Доклад: Аварии на радиационно-опасных объектах и их последствия. Виды аварий на радиационно опасных объектах — Гипермаркет знаний

    Введение
    Основная часть
    Основные опасности при авариях РОО. 2.Классификация аварий и этапы развития аварий на радиационно- опасных объектах.
    3.Наиболее опасные радионуклиды, зонирование территорий вокруг РОО на этапах развития аварий.
    Заключение
    Список использованной литературы
    Введение.
    В настоящее время практически в любой отрасли народного хозяйства и науки во все более возрастающих масштабах используются радиоактивные вещества и источники ионизирующих излучений. Особенно высокими темпами развивается ядерная энергетика. Атомная наука и техника таят в себе огромные возможности, но вместе с тем и большую опасность для людей и окружающей среды.
    Слово «радиация» глубоко проникло в сознание человечества. Оно воспринимается как образ новой, страшной угрозы здоровью и жизни людей. Именно так оно обычно отображается в средствах массовой информации в сообщениях о миллионах пострадавших от радиации в результате аварий и испытаний ядерного оружия.
    За последние несколько десятилетий человек создал несколько сотен искусственных радионуклидов и научился использовать энергию атома в самых разных целях: в медицине и для создания атомного оружия, для производства энергии и обнаружения пожаров. Все это приводит к увеличению дозы облучения как отдельных людей, так и населения Земли в целом.
    Радиационно-опасный объект (РОО) - предприятие, на котором при авариях могут произойти массовые радиационные поражения. К ним относятся:
    1) Предприятия ядерного топливного цикла - урановая промышленность, радиохимическая промышленность, ядерные реакторы разных типов, предприятия по переработке ядерного топлива и захоронения радиоактивных отходов;
    2) Научно – исследовательские и проектные институты, имеющие ядерные установки;
    3) Транспортные ядерные энергетические установки;
    4) Военные объекты;
    Среди техногенных источников ЧС наибольшую опасность по тяжести поражения, масштабам и долговременности действия поражающих факторов представляют именно радиационные катастрофы. В обычных условиях радиационная обстановка в стране определяется, во-первых, природной радиоактивностью, включая космические излучения; во-вторых, радиоактивным фоном; в-третьих, наличием территорий, загрязненных радиоактивными веществами вследствие произошедших в предыдущие годы аварий на предприятиях атомной промышленности и энергетики; в-четвертых, эксплуатацией ядерно- и радиационно - опасных объектов.
    Целью работы является изучение радиационно-опасных объектов и аварий, происходящих на них.
    В соответствии с целью можно поставить следующие задачи:
    рассмотреть основные опасности при авариях РОО;
    изучить классификацию аварий и этапы развития аварий на радиационно- опасных объектах;
    проанализировать наиболее опасные радионуклиды, зонирование территорий вокруг РОО на этапах развития аварий.
    Предметом исследования являются радиационно- опасные объекты.
    Структура работы представлена введением, основной частью из трех глав, заключением, списком использованной литературы.
    Основные опасности при авариях РОО.
    Факторы опасности ядерных реакторов достаточно многочисленны. Перечислим лишь некоторые из них.
    · Возможность аварии с разгоном реактора. При этом вследствие сильнейшего тепловыделения может произойти расплавление активной зоны реактора и попадание радиоактивных веществ в окружающую среду. Если в реакторе имеется вода, то в случае такой аварии она будет разлагаться на водород и кислород, что приведет к взрыву гремучего газа в реакторе и достаточно серьезному разрушению не только реактора, но и всего энергоблока с радиоактивным заражением местности. Аварии с разгоном реактора можно предотвратить, применив специальные технологии конструкции реакторов, систем защиты, подготовки персонала.
    · Радиоактивные выбросы в окружающую среду. Их количество и характер зависит от конструкции реактора и качества его сборки и эксплуатации. У РБМК они наибольшие, у реактора с шаровой засыпкой наименьшие. Очистные сооружения могут уменьшить их.
    Впрочем, у атомной станции, работающей в нормальном режиме, эти выбросы меньше, чем, скажем, у угольной станции, так как в угле тоже содержатся радиоактивные вещества, и при его сгорании они выходят в атмосферу.
    · Необходимость захоронения отработавшего реактора.
    · Радиоактивное облучение персонала.
    Под ядерной (радиационной) аварией понимают потерю управления цепной реакцией в реакторе либо образование критической массы при перегрузке, транспортировке и хранении тепловыделяющих сборок, или повреждению ТВЭЛов, приведшую к потенциально опасному облучению людей сверх допустимых пределов. Иногда используется понятие ядерно-опасного режима, который представляет собой отклонения от пределов и условий безопасности эксплуатации реакторной установки, не приводящие к ядерной аварии. Ядерно-опасный режим можно рассматривать как режим, создающий аварийную ситуацию.
    Главной опасностью аварий на РОО был и будет выброс в окружающую природную среду РВ, сопровождающийся тяжелыми последствиями. Радиационная авария присуща не только АЭС, но и всем предприятиям ядерного топливного цикла, а также предприятиям, использующим радиоактивные вещества. К таким предприятиям можно отнести предприятия, добывающие урановую или ториевую руду; заводы по переработке руды; обогатительные заводы, заводы по изготовлению ядерного топлива; хранилища РВ и многие другие. Радиационные аварии на РОО могут возникнуть в процессе испытаний, хранения, транспортировки ядерного оружия.
    Основным поражающим фактором при авариях на реакторах АЭС это радиоактивные загрязнения местности и источником загрязнения является атомный реактор как мощный источник накопленных радиоактивных веществ.
    Рассмотрим образование поражающих факторов и их воздействие при аварии на АЭС.
    1. Световое излучение и явление проникающей радиации может оказать воздействие, в основном, на работающую смену персонала.
    2. Радиоактивное заражение местности в результате выбросов продуктов распада в атмосферу во всех случаях будет значительным и на больших площадях.
    3. Ударная волна (сейсмическая) образуется только при ядерном взрыве реактора, при тепловом взрыве ее действие на окружающую среду незначительно.
    И еще одна особенность. При ядерном взрыве и образовании следа для людей главную опасность представляет внешнее облучение (90-95% от общей дозы). При аварии на АЭС с выбросом активного материала картина иная. Значительная часть продуктов деления ядерного топлива находится в парообразном и аэрозольном состоянии. Вот почему доза внешнего облучения здесь составляет 15%, а внутреннего – 85%.
    Специалисты выделяют следующие потенциальные последствия радиационных аварий:
    1. немедленные смертельные случаи и травмы среди работников предприятия и населения;
    2. латентные смертельные случаи заболевания настоящих и будущих поколений, в том числе изменения в соматических клетках, приводящие к возникновению онкологических заболеваний, генетические мутации, оказывающие влияние на будущие поколения, влияние на зародыш и плод вследствие облучения матери в период беременности;
    4. ущерб для общества, связанный с боязнью относительно потенциальной возможности использования ядерного топлива для создания ядерного оружия.
    К последствиям серьезных радиационных аварий относится и наличие косвенного риска для здоровья и жизни людей. Косвенный риск возникает при непосредственном осуществлении мер безопасности, эвакуации при аварии. Например: эвакуационные мероприятия, вызванные радиационной аварией, обусловливают возникновение множества косвенных рисков: смертельные случаи вследствие дорожно-транспортных происшествий, увеличение числа сердечных приступов у эвакуируемого населения, психические травмы, вызванные стрессовой ситуацией во время эвакуации, и т.п.
    Классификