических и биохимических процессов, которые приводят к началу транскрипции. Суть элонгации заключается в продолжении наращивания молекулярной цепочки. Терминация — это совокупность процессов, которые приводят к прекращению синтеза РНК. Кстати, в контексте биосинтеза белка процесс транскрипции в биологии принято отождествлять с синтезом матричной РНК. На основании нее позднее будет синтезирована полипептидная цепочка.

Инициация

Инициация — наименее изученный механизм транскрипции в биологии. Что это с точки зрения биохимии, неизвестно. То есть конкретные ферменты, ответственные за запуск транскрипции, совсем не распознаны. Также неизвестными остаются внутриклеточные сигналы и способы их передачи, которые свидетельствуют о необходимости синтеза нового белка. Для цитологии и биохимии это фундаментальная задача.

Элонгация

Разделить процесс инициации и элонгации во времени пока нельзя из-за невозможности проведения лабораторных исследований, призванных подтвердить наличие специфических ферментов и триггер-факторов. Потому данная граница весьма условная. Суть процесса элонгации сводится к удлинению растущей цепочки, синтезированной на основе матричного участка ДНК.

Считается, что элонгация начинается уже после первой транслокации РНК-полимеразы и начала присоединения первого кадона к стартовому участку РНК. В ходе элонгации на деспирализованном и разделенном на две цепочки участке ДНК происходит считывание кадонов по направлению 3"-5"-цепочки. В это же время растущая цепочка РНК прибавляется новыми нуклеотидами, комплементарными матричному участку ДНК. При этом ДНК «расшивается» на ширину 12 нуклеотидов, то есть на 4 кадона.

Фермент РНК-полимераза движется по растущей цепочке, а «сзади» ее происходит обратное «сшивание» ДНК в двухцепочечную структуру с восстановлением водородных связей между нуклеотидами. Это отчасти отвечает на вопрос о том, какой процесс называется транскрипцией в биологии. Именно элонгация является главной фазой транскрипции, потому как в ее ходе собирается так называемый посредник между геном и синтезом белка.

Терминация

Процесс терминации в транскрипции эукариотических клеток слабо изучен. Пока что ученые сводят его суть к прекращению считывания ДНК у 5"-конца и присоединения группы адениновых оснований к 3"-концу РНК. Последний процесс позволяет стабилизировать химическую структуру полученной РНК. В бактериальных клетках имеется два вида терминации. Это Rho-зависимый и Rho-независимый процесс.

Первый протекает в присутствии Rho-белка и сводится к простому обрыву водородных связей между матричным участком ДНК и синтезированной РНК. Второй, Rho-независимый, происходит после появления стебель-петли, если за ней имеется совокупность урациловых оснований. Эта комбинация приводит к отсоединению РНК от матрицы ДНК. Очевидно, что терминация транскрипции — это ферментативный процесс, однако конкретных его биокатализаторов пока найти не удается.

Вирусная транскрипция

Вирусные тельца не имеют собственной системы биосинтеза белка, а потому не могут размножаться без эксплуатации клеток. Но вирусы имеют свой генетический материал, который нужно реализовывать, а также встраивать в гены зараженных клеток. Для этого они имеют ряд ферментов (или эксплуатируют ферментные системы клетки), которые транскрибируют свою нуклеиновую кислоту. То есть этот фермент на основании генетической информации вируса синтезирует аналог матричной РНК. Но он представляет собой совсем не РНК, а ДНК-полимер, комплементарный генам, например, человека.

Это полностью нарушает традиционные принципы транскрипции в биологии, что следует рассмотреть на примере вируса HIV. Его фермент ревертаза из вирусной РНК способен синтезировать ДНК, комплементарную нуклеиновой кислоте человека. При этом процесс синтеза комплементарной ДНК на основании РНК называется обратной транскрипцией. Это в биологии определение процесса, ответственного за встраивание наследственной информации вируса в геном человека.

Транскрипция - это процесс синтеза молекулы РНК на участке ДНК , используемом в качестве матрицы. Смысл транскрипции заключается в переносе генетической информации с ДНК на РНК .

Молекула ДНК состоит из двух комплиментарных друг другу цепей, а РНК - только из одной. При транскрипции матрицей для синтеза РНК служит только одна из цепей ДНК. Ее называют смысловой цепью . Исключением является митохондриальная ДНК, в которой обе цепи являются смысловыми и содержат разные гены. Также как исключение на ядерной ДНК некоторые гены могут быть локализованы на несмысловой цепи.

При транскрипции молекула РНК синтезируется в направлении от 5" к 3" концу (что естественно для синтеза всех нуклеиновых кислот), при этом по цепи ДНК синтез идет в обратном направлении: 3"→5".

У эукариот каждый ген транскрибируется отдельно. Исключение опять же представляет митохондриальная ДНК, которая транскибируется на общий мультигенный транскрипт, который затем разрезается. Так как у прокариот гены образуют группы, формируя один оперон, то такие гены транскрибируются вместе. В любом случае транскриптоном называют участок ДНК, состоящий из промотора, транскрибируемого участка и терминатора.

В транскрипции выделяют 3 стадии: инициация, элонгация, терминация .

Инициация транскрипции позволяет начаться синтезу молекулы РНК. Инициация включает присоединение к промотору комплекса ферментов. Главным из них является РНК-полимераза (в данном случае ДНК-зависимая), которая, в свою очередь, состоит из нескольких белков-субъединиц и играет роль катализатора процесса. У эукариот на инициацию транскрипции влияют особые участки ДНК: энхансеры (усиливают) и сайленсеры (подвляют), которые обычно удаленные на некоторое расстояние от самого гена. Существуют различные белковые факторы, влияющие на возможность инициации транскрипции.

У прокариот имеется только один тип РНК-полимеразы, в то время как у эукариот их три. РНК-полимераза-1 используется для синтеза трех видов рибосомальной РНК (всего существует 4 вида рРНК). РНК-полимераза-2 используется для синтеза пре-иРНК (предшественника информационной) РНК. РНК-полимераза-3 синтезирует один из видов рибосомальной РНК, транспортную и малую ядерную.

РНК-полимераза способна распознавать определенные последовательности нуклеотидов и прикрепляется к ним. Эти последовательности короткие и универсальные для всего живого.

После того, как РНК-полимераза присоединяется к промотору, участок двойной спирали ДНК раскручивается и между цепочками этого участка разрываются нуклеотидные связи. Расплетается примерно 18 пар нуклеотидов.

На стадии элонгации происходит последовательное присоединение по принципу комплиментарности свободных нуклеотидов к освобожденному участку ДНК. РНК-полимераза соединяет нуклеотиды в полирибонуклеотидную цепочку.

При синтезе РНК около 12 ее нуклеотидов комплементарно временно связаны с нуклеотидами ДНК. При движении РНК-полимеразы впереди нее цепочки ДНК расходятся, а сзади «сшиваются» с помощью ферментов. Цепь РНК постепенно растет и выдвигается из комплекса РНК-полимеразы.

Существуют элонгирующие факторы, препятствующие преждевременной остановки транскрипции.

Терминация процесса транскрипции происходит в участке-терминаторе, который распознается РНК-полимеразой благодаря специальным белковым факторам терминации.

К 3"-концу синтезированной молекулы РНК присоединяется множество адениновых нуклеотидов (поли-А) для предотвращения ее ферментативного распада. Еще ранее, когда был синтезирован 5"-конец, на нем был образован так называемый кэп .

В большинстве случаев в результате транскрипции не получается готовая РНК. «Сырая» РНК должна еще пройти процесс процессинга , при котором происходят ее модификационные изменения и она становится функционально активной. Каждый тип РНК эукариот подвергается своим модификациям. Формирование поли-А и кэпа часто также относят к процессингу.