Ядерная оболочка функции. Особенности строения ядра. Строение и функции ядра клетки

Функции ядерной оболочки (кариолемма) состоят в отграничении ядерного содержимого от цитоплазмы, поддержании условий, необходимых для выполнения ядром функций, в частности генетических, в обеспечении доступа к генетическому материалу и структурам (ДНК, хромосомы) сигналов (транскрипционные факторы), меняющих функциональное состояние генов, в упорядочении пространственной организации генетических структур и процессов, в реализации двусторонних ядерно-цитоплазматических обменов и взаимодействий.

Механизмы ядерно-цитоплазматических транспортных потоков разнообразны. Ионы, низкомолекулярные соединения (сахара, аминокислоты, нуклеотиды), некоторые белки (гистоны) проникают в ядро относительно легко и вне связи с порами ядерной оболочки. Известен механизм проникновения в ядро стероидных, в частности половых гормонов (эстрадиол, прогестерон, тестостерон). Будучи жирорастворимыми, они легко проходят через плазмалемму из околоклеточной среды в цитоплазму клетки, где комплексируются с цитозольными рецепторами (семейство «белков теплового шока»). Такой комплекс проходит через ядерную оболочку и связывается с гормонидуцируемыми генами. В итоге - активация последних, обусловливающая цепь событий, необходимых для полового развития организма и осуществления им репродуктивной функции. В рассмотренном примере белки теплового шока - это транскрипционные факторы в неактивном состоянии, активируемые путем взаимодействия с гормоном (рис. 2.9).

Крупные белковые молекулы, рибонуклеопротеидные комплексы (субъединицы рибосом) попадают в ядро или покидают его через особые структуры - ядерные поры. Это проверено введением в цитоплазму клетки частиц коллоидного золота (диаметр порядка 14 нм), которые

Рис. 2.9. Комплексирование сигнальной молекулы (стероидный гормон) с ци-тозольным рецептором (для полового гормона - белки «теплового шока»), приводящее к транспорту в ядро и активации специфического транскрипционного фактора (схема). 1 - сигнальная молекула; 2 - цитозольный рецептор: участок (центр) связывания сигнальной молекулы; 3 - цитозольный рецептор: участок (домен) связывания сигнальной молекулы; 4 - цитозольный рецептор: участок (домен) связывания ДНК; 5 - цитозольный рецептор: участок (домен) активации транскрипции; 6 - ингибирующий белок

проникают из цитоплазмы в ядро, предварительно скапливаясь вблизи ядерных пор.

Ядерная оболочка выполняет в отношении главных ядерных структур хромосом организующую функцию. Преобразования ядерной оболочки и хромосом в митозе взаимосвязаны. В конце анафазы перед началом их декомпактизации хромосомы устанавливают контакты с мембранными пузырьками, которые затем, параллельно процессу де-компактизации, слагаются в ядерную оболочку. Если в эксперименте вызвать декомпактизацию хромосом уже в метафазе митоза, то каждая из них вступит в контакт с мембранным пузырьком и приобретет самостоятельную отдельную оболочку, имеющую строение ядерной. Ядерная оболочка состоит из двух мембран, разделенных околоядерным (перинуклеарным) пространством. Несмотря на сходство электронно-микроскопической картины, скорость обмена фосфолипи-дов во внешней мембране в 4 раза превосходит скорость их обмена во внутренней. Перинуклеарное пространство (20-50 нм) сообщается с канальцами цито(эндо)плазматической сети. К наружной мембране ядерной оболочки прикрепляются рибосомы и полисомы. В околоядерной зоне цитоплазмы повышено содержание микрофиламентов и микротрубочек. К внутренней мембране, за исключением участков, занятых

порами, прилежит высоко компактизированный хроматин. Между мембраной и хроматином располагается ядерная ламина (плотная пластинка). Она образована промежуточными микрофиламентами (10 нм) в комплексе с белками внутренней ядерной мембраны. Учитывая прочность связи между пластинкой и хроматином, можно думать, что этим контактом обеспечивается пространственная упорядоченность расположения хромосом в объеме интерфазного ядра, что, возможно, имеет функциональный смысл. Так, образование молекул гемоглобина требует скоординированной транскрипции генов α- и β-глобинов, которые у человека расположены, соответственно, на хромосомах 16 и 11. Такая согласованность может достигаться благодаря пространственному сближению названных хромосом. Плотная пластинка выполняет структурную функцию: при ее наличии ядро сохраняет форму в отсутствии обеих мембран ядерной оболочки.

