Уравнение хорды параболы. Вывод уравнения параболы

Параболой называется геометрическое место точек плоскости, равноудаленных от заданной точки F и заданной прямой d , не проходящей через заданную точку. Это геометрическое определение выражает директориальное свойство параболы .

Директориальное свойство параболы

Точка F называется фокусом параболы, прямая d - директрисой параболы, середина O перпендикуляра, опущенного из фокуса на директрису, - вершиной параболы, расстояние p от фокуса до директрисы - параметром параболы, а расстояние \frac{p}{2} от вершины параболы до её фокуса - фокусным расстоянием (рис.3.45,а). Прямая, перпендикулярная директрисе и проходящая через фокус, называется осью параболы (фокальной осью параболы). Отрезок FM , соединяющий произвольную точку M параболы с её фокусом, называется фокальным радиусом точки M . Отрезок, соединяющий две точки параболы, называется хордой параболы.

Для произвольной точки параболы отношение расстояния до фокуса к расстоянию до директрисы равно единице. Сравнивая директориальные свойства эллипса, гиперболы и параболы, заключаем, что эксцентриситет параболы по определению равен единице (e=1) .

Геометрическое определение параболы , выражающее её директориальное свойство, эквивалентно её аналитическому определению - линии, задаваемой каноническим уравнением параболы:

Действительно, введем прямоугольную систему координат (рис.3.45,б). Вершину O параболы примем за начало системы координат; прямую, проходящую через фокус перпендикулярно директрисе, примем за ось абсцисс (положительное направление на ней от точки O к точке F ); прямую, перпендикулярную оси абсцисс и проходящую через вершину параболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

Составим уравнение параболы, используя её геометрическое определение, выражающее директориальное свойство параболы. В выбранной системе координат определяем координаты фокуса F\!\left(\frac{p}{2};\,0\right) и уравнение директрисы x=-\frac{p}{2} . Для произвольной точки M(x,y) , принадлежащей параболе, имеем:

FM=MM_d,

где M_d\!\left(\frac{p}{2};\,y\right) - ортогональная проекция точки M(x,y) на директрису. Записываем это уравнение в координатной форме:

\sqrt{{\left(x-\frac{p}{2}\right)\!}^2+y^2}=x+\frac{p}{2}.

Возводим обе части уравнения в квадрат: {\left(x-\frac{p}{2}\right)\!}^2+y^2=x^2+px+\frac{p^2}{4} . Приводя подобные члены, получаем каноническое уравнение параболы

Y^2=2\cdot p\cdot x, т.е. выбранная система координат является канонической.

Проводя рассуждения в обратном порядке, можно показать, что все точки, координаты которых удовлетворяют уравнению (3.51), и только они, принадлежат геометрическому месту точек, называемому параболой. Таким образом, аналитическое определение параболы эквивалентно его геометрическому определению, выражающему директориальное свойство параболы.

Уравнение параболы в полярной системе координат

Уравнение параболы в полярной системе координат Fr\varphi (рис.3.45,в) имеет вид

R=\frac{p}{1-e\cdot\cos\varphi}, где p - параметр параболы, а e=1 - её эксцентриситет.

В самом деле, в качестве полюса полярной системы координат выберем фокус F параболы, а в качестве полярной оси - луч с началом в точке F , перпендикулярный директрисе и не пересекающий её (рис.3.45,в). Тогда для произвольной точки M(r,\varphi) , принадлежащей параболе, согласно геометрическому определению (директориальному свойству) параболы, имеем MM_d=r . Поскольку MM_d=p+r\cos\varphi , получаем уравнение параболы в координатной форме:

P+r\cdot\cos\varphi \quad \Leftrightarrow \quad r=\frac{p}{1-\cos\varphi},

что и требовалось доказать. Заметим, что в полярных координатах уравнения эллипса, гиперболы и параболы совпадают, но описывают разные линии, поскольку отличаются эксцентриситетами ( 0\leqslant e<1 для эллипса, e=1 для параболы, e>1 для гиперболы).

Геометрический смысл параметра в уравнении параболы

Поясним геометрический смысл параметра p в каноническом уравнении параболы. Подставляя в уравнение (3.51) x=\frac{p}{2} , получаем y^2=p^2 , т.е. y=\pm p . Следовательно, параметр p - это половина длины хорды параболы, проходящей через её фокус перпендикулярно оси параболы.

Фокальным параметром параболы , так же как для эллипса и для гиперболы, называется половина длины хорды, проходящей через её фокус перпендикулярно фокальной оси (см. рис.3.45,в). Из уравнения параболы в полярных координатах при \varphi=\frac{\pi}{2} получаем r=p , т.е. параметр параболы совпадает с её фокальным параметром.


Замечания 3.11.

1. Параметр p параболы характеризует её форму. Чем больше p , тем шире ветви параболы, чем ближе p к нулю, тем ветви параболы уже (рис.3.46).

2. Уравнение y^2=-2px (при p>0 ) определяет параболу, которая расположена слева от оси ординат (рис. 3.47,a). Это уравнение сводится к каноническому при помощи изменения направления оси абсцисс (3.37). На рис. 3.47,a изображены заданная система координат Oxy и каноническая Ox"y" .

3. Уравнение (y-y_0)^2=2p(x-x_0),\,p>0 определяет параболу с вершиной O"(x_0,y_0) , ось которой параллельна оси абсцисс (рис.3.47,6). Это уравнение сводится к каноническому при помощи параллельного переноса (3.36).

Уравнение (x-x_0)^2=2p(y-y_0),\,p>0 , также определяет параболу с вершиной O"(x_0,y_0) , ось которой параллельна оси ординат (рис.3.47,в). Это уравнение сводится к каноническому при помощи параллельного переноса (3.36) и переименования координатных осей (3.38). На рис. 3.47,б,в изображены заданные системы координат Oxy и канонические системы координат Ox"y" .

4. y=ax^2+bx+c,~a\ne0 является параболой с вершиной в точке O"\!\left(-\frac{b}{2a};\,-\frac{b^2-4ac}{4a}\right) , ось которой параллельна оси ординат, ветви параболы направлены вверх (при a>0 ) или вниз (при a<0 ). Действительно, выделяя полный квадрат, получаем уравнение

Y=a\left(x+\frac{b}{2a}\right)^2-\frac{b^2}{4a}+c \quad \Leftrightarrow \quad \!\left(x+\frac{b}{2a}\right)^2=\frac{1}{a}\left(y+\frac{b^2-4ac}{4a}\right)\!,

которое приводится к каноническому виду (y")^2=2px" , где p=\left|\frac{1}{2a}\right| , при помощи замены y"=x+\frac{b}{2a} и x"=\pm\!\left(y+\frac{b^2-4ac}{4a}\right) .


Знак выбирается совпадающим со знаком старшего коэффициента a . Эта замена соответствует композиции: параллельного переноса (3.36) с x_0=-\frac{b}{2a} и y_0=-\frac{b^2-4ac}{4a} , переименования координатных осей (3.38), а в случае a<0 еще и изменения направления координатной оси (3.37). На рис.3.48,а,б изображены заданные системы координат Oxy и канонические системы координат O"x"y" для случаев a>0 и a<0 соответственно.

5. Ось абсцисс канонической системы координат является осью симметрии параболы , поскольку замена переменной y на -y не изменяет уравнения (3.51). Другими словами, координаты точки M(x,y) , принадлежащей параболе, и координаты точки M"(x,-y) , симметричной точке M относительно оси абсцисс, удовлетворяют уравнению (3.S1). Оси канонической системы координат называются главными осями параболы .


Пример 3.22. Изобразить параболу y^2=2x в канонической системе координат Oxy . Найти фокальный параметр, координаты фокуса и уравнение директрисы.

Решение. Строим параболу, учитывая её симметрию относительно оси абсцисс (рис.3.49). При необходимости определяем координаты некоторых точек параболы. Например, подставляя x=2 в уравнение параболы, получаем y^2=4~\Leftrightarrow~y=\pm2 . Следовательно, точки с координатами (2;2),\,(2;-2) принадлежат параболе.

Сравнивая заданное уравнение с каноническим (3.S1), определяем фокальный параметр: p=1 . Координаты фокуса x_F=\frac{p}{2}=\frac{1}{2},~y_F=0 , т.е. F\!\left(\frac{1}{2},\,0\right) . Составляем уравнение директрисы x=-\frac{p}{2} , т.е. x=-\frac{1}{2} .

Общие свойства эллипса, гиперболы, параболы

1. Директориальное свойство может быть использовано как единое определение эллипса, гиперболы, параболы (см. рис.3.50): геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e , называется:

а) эллипсом , если 0\leqslant e<1 ;

б) гиперболой , если e>1 ;

в) параболой , если e=1 .

2. Эллипс, гипербола, парабола получаются в сечениях кругового конуса плоскостями и поэтому называются коническими сечениями . Это свойство также может служить геометрическим определением эллипса, гиперболы, параболы.

3. К числу общих свойств эллипса, гиперболы и параболы можно отнести биссекториальное свойство их касательных. Под касательной к линии в некоторой её точке K понимается предельное положение секущей KM , когда точка M , оставаясь на рассматриваемой линии, стремится к точке K . Прямая, перпендикулярная касательной к линии и проходящая через точку касания, называется нормалью к этой линии.

Биссекториальное свойство касательных (и нормалей) к эллипсу, гиперболе и параболе формулируется следующим образом: касательная (нормаль) к эллипсу или к гиперболе образует равные углы с фокальными радиусами точки касания (рис.3.51,а,б); касательная (нормаль) к параболе образует равные углы с фокальным радиусом точки касания и перпендикуляром, опущенным из нее на директрису (рис.3.51,в). Другими словами, касательная к эллипсу в точке K является биссектрисой внешнего угла треугольника F_1KF_2 (а нормаль - биссектрисой внутреннего угла F_1KF_2 треугольника); касательная к гиперболе является биссектрисой внутреннего угла треугольника F_1KF_2 (а нормаль - биссектрисой внешнего угла); касательная к параболе является биссектрисой внутреннего угла треугольника FKK_d (а нормаль - биссектрисой внешнего угла). Биссекториальное свойство касательной к параболе можно сформулировать так же, как для эллипса и гиперболы, если считать, что у параболы имеется второй фокус в бесконечно удаленной точке.

4. Из биссекториальных свойств следуют оптические свойства эллипса, гиперболы и параболы , поясняющие физический смысл термина "фокус". Представим себе поверхности, образованные вращением эллипса, гиперболы или параболы вокруг фокальной оси. Если на эти поверхности нанести отражающее покрытие, то получаются эллиптическое, гиперболическое и параболическое зеркала. Согласно закону оптики, угол падения луча света на зеркало равен углу отражения, т.е. падающий и отраженный лучи образуют равные углы с нормалью к поверхности, причем оба луча и ось вращения находятся в одной плоскости. Отсюда получаем следующие свойства:

– если источник света находится в одном из фокусов эллиптического зеркала, то лучи света, отразившись от зеркала, собираются в другом фокусе (рис.3.52,а);

– если источник света находится в одном из фокусов гиперболического зеркала, то лучи света, отразившись от зеркала, расходятся так, как если бы они исходили из другого фокуса (рис.3.52,б);

– если источник света находится в фокусе параболического зеркала, то лучи света, отразившись от зеркала, идут параллельно фокальной оси (рис.3.52,в).

5. Диаметральное свойство эллипса, гиперболы и параболы можно сформулировать следующим образом:

середины параллельных хорд эллипса (гиперболы) лежат на одной прямой, проходящей через центр эллипса (гиперболы) ;

середины параллельных хорд параболы лежат на прямой, коллинеарной оси симметрии параболы .

Геометрическое место середин всех параллельных хорд эллипса (гиперболы, параболы) называют диаметром эллипса (гиперболы, параболы) , сопряженным к этим хордам.

Это определение диаметра в узком смысле (см. пример 2.8). Ранее было дано определение диаметра в широком смысле, где диаметром эллипса, гиперболы, параболы, а также других линий второго порядка называется прямая, содержащая середины всех параллельных хорд. В узком смысле диаметром эллипса является любая хорда, проходящая через его центр (рис.3.53,а); диаметром гиперболы является любая прямая, проходящая через центр гиперболы (за исключением асимптот), либо часть такой прямой (рис.3.53,6); диаметром параболы является любой луч, исходящий из некоторой точки параболы и коллинеарный оси симметрии (рис.3.53,в).

Два диаметра, каждый их которых делит пополам все хорды, параллельные другому диаметру, называются сопряженными. На рис.3.53 полужирными линиями изображены сопряженные диаметры эллипса, гиперболы, параболы.

Касательную к эллипсу (гиперболе, параболе) в точке K можно определить как предельное положение параллельных секущих M_1M_2 , когда точки M_1 и M_2 , оставаясь на рассматриваемой линии, стремятся к точке K . Из этого определения следует, что касательная, параллельная хордам, проходит через конец диаметра, сопряженного к этим хордам.

6. Эллипс, гипербола и парабола имеют, кроме приведенных выше, многочисленные геометрические свойства и физические приложения. Например, рис.3.50 может служить иллюстрацией траекторий движения космических объектов, находящихся в окрестности центра F притяжения.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Определение 1. Параболой называется множество всех точек плоскости, каждая из которых одинаково удалена от данной точки, называемой фокусом, и от данной прямой, не проходящей через данную точку и называемой директрисой.

Составим уравнение параболы с фокусом в данной точке F и директрисой которой является прямая d, не проходящая через F. Выберем прямоугольную систему координат следующим образом: ось Ох проведем через фокус F перпендикулярно директрисе d в направлении от d к F, а начало координат О расположим посередине между фокусом и директрисой (рис. 1).

Определение 2. Расстояние от фокуса F до директрисы d называется параметром параболы и обозначается через р (р > 0).

Из рис. 1 видно, что p = FK, следовательно, фокус имеет координаты F (р/2; 0) , а уравнение директрисы имеет вид х = – р/2, или

Пусть М(х; у) – произвольная точка параболы. Соединим точку М с F ипроведем MN d. Непосредственно из рис. 1 видно, что

а по формуле расстояния между двумя точками

Согласно определению параболы, MF = MN, (1)

следовательно, (2)

Уравнение (2) является искомым уравнением параболы. Для упрощения уравнения (2) преобразуем его следующим образом:

т.е.,

Координаты х и у точки М параболы удовлетворяют условию (1), а следовательно, и уравнению (3).

Определение 3. Уравнение (3) называется каноническим уравнением параболы.

2. Исследование формы параболы по ее уравнению. Определим форму параболы по ее каноническому уравнению (3).

1) Координаты точки О (0; 0) удовлетворяют уравнению (3), следовательно, парабола, определяемая этим уравнением, проходит через начало координат.

2) Так как в уравнение (3) переменная у входит только в четной степени, то парабола у 2 = 2рх симметрична относительно оси абсцисс.

3) Так как р > 0 , то из (3) следует х ≥ 0. Следовательно, парабола у 2 = 2рх расположена справа от оси Оу .

4) При возрастании абсциссы х от 0 до +∞ ордината у изменяется от 0 до ± ∞, т.е. точки параболы неограниченно удаляются как от оси Ох , так и от оси Оу .

Парабола у 2 = 2рх имеет форму, изображенную на рис. 2.

Определение 4. Ось Ох называется осью симметрии параболы . Точка О (0; 0) пересечения параболы с осью симметрии называется вершиной параболы . Отрезок FM называется фокальным радиусом точки М .

Замечание. Для составления уравнения параболы вида у 2 = 2рх мы специальным образом выбрали прямоугольную систему координат (см. п. 1). Если же систему координат выбрать другим образом, то и уравнение параболы будет иметь иной вид.



а


Так, например, если направить ось Ох от фокуса к директрисе (рис. 3, а

у 2 = –2рх. (4)

F(–р/2; 0) , а директриса d задана уравнением х = р/2.

Если ось Оу проведем через фокус F d в направлении от d к F , а начало координат О расположим посередине между фокусом и директрисой (рис. 3, б ), то уравнение параболы пример вид

х 2 = 2ру. (5)

Фокус такой параболы имеет координаты F (0; р/2) , а директриса d задана уравнением у=–р/2.

Если ось Оу проведем через фокус F перпендикулярно к директрисе d в направлении от F к d (рис. 3, в ), то уравнение параболы примет вид

х 2 = –2ру (6)

Координаты ее фокуса будут F (0; –р/2) , а уравнением директрисы d будет у = р/2.

Об уравнения (4), (5), (6) говорят, что они имеют простейший вид.

3. Параллельный перенос параболы. Пусть дана парабола с вершиной в точке О" (а; b) , ось симметрии которой параллельна оси Оу , а ветви направлены вверх (рис. 4). Требуется составить уравнение параболы.

(9)

Определение 5. Уравнение (9) называется уравнением параболы со смещенной вершиной.

Преобразуем это уравнение следующим образом:

Положив

будем иметь (10)

Нетрудно показать, что для любых А, В, С график квадратного трехчлена (10) представляет собой параболу в смысле определения 1. Уравнение параболы вида (10) изучалось в школьном курсе алгебре.


УПРАЖНЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

№1. Составить уравнение окружности:

a. с центром в начале координат и радиусом 7;

b. с центром в точке (-1;4) и радиусом 2.

Построить данные окружности в прямоугольной декартовой системе координат.

№2. Составить каноническое уравнение эллипса с вершинами

и фокусами

№3. Построить эллипс, заданный каноническим уравнением:

1) 2)

№4. Составить каноническое уравнение эллипса с вершинами



и фокусами

№5. Составить каноническое уравнение гиперболы с вершинами

и фокусами

№6. Составить каноническое уравнение гиперболы, если:

1. расстояние между фокусами , а между вершинами

2. действительная полуось , а эксцентриситет ;

3. фокусы на оси , действительная ось 12, а мнимая 8.

№7. Построить гиперболу, заданную каноническим уравнением:

1) 2) .

№8. Составить каноническое уравнение параболы, если:

1) парабола расположена в правой полуплоскости симметрично относительно оси и её параметр ;

2) парабола расположена в левой полуплоскости симметрично относительно оси и её параметр .

Построить эти параболы, их фокусы и директрисы.

№9. Определить тип линии, если её уравнение:


ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

1. Векторы в пространстве.

1.1. Что такое вектор?

1.2. Что такое абсолютная величина вектора?

1.3. Какие виды векторов в пространстве Вы знаете?

1.4. Какие действия можно выполнять с ними?

1.5. Что такое координаты вектора? Как их найти?

2. Действия над векторами, заданными своими координатами.

2.1. Какие действия можно выполнять с векторами, заданными в координатной форме (правила, равенства, примеры); как найти абсолютную величину такого вектора.

2.2. Свойства:

2.2.1 коллинеарных;

2.2.2 перпендикулярных;

2.2.3 компланарных;

2.2.4 равных векторов.
(формулировки, равенства).

3. Уравнение прямой. Прикладные задачи.

3.1. Какие виды уравнения прямой Вы знаете (уметь записывать и интерпретировать по записи);

3.2. Как исследовать на параллельность – перпендикулярность две прямые, заданные уравнениями с угловым коэффициентом или общими уравнениями?

3.3. Как найти расстояние от точки до прямой, между двумя точками?

3.4. Как найти угол между прямыми, заданными общими уравнениями прямой или уравнениями с угловым коэффициентом?

3.5. Как найти координаты середины отрезка и длину этого отрезка?

4. Уравнение плоскости. Прикладные задачи.

4.1. Какие виды уравнения плоскости Вы знаете (уметь записывать и интерпретировать по записи)?

4.2. Как исследовать на параллельность – перпендикулярность прямые в пространстве?

4.3. Как найти расстояние от точки до плоскости и угол между плоскостям?.

4.4. Как исследовать взаимное расположение прямой и плоскости в пространстве?

4.5. Виды уравнения прямой в пространстве: общее, каноническое, параметрическое, проходящей через две данные точки.

4.6. Как найти угол между прямыми и расстояние между точками в пространстве?

5. Линии второго порядка.

5.1. Эллипс: определение, фокусы, вершины, большая и малая оси, фокальные радиусы, эксцентриситет, уравнения директрис, простейшие (или канонические) уравнения эллипса; чертеж.

5.2. Гипербола: определение, фокусы, вершины, действительная и мнимая оси, фокальные радиусы, эксцентриситет, уравнения директрис, простейшие (или канонические) уравнения гиперболы; чертеж.

5.3. Парабола: определение, фокус, директриса, вершина, параметр, ось симметрии, простейшие (или канонические) уравнения параболы; чертеж.

Примечание к 4.1, 4.2, 4.3: Для каждой линии 2го порядка уметь описывать построение.


ЗАДАНИЯ ДЛЯ САМОПРОВЕРКИ

1.Даны точки: , где N – номер студента по списку.

3) найти расстояние от точки М до плоскости Р.

4. Построить линию второго порядка, заданную своим каноническим уравнением:

.


ЛИТЕРАТУРА

1. Высшая математика для экономистов - Учебник для вузов под ред. Н.Ш. Кремер и др., - Москва, ЮНИТИ, 2003.

2. Барковський В.В., Барковська Н.В. - Вища математика для економістів – Київ, ЦУЛ, 2002.

3. Суворов И.Ф. - Курс высшей математики. - М., Высшая школа, 1967.

4. Тарасов Н.П. - Курс высшей математики для техникумов. - М.; Наука, 1969.

5. Зайцев И.Л. - Элементы высшей математики для техникумов. - М.; Наука, 1965.

6. Валуцэ Н.Н., Дилигул Г.Д. - Математика для техникумов. - М.; Наука, 1990.

7. Шипачев В.С. - Высшая математика. Учебник для вузов – М.: Высшая школа, 2003.

Параболой называется геометрическое место точек, для каждой из которых расстояние до некоторой фиксиро­ванной точки плоскости, называемой фокусом, равно расстоянию до некоторой фиксированной прямой, называемой директрисой (предполагается, что эта прямая не проходит через фокус).

Фокус параболы принято обозначать буквойF, расстояние от фокуса до директрисы-буквой р . Величину p называют параметром параболы. Изображение параболы дано на рис. 61 (исчерпывающее пояснение этого чертежа читатель получит после чтения нескольких следующих пунктов).

Замечание. В соответствии с изложеннымв п ° 100 говорят, чтопарабола имеет эксцентриситет =1.

Пусть дана какая-нибудь парабола (вместе с тем мы считаем заданным параметр р). Введем на плоскости декартову прямоугольную систе­му координат, оси которой рас­положим специальным образом по отношению к данной парабо­ле. Именно, ось абсцисс прове­дем через фокус перпендикуляр­но к директрисе и будем считать ее направленной от директрисы к фокусу; начало координат рас­положим посредине между фоку­сом и директрисой (рис. 61). Выведем уравнение данной пара­болы в этой системе координат.

Возьмем на плоскости произ­вольную точку М и обозначим ее координаты через х и у. Обоз­начим далее через r расстояние от точки М до фокуса (r=FM), через r - расстояние от точки М до директрисы. Точка М будет находиться на (данной) параболе в том и только в том случае, когда

Чтобы получить искомое уравнение, нужно в равенстве (1) заменить переменные r и а их выражениями через текущие координаты х, у. Заметим, что фокус F имеет координаты ; приняв это во внимание и применяя формулу (2) п ° 18. находим:

(2)

Обозначим через Q основание перпендикуляра, опущенного из точки М на директрису. Очевидно, точка Q имеет координаты ; отсюда ииз формулы (2) п ° 18 получаем:

(3),

(при извлечении корня мы взяли со своим знаком, так как - число положительное; это следует из того, что точка М(х; у) должна находиться с той стороны от директрисы, где находится фокус, т. е. должно быть х > , откуда Заменяя в равенстве (1) г и d их выражениями (2) и (3), найдем:

(4)

Это и есть уравнение рассматриваемой параболы в назначен­ной системе координат, так как ему удовлетворяют координаты точки М(х; у) в том и только в том случае, когда точка М лежит на данной параболе.

Желая получить уравнение параболы в более про­стом виде, возведем обе части равенства (4) в квадрат; по­лучим:

(5),

Уравнение (6) выведено нами как следствие уравнения (4). Легко показать, что уравнение (4) в свою очередь может быть выведено, как следствие уравнения (6). В самом деле, из уравнения (6) очевидным образом («обратным ходом») вы­водится уравнение (5); далее, из уравнения (5) имеем.

Парабола есть множество точек плоскости, равноудаленных от данной точки (фокуса ) и от данной прямой, не проходящей через данную точку (директрисы ), расположенных в той же плоскости (рис.5).

При этом система координат выбрана так, что ось
проходит перпендикулярно директрисе через фокус, положительное ее направление выбрано от директрисы в сторону фокуса. Ось ординат проходит параллельно директрисе, посередине между директрисой и фокусом, откуда уравнение директрисы
, координаты фокуса
. Начало координат является вершиной параболы, а ось абсцисс – ее осью симметрии. Эксцентриситет параболы
.

В ряде случаев рассматриваются параболы, заданные уравнениями

а)

б)
(для всех случаев
)

в)
.

В случае а) парабола симметрична относительно оси
и направлена в ее отрицательную сторону (рис.6).

В случаях б) и в) осью симметрии является ось
(рис.6). Координаты фокусов для этих случаев:

а)
б)
в)
.

Уравнение директрис:

а)
б)
в)
.

Пример 4. Парабола с вершиной в начале координат проходит через точку
и симметрична относительно оси
. Написать ее уравнение.

Решение:

Так как парабола симметрична относительно оси
и проходит через точкус положительной абсциссой, то она имеет вид, представленный на рис.5.

Подставляя координаты точки в уравнение такой параболы
, получим
, т.е.
.

Следовательно, искомое уравнение

,

фокус этой параболы
, уравнение директрисы
.

4. Преобразование уравнения линии второго порядка к каноническому виду.

Общее уравнение второй степени имеет вид

где коэффициенты
одновременно в нуль не обращаются.

Всякая определяемая уравнением (6) линия называется линией второго порядка. С помощью преобразования системы координат уравнение линии второго порядка может быть приведено к простейшему (каноническому) виду.

1. В уравнении (6)
. В данном случае уравнение (6) имеет вид

Оно преобразуется к простейшему виду с помощью параллельного переноса осей координат по формулам

(8)

где
– координаты нового начала
(в старой системе координат). Новые оси
и
параллельны старым. Точка
является центром эллипса или гиперболы и вершиной в случае параболы.

Приведение уравнения (7) к простейшему виду удобно делать методом выделения полных квадратов аналогично тому, как это делалось для окружности.

Пример 5. Уравнение линии второго порядка привести к простейшему виду. Определить вид и расположение этой линии. Найти координаты фокусов. Сделать чертеж.

Решение:

Группируем члены, содержащие только и только, вынося коэффициенты прииза скобку:

Дополняем выражения в скобках до полных квадратов:

Таким образом, данное уравнение преобразовано к виду

Обозначаем

или

Сравнивая с уравнениями (8), видим, что эти формулы определяют параллельный перенос осей координат в точку
. В новой системе координат уравнение запишется так:

Перенося свободный член вправо и разделив на него, получим:

.

Итак, данная линия второго порядка есть эллипс с полуосями
,
. Центр эллипса находится в новом начале координат
, а его фокальная ось есть ось
. Расстояние фокусов от центра, так что новые координаты правого фокуса
. Старые координаты этого же фокуса находятся из формул параллельного переноса:

Аналогично, новые координаты левого фокуса
,
. Его старые координаты:
,
.

Чтобы начертить данный эллипс, наносим на чертеж старые и новые координатные оси. По обе стороны от точки
откладываем по оси
отрезки длины
, а по оси
– длины
; получив таким образом вершины эллипса, чертим сам эллипс (рис. 7).

Замечание . Для уточнения чертежа полезно найти точки пересечения данной линии (7) со старыми координатными осями. Для этого надо в формуле (7) положить сначала
, а затем
и решить получающиеся уравнения.

Появления комплексных корней будет означать, что линия (7) соответствующую координатную ось не пересекает.

Например, для эллипса только что разобранной задачи получаются такие уравнения:

Второе из этих уравнений имеет комплексные корни, так что эллипс ось
не пересекает. Корни первого уравнения:

В точках
и
эллипс пересекает ось
(рис.7).

Пример 6. Привести к простейшему виду уравнение линии второго порядка . Определить вид и расположении линии, найти координаты фокуса.

Решение:

Так как член с отсутствует, то надо выделить полный квадрат только по:

Выносим также за скобку коэффициент при

.

Обозначаем

или

Тем самым производится параллельный перенос системы координат в точку
. После переноса уравнение примет вид

.

Отсюда следует, что данная линия есть парабола (рис.8), точка
является ее вершиной. Парабола направлена в отрицательную сторону оси
и симметрична относительно этой оси. Величинадля нее равна.

Поэтому фокус имеет новые координаты

.

Его старые координаты

Если в данном уравнении положить
или
, то обнаружим, что парабола пересекает ось
в точке
, а ось
она не пересекает.

2. В уравнении (1)
. Общее уравнение (1) второй степени преобразуется к виду (2), т.е. к рассмотренному в п.1. случаю, с помощь поворота координатных осей на угол
по формулам

(9)

где
– новые координаты. Угол
находится из уравнения

Оси координат поворачиваются при этом так, чтобы новые оси
и
были параллельны осям симметрии линии второго порядка.

Зная
, можно найти
и
по формулам тригонометрии

,
.

Если угол поворота
условиться считать острым, то в этих формулах надо брать знак плюс, и для
надо взять также положительное решение уравнения (5).

В частности, при
систему координат нужно повернуть на угол
. Формулы поворота на уголимеют вид:

(11)

Пример 7. Уравнение линии второго порядка привести к простейшему виду. Установить вид и расположение этой линии.

Решение:

В данном случае
, 1
,
, поэтому угол поворота
находится из уравнения

.

Решение этого уравнения
и
. Ограничиваясь острым углом
, берем первое из них. Тогда

,

,
.

Подставляя эти значения ив данное уравнение

Раскрывая скобки и приводя подобные, получим

.

Наконец, разделив на свободный член, придем к уравнению эллипса

.

Отсюда следует, что
,
, причем большая ось эллипса направлена по оси
, а малая – по оси
.

Получится точка
, радиус которой
наклонен к оси
под углом
, для которого
. Следовательно, через эту точку
и пройдет новая ось абсцисс. Затем отмечаем на осях
и
вершины эллипса и чертим эллипс (рис.9).

Заметим, что данный эллипс пересекает старые координатные оси в точках, которые находятся из квадратных уравнений (если в данном уравнении положить
или
):

и
.

Функция вида , где называется квадратичной функцией .

График квадратичной функции – парабола .


Рассмотрим случаи:

I СЛУЧАЙ, КЛАССИЧЕСКАЯ ПАРАБОЛА

То есть , ,

Для построения заполняем таблицу, подставляя значения x в формулу:


Отмечаем точки (0;0); (1;1); (-1;1) и т.д. на координатной плоскости (чем с меньшим шагом мы берем значения х (в данном случае шаг 1), и чем больше берем значений х, тем плавнее будет кривая), получаем параболу:


Нетрудно заметить, что если мы возьмем случай , , , то есть , то мы получим параболу, симметричную относительно оси (ох). Убедиться в этом несложно, заполнив аналогичную таблицу:


II СЛУЧАЙ, «a» ОТЛИЧНО ОТ ЕДИНИЦЫ

Что же будет, если мы будем брать , , ? Как изменится поведение параболы? При title="Rendered by QuickLaTeX.com" height="20" width="55" style="vertical-align: -5px;"> парабола изменит форму, она “похудеет” по сравнению с параболой (не верите – заполните соответствующую таблицу – и убедитесь сами):


На первой картинке (см. выше) хорошо видно, что точки из таблицы для параболы (1;1), (-1;1) трансформировались в точки (1;4), (1;-4), то есть при тех же значениях ордината каждой точки умножилась на 4. Это произойдет со всеми ключевыми точками исходной таблицы. Аналогично рассуждаем в случаях картинок 2 и 3.

А при парабола «станет шире» параболы :


Давайте подытожим:

1) Знак коэффициента отвечает за направление ветвей. При title="Rendered by QuickLaTeX.com" height="14" width="47" style="vertical-align: 0px;"> ветви направлены вверх, при - вниз.

2) Абсолютная величина коэффициента (модуля) отвечает за “расширение”, “сжатие” параболы. Чем больше , тем у’же парабола, чем меньше |a|, тем шире парабола.

III СЛУЧАЙ, ПОЯВЛЯЕТСЯ «С»

Теперь давайте введем в игру (то есть рассматриваем случай, когда ), будем рассматривать параболы вида . Нетрудно догадаться (вы всегда можете обратиться к таблице), что будет происходить смещение параболы вдоль оси вверх или вниз в зависимости от знака :



IV СЛУЧАЙ, ПОЯВЛЯЕТСЯ «b»

Когда же парабола “оторвется” от оси и будет, наконец, “гулять” по всей координатной плоскости? Когда перестанет быть равным .

Здесь для построения параболы нам понадобится формула для вычисления вершины: , .

Так вот в этой точке (как в точке (0;0) новой системы координат) мы будем строить параболу , что уже нам по силам. Если имеем дело со случаем , то от вершины откладываем один единичный отрезок вправо, один вверх, – полученная точка – наша (аналогично шаг влево, шаг вверх – наша точка); если имеем дело с , например, то от вершины откладываем один единичный отрезок вправо, два – вверх и т.д.

Например, вершина параболы :

Теперь главное уяснить, что в этой вершине мы будем строить параболу по шаблону параболы , ведь в нашем случае.

При построении параболы после нахождения координат вершины очень удобно учитывать следующие моменты:

1) парабола обязательно пройдет через точку . Действительно, подставив в формулу x=0, получим, что . То есть ордината точки пересечения параболы с осью (оу), это . В нашем примере (выше), парабола пересекает ось ординат в точке , так как .

2) осью симметрии параболы является прямая , поэтому все точки параболы будут симметричны относительно нее. В нашем примере, мы сразу берем точку (0; -2) и строим ей симметричную относительно оси симметрии параболы, получим точку (4; -2), через которую будет проходить парабола.

3) Приравнивая к , мы узнаем точки пересечения параболы с осью (ох). Для этого решаем уравнение . В зависимости от дискриминанта, будем получать одну (, ), две ( title="Rendered by QuickLaTeX.com" height="14" width="54" style="vertical-align: 0px;">, ) или нИсколько () точек пересечения с осью (ох) . В предыдущем примере у нас корень из дискриминанта – не целое число, при построении нам особо нет смысла находить корни, но мы видим четко, что две точки пересечения с осью (ох) у нас будут (так как title="Rendered by QuickLaTeX.com" height="14" width="54" style="vertical-align: 0px;">), хотя, в общем, это видно и без дискриминанта.

Итак, давайте выработаем

Алгоритм для построения параболы, если она задана в виде

1) определяем направление ветвей (а>0 – вверх, a<0 – вниз)

2) находим координаты вершины параболы по формуле , .

3) находим точку пересечения параболы с осью (оу) по свободному члену , строим точку, симметричную данной относительно оси симметрии параболы (надо заметить, бывает, что эту точку невыгодно отмечать, например, потому, что значение велико… пропускаем этот пункт…)

4) В найденной точке – вершине параболы (как в точке (0;0) новой системы координат) строим параболу . Если title="Rendered by QuickLaTeX.com" height="20" width="55" style="vertical-align: -5px;">, то парабола становится у’же по сравнению с , если , то парабола расширяется по сравнению с

5) Находим точки пересечения параболы с осью (оу) (если они еще сами “не всплыли”), решая уравнение

Пример 1


Пример 2


Замечание 1. Если же парабола изначально нам задана в виде , где – некоторые числа (например, ), то построить ее будет еще легче, потому что нам уже заданы координаты вершины . Почему?

Возьмем квадратный трехчлен и выделим в нем полный квадрат: Посмотрите, вот мы и получили, что , . Мы с вами ранее называли вершину параболы , то есть теперь , .

Например, . Отмечаем на плоскости вершину параболы , понимаем, что ветви направлены вниз, парабола расширена (относительно ). То есть выполняем пункты 1; 3; 4; 5 из алгоритма построения параболы (см. выше).

Замечание 2. Если парабола задана в виде, подобном этому (то есть представлен в виде произведения двух линейных множителей), то нам сразу видны точки пересечения параболы с осью (ох). В данном случае – (0;0) и (4;0). В остальном же действуем согласно алгоритму, раскрыв скобки.