Ядерная пора (поровый комплекс) - структура диаметром порядка 100 нм, в образовании которой принимают участие обе мембраны ядерной оболочки и более 1000 белков (рис. 2.10). Число ядерных пор на 1 мкм2 ядерной оболочки зависит от интенсивности синтетических процессов в клетке. У низших позвоночных, зрелые эритроциты которых сохраняют ядра, хотя синтезы в них сведены к нулю, на 1 мкм2 ядерной поверхности приходится до 5 пор, тогда как в активно образующих гемоглобин эритробластах - 30. Оболочка ядра зрелого сперматозоида лишена пор. Относительное количество ядерных пор различается у жи-

Рис. 2-10. Поровый комплекс (схема): а - внешний вид ядерных пор в ядре ооцитов; б - схема строения ядерной поры: 1 - кольцо; 2 - спицы; 3 - центральная гранула; 4 - хроматин; 5 - рибосомы

вотных разных видов: для лимфоцитов мышей эта цифра составляет 3,3 на 1 мкм2, а для лимфоцитов человека - порядка 5.

Структуры, аналогичные по строению поровым комплексам, в качестве редких находок обнаружены в мембранах гранулярной эндоплаз-матической сети. Их функция неизвестна. Транслоконы, через которые образующиеся на рибосомах полипептиды проникают в просвет канальцев эндоплазматической сети, имеют другое строение (см. п. 2.4.4.4-а).

Ядро клетки - важнейшая ее органелла, место хранения и воспроизведения наследственной информации. Это мембранная структура, занимающая 10-40 % которой очень важны для жизнедеятельности эукариотов. Однако даже без наличия ядра реализация наследственной информации возможна. Примером данного процесса является жизнедеятельность бактериальных клеток. Тем не менее особенности строения ядра и его предназначение очень важны для

Расположение ядра в клетке и его структура

Ядро располагается в толще цитоплазмы и непосредственно контактирует с шероховатой и гладкой Оно окружено двумя мембранами, между которыми находится перинуклеарное пространство. Внутри ядра присутствует матрикс, хроматин и некоторое количество ядрышек.

Некоторые зрелые человеческие клетки не имеют ядра, а другие функционируют в условиях сильного угнетения его деятельности. В общем виде строение ядра (схема) представлено как ядерная полость, ограниченная кариолеммой от клетки, содержащая хроматин и ядрышки, фиксированные в нуклеоплазме ядерным матриксом.

Строение кариолеммы

Для удобства изучения клетки ядра, последнее следует воспринимать как пузырьки, ограниченные оболочками от других пузырьков. Ядро - это пузырек с наследственной информацией, находящийся в толще клетки. От ее цитоплазмы он ограждается бислойной липидной оболочкой. Строение оболочки ядра похожее на клеточную мембрану. В действительности их отличает только название и количество слоев. Без всего этого они являются одинаковыми по строению и функциям.

Строение кариолеммы (ядерной мембраны) двуслойное: она состоит из двух липидных слоев. Наружный билипидный слой кариолеммы непосредственно контактирует с шероховатым ретикулумом эндоплазмы клетки. Внутренняя кариолемма - с содержимым ядра. Между наружной и внутренней кариомембраной существует перинуклеарное пространство. Видимо, оно образовалось из-за электростатических явления - отталкивания участков глицериновых остатков.

Функцией ядерной мембраны является создание механического барьера, разделяющего ядро и цитоплазму. Внутренняя мембрана ядра служит местом фиксации ядерного матрикса - цепи белковых молекул, которые поддерживают объемную структуру. В двух ядерных мембранах существуют специальные поры: через них в цитоплазму к рибосомам выходит информационная РНК. В самой толще ядра находятся несколько ядрышек и хроматин.

Внутреннее строение нуклеоплазмы

Особенности строения ядра позволяют сравнить его с самой клеткой. Внутри ядра также присутствует особая среда (нуклеоплазма), представленная гель-золем, коллоидным раствором белков. Внутри нее есть нуклеоскелет (матрикс), представленный фибриллярными белками. Основное отличие состоит только в том, что в ядре присутствуют преимущественно кислые белки. Видимо, такая реакция среды нужна для сохранения химических свойств нуклеиновых кислот и протекания биохимических реакций.

Ядрышко

Строение клеточного ядра не может быть завершенным без ядрышка. Им является спирализованная рибосомальная РНК, которая находится в стадии созревания. Позднее из нее получится рибосома - органелла, необходимая для белкового синтеза. В структуре ядрышка выделяют два компонента: фибриллярный и глобулярный. Они различаются только при электронной микроскопии и не имеют своих мембран.

Фибриллярный компонент находится в центре ядрышка. Он представляет собой нити РНК рибосомального типа, из которых будут собираться рибосомные субъединицы. Если рассматривать ядро (строение и функции), то очевидно, что из них впоследствии будет образован гранулярный компонент. Это те же созревающие рибосомальные субъединицы, которые находятся на более поздних стадиях своего развития. Из них вскоре образуются рибосомы. Они удаляются из нуклеоплазмы через кариолеммы и попадают на мембрану шероховатой эндоплазматической сети.

Хроматин и хромосомы

Строение и клетки органично связаны: здесь присутствует только те структуры, которые нужны для хранения и воспроизведения наследственной информации. Также существует кариоскелет (матрикс ядра), функцией которого является поддержание формы органеллы. Однако самой важной составляющей ядра является хроматин. Это хромосомы, играющие роль картотек различных групп генов.

Хроматин представляет собой сложный белок, который состоит из полипетида четвертичной структуры, соединенного с нуклеиновой кислотой (РНК или ДНК). В плазмидах бактерий хроматин также присутствует. Почти четверть от всего веса хроматина составляют гистоны - белки, ответственные за "упаковку" наследственной информации. Эту особенность структуры изучает биохимия и биология. Строение ядра сложное как раз из-за хроматина и наличия процессов, чередующих его спирализацию и деспирализацию.

Наличие гистонов дает возможность уплотнять и укомплектовать нить ДНК в небольшом месте - в ядре клетки. Это происходит следующим образом: гистоны образуют нуклеосомы, которые представляю собой структуру наподобие бус. Н2В, Н3, Н2А и Н4 - это главные гистоновые белки. Нуклеосома образована четырьмя парами каждого из представленных гистонов. При этом гистон Н1 является линкерным: он связан с ДНК в месте е входа в нуклеосому. Упаковка ДНК происходит в результате "наматывания" линейной молекулы на 8 белков гистоновой структуры.

Строение ядра, схема которого представлена выше, предполагает наличие соленоидподобной структуры ДНК, укомплектованной на гистонах. Толщина данного конгломерата составляет порядка 30 нм. При этом структура может уплотняться и далее, чтобы занимать меньше места и менее подвергаться механическим повреждениям, неизбежно возникающим в процессе жизни клетки.

Фракции хроматина

Ядра клетки зациклены на том, чтобы поддерживать динамические процессы спирализации и деспирализации хроматина. Потому существует две главные его фракции: сильно спирализованная (гетерохроматин) и малоспирализованная (эухроматин). Они разделены как структурно, так и функционально. В гетерохроматине ДНК хорошо защищена от любых воздействий и не может транскрибироваться. Эухроматин защищен слабее, однако гены могут удваиваться для синтеза белка. Чаще всего участки гетерохроматина и эухроматина чередуются на протяжении длины всей хромосомы.

Хромосомы

Строение и функции которого описываются в данной публикации, содержит хромосомы. Это сложный и компактно упакованный хроматин, увидеть который можно при световой микроскопии. Однако это возможно только в случае, если на предметном стекле расположена клетка в стадии митотического или мейотического деления. Одним их этапов является спирализация хроматина с образованием хромосом. Их структура предельно проста: хромосома имеет теломеру и два плеча. У каждого многоклеточного организма одного вида одинаковое строение ядра. Таблица хромосомного набора у него также аналогичная.

Реализация функций ядра

Основные особенности строения ядра связаны с выполнением некоторых функций и необходимостью их контроля. Ядро играет роль хранилища наследственной информации, то есть это своего рода картотека с записанными последовательностями аминокислот всех белков, которые могут синтезироваться в клетке. Значит, для выполнения какой-либо функции клетка должна синтезировать которого закодирована в гене.

Чтобы ядро "понимало", какой конкретно белок нужно синтезировать в нужный час, существует система наружных (мембранных) и внутренних рецепторов. Информация от них поступает к ядру посредством молекулярных передатчиков. Наиболее часто это реализуется посредством аденилатциклазного механизма. Так на клетку воздействуют гормоны (адреналин, норадреналин) и некоторые лекарства с гидрофильной структурой.

Вторым механизмом передачи информации является внутренний. Он свойственен липофильным молекулам - кортикостероидам. Это вещество проникает через билипидную мембрану клетки и направляется к ядру, где взаимодействует с его рецептором. В результате активации рецепторных комплексов, расположенных на клеточной мембране (аденилатциклазный механизм) или на кариолемме, запускается реакция активации определенного гена. Он реплицируется, на его основании строится информационная РНК. Позднее по структуре последней синтезируется белок, выполняющий некоторую функцию.

Ядро многоклеточных организмов

В многоклеточном организме особенности строения ядра такие же, как и в одноклеточном. Хотя существуют некоторые нюансы. Во-первых, многоклеточность подразумевает, что у ряда клеток будет выделена своя специфическая функция (или несколько). Это значит, что некоторые гены постоянно будут деспирализованы, тогда как другие находятся в неактивном состоянии.

К примеру, в клетках жировой ткани синтез белков будет идти малоактивно, а потому большая часть хроматина спирализована. А в клетках, к примеру, экзокринной части поджелудочной железы, процессы биосинтеза белка идут постоянно. Потому их хроматин деспирализован. На тех участках, гены которых реплицируются чаще всего. При этом важна ключевая особенность: хромосомный набор всех клеток одного организма одинаков. Только из-за дифференциации функций в тканях некоторые из них выключаются из работы, а другие деспирализуются чаще прочих.

Безъядерные клетки организма

Существуют клетки, особенности строения ядра которых могут не рассматриваться, потому как они в результате своей жизнедеятельности либо угнетают его функцию, либо вовсе избавляются от него. Простейший пример - эритроциты. Это кровяные клетки, ядро у которых присутствует только на ранних стадиях развития, когда синтезируется гемоглобин. Как только его количества достаточно для переноса кислорода, ядро удаляется из клетки, дабы облегчить ее не мешать транспорту кислорода.

В общем виде эритроцит представляет собой цитоплазматический мешок, наполненный гемоглобином. Похожая структура характерна и для жировых клеток. Строение клеточного ядра адипоцитов предельно упрощено, оно уменьшается и смещается к мембране, а процессы белкового синтеза максимально угнетаются. Эти клетки также напоминают "мешки", наполненные жиром, хотя, разумеется, разнообразие биохимических реакций в них чуть большее, чем в эритроцитах. Тромбоциты также не имеют ядра, однако их не стоит считать полноценными клетками. Это осколки клеток, необходимые для реализации процессов гемостаза.

каково строение и функции оболочки ядра?


  1. 1) состоит из наружной и внутренней мембран, разделенных перинуклеарным пространством, и сходных по строению с наружной цитоплазматической мембраной
    2) в области соединения наружной и внутренней ядерных мембран формируются ядерные поры, обеспечивающие избирательный транспорт веществ в ядро и из ядра
    3) ядерная оболочка отграничивает содержимое ядра от цитоплазмы
  2. Есть такое
  3. Ядро это наиболее крупный органоид клетки и наиболее важный. Клетка, лишенная ядра, способна жить лишь короткое время. Безъядерные клетки ситовидных трубок живые клетки, но живут они недолго. Ядро регулирует процессы жизнедеятельности клетки, а также сохраняет и передает ее наследственную информацию.

    Клетки растений обычно содержат одно ядро, у низших растений (водорослей) в клетке может быть несколько ядер. Ядро всегда лежит в цитоплазме. Форма ядра может быть различной округлой, овальной, сильно вытянутой, неправильно-многолопастной. В некоторых клетках контуры ядра меняются в ходе его функционирования, причем на его поверхности образуются лопасти различной величины.

    Размеры ядер неодинаковы и в клетках разных растений, и в разных клетках одного и того же растения. Относительно крупные ядра бывают в молодых, меристематических клетках, в которых они могут занимать до 3/4 объема всей клетки. Относительные, а иногда и абсолютные размеры ядер в развитых клетках значительно меньше, чем в молодых.

    Снаружи ядро покрыто ядерной оболочкой, состоящей из двух мембран, между которыми имеется щель околоядерное пространство. Оболочка прерывается порами. Внешняя из двух мембран оболочки дает выросты, непосредственно переходящие в стенки эндоплазматической сети цитоплазмы. И поры и прямая связь эндоплазматической сети с околоядерным пространством обеспечивают тесный контакт между ядром и цитоплазмой.

    Внутреннюю часть ядра составляет матрикс (нуклеоплазма) , хроматин и ядрышко. Хроматин и ядрышко погружены в матрикс.

    Хроматин представляет собой хромосомы в деспирализованном состоянии. Хромосомы, в свою очередь, состоят их двух хроматид, соединенных перемычкой центромерой. Основой хромосом является нить ДНК, которая несет информацию о строении белков клетки. В период деления клетки нить ДНК плотно упаковывается с помощью специфических белков гистонов, и хромосомы видны в микроскоп как палочковидные структуры.

    Ядрышко обособленная, более уплотненная часть ядра округлой или овальной формы. Предполагается, что ядрышко является центром синтеза РНК. В частности, от его деятельности зависит образование рибосом. Ядрышко исчезает перед началом деления клетки и вновь формируется в телофазе митоза.

    Нуклеоплазма (кариоплазма, основное вещество, матрикс) водянистая фаза ядра, в которой в растворенном виде находятся продукты жизнедеятельности ядерных структур.

Ядерная оболочка

Эта структура характерна для всех эукариотических клеток. Ядерная оболочка состоит из внешней и внутренней мембран, разделенных перинуклеарным пространством шириной от 20 до 60 нм. В состав ядерной оболочки входят ядерные поры.

Мембраны ядерной оболочки в морфологическом отношении не отличаются от остальных внутриклеточных мембран: они имеют толщину около 7 нм и состоят из двух осмиофильных слоев.

В общем виде ядерная оболочка может быть представлена, как полый двухслойный мешок, отделяющий содержимое ядра от цитоплазмы. Из всех внутриклеточных мембранных компонентов таким типом расположения мембран обладают только ядро, митохондрии и пластиды. Однако ядерная оболочка имеет характерную особенность, отличающую ее от других мембранных структур клетки. Это наличие особых пор в оболочке ядра, которые образуются за счет многочисленных зон слияний двух ядерных мембран и представляет собой как бы округлые перфорации всей ядерной оболочки.

Строение ядерной оболочки

Внешняя мембрана ядерной оболочки, непосредственно контактирующая с цитоплазмой клетки, имеет ряд сруктурных особенностей, позволяющих отнести ее к собственно мембранной системе эндоплазматического ретикулума. Так, на внешней ядерной мембране обычно располагается большое количество рибосом. У большинства животных и растительных клеток внешняя мембрана ядерной оболочки не представляет собой идеально ровную поверхность - она может образовывать различной величины выпячивания или выросты в сторону цитоплазмы.

Внутренняя мембрана контактирует с хромосомным материалом ядра (см. Ниже).

Наиболее характерной и бросающейся в глаза структурой в ядерной оболочке является ядерная пора. Поры в оболочке образуются за счет слияния двух ядерных мембран в виде округлых сквозных отверстий или перфораций с диаметром 80-90 нм. Округлое сквозное отверстие в ядерной оболочке заполнено сложноорганизованными глобулярными и фибриллярными структурами. Совокупность мембранных перфораций и этих структур называют комплексом пор ядра. Тем самым подчеркивается, что ядерная пора не просто сквозная дыра в ядерной оболочке, через которую непосредственно вещества ядра и цитоплазмы могут сообщаться.

Сложный комплекс пор имеет октагональную симметрию. По границе округлого отверстия в ядерной оболочке располагаются три ряда гранул, по 8 штук в каждом: один ряд лежит со стороны ядра, другой - со стороны цитоплазмы, третий расположен в центральной части пор. Размер гранул около 25 нм. От этих гранул отходят фибриллярные отростки. Такие фибриллы, отходящие от периферических гранул, могут сходиться в центре и создавать как бы перегородку, диафрагму, поперек поры. В центре отверстия часто можно видеть так называемую центральную гранулу.

Число ядерных пор зависит от метаболической активности клеток: чем выше синтетические процессы в клетках, тем больше пор на единицу поверхности клеточного ядра.

Количество ядерных пор в различных объектах

Химия ядерной оболочки

В составе ядерных оболочек обнаруживаются небольшие количества ДНК (0-8%), РНК (3-9%), но основными химическими компонентами являются липиды (13-35%) и белки (50-75%), что для всех клеточных мембран.

Состав липидов сходен с таковым в мембранах микросом или мембранах эндоплазматической сети. Ядерные оболочки характеризуются относительно низким содержанием холестерина и высоким - фосфолипидов, обогащенных насыщенными жирными кислотами.

Белковый состав мембранных фракций очень сложен. Среди белков обнаружен ряд ферментов, общих с ЭР (например, глюкозо-6-фосфатаза, Mg-зависимая АТФаза, глютамат-дегидрогеназа и др.) не обнаружена РНК-полимераза. Тут выявлены активности многих окислительных ферментов (цитохромоксидазы, НАДН-цитохром-с-редуктазы) и различных цитохромов.

Среди белковых фракций ядерных мембран встречаются основные белки типа гистонов, что объясняется связью участков хроматина с ядерной оболочкой.

Ядерная оболочка и ядерно-цитоплазматический обмен

Ядерная оболочка - система, разграничивающая два основных клеточных отсека: цитоплазму и ядро. Ядерные оболочки полностью проницаемы для ионов, для веществ малого молекулярного веса, таких, как сахара, аминокислоты, нуклеотиды. Считается, что белки молекулярного веса до 70 тыс. И размером не больше 4,5 нм могут свободно диффундировать через оболочку.

Известен и обратный процесс - перенос веществ из ядра в цитоплазму. Это в первую очередь касается транспорта РНК синтезируещегося исключительно в ядре.

Еще один путь транспорта веществ из ядра в цитоплазму связан с образованием выростов ядерной оболочки, которые могут отделяться от ядра в виде вакуолей, содержимое их затем изливается или выбрасывается в цитоплазму.

Таким образом, из многочисленных свойств и функциональных нагрузок ядерной оболочки следует подчеркнуть ее роль как барьера, отделяющего содержимое ядра от цитоплазмы, ограничивающего свободный доступ в ядро крупных агрегатов биополимеров, барьера, активно регулирующего транспорт макромолекул между ядром и цитоплазмой.

Одной из основных функций ядерной оболочки следует считать также ее участие в создании внутриядерного порядка, в фиксации хромосомного материала в трехмерном пространстве ядра.

Строение и функции ядра

Ядро (лат. nucleus, греч. karion-ядро) – это обязательный компонент эукариотических клеток. Оно хорошо различимо в неделящихся клетках и выполняет ряд важнейших функций:

1) хранение и передача наследственной информации в клетке;

2) создание аппарата белкового синтеза – синтез всех видов РНК и образование рибосом.

Выпадение или нарушение любой из этих функций приводит клетку к гибели.

Рис.24 . Схема ультрамикроскопического строения ядра.

Клетка содержит, как правило, одно ядро, но имеются двуядерные и многоядерные клетки.

Интерфазные ядра состоят из: ядерной оболочки, ядерного сока (кариоплазма, кариолимфа или нуклеоплазма), ядерного белкового остова, хроматина и ядрышек.

Ядерная оболочка (кариолемма) состоит из двух мембран, между которыми имеется перинуклеарное пространство шириной 10-40нм, заполненное электронно – микроскопически рыхлой субстанцией. Наружная мембрана ядерной оболочки со стороны цитоплазмы в ряде участков переходит в мембраны эндоплазматической сети, и на ее поверхности располагаются полирибосомы. Внутренняя мембрана ядерной оболочки участвует в обеспечении внутреннего порядка в ядре – в фиксации хромосом в трехмерном пространстве. Эта связь опосредуется с помощью слоя фибриллярных белков, сходных с промежуточными филаментами цитоплазмы.

В ядерной оболочке имеются поры диаметром около 90 нм. В этих участках по краям отверстия мембраны ядерной оболочки сливаются. Сами отверстия заполняются сложноорганизованными глобулярными и фибриллярными структурами. Совокупность мембранных перфораций и заполняющих их структур называется поровым комплексом .

По краю порового отверстия располагаются в три ряда гранулы (по 8 гранул в каждом ряду). При этом один ряд лежит со стороны цитоплазмы, другой – со стороны внутреннего содержимого ядра, а третий – между ними. От гранул этих слоев радиально отходят фибриллярные отростки, образуя в поре как бы перепонку – диафрагму. Фибриллярные отростки направляются к центрально расположенной грануле.

Рис.25 . Строение ядерных пор (поровый комплекс).

Поровые комплексы участвуют в рецепции транспортируемых через поры макромолекул (белков и нуклеопротеидов), а также в активном переносе через ядерную оболочку этих веществ с использованием АТФ.

Число ядерных пор зависит от метаболической активности клеток. Чем интенсивнее протекают в клетке процессы синтеза, тем больше пор. В среднем на одно ядро приходится несколько тысяч поровых комплексов.

Основные функции ядерной оболочки следующие:

Барьерная (отделение содержимого ядра от цитоплазмы и ограничение свободного доступа в ядро крупных биополимеров);

Регуляция транспорта макромолекул между ядром и цитоплазмой;

Участие в создании внутриядерного порядка (фиксация хромосомного аппарата).

Кариоплазма (ядерный сок, или нуклеоплазма, или кариолимфа) – это содержимое ядра, которое имеет вид гелеобразного матрикса. Она содержит различные химические вещества: белки (в том числе и ферменты), аминокислоты и нуклеотиды в виде истинного или коллоидного раствора.

Ядерный или белковый остов (матрикс). В интерфазных ядрах негистоновые белки образуют сеть – «белковый матрикс». Он состоит из периферического фибриллярного слоя, выстилающего ядерную оболочку (ламина), и внутренней сети, к которой прикрепляются фибриллы хроматина. Матрикс участвует в поддержании формы ядра, организации пространственного положения хромосом. Кроме того, в нем содержатся ферменты, необходимые для синтеза РНК и ДНК, а также белки, участвующие в компактизации ДНК в интерфазных и митотических хромосомах.

Хроматин – комплекс ДНК и белков (гистоновых и негистоновых). Хроматин является интерфазной формой существования хромосом.

1.Эухроматин; 2. Гетерохроматин

Рис.26 . Хроматин интерфазных хромосом.

В этот период разные участки хромосом имеют неодинаковую степень компактизации. Наибольшей степенью компактизации обладают генетически инертные участки хромосом. Они хорошо окрашиваются ядерными красителями и называются гетерохроматином. Различают конститутивный и факультативный гетерохроматин.

Конститутивный гетерохроматин образован нетранскрибируемой ДНК. Полагают, что он участвует в поддержании структуры ядра, прикреплении хромосом к ядерной оболочке, узнавании при мейозе гомологичных хромосом, разделении соседних структурных генов и в процессах регуляции их активности.

Факультативный гетерохроматин, в отличие от конститутивного, может становиться транскрибируемым на определенных стадиях клеточной дифференцировки или онтогенеза. Примером факультативного гетерохроматина может служить тельце Барра, образующееся у организмов гомогаметного пола за счет инактивации одной из Х-хромосом.

Декомпактизированные участки хромосом, которые плохо окрашиваются ядерными красителями, называются эухроматином .Это функционально активный, транскрибируемый хроматин.

Ядрышки – уплотненные тельца, обычно округлой формы, диметром менее 1 мкм. Присутствуют они только в интерфазных ядрах. Количество их колеблется в диплоидных клетках от 1 до 7, но в некоторых видах клеток, например, микронуклеусах инфузории, ядрышки отсутствуют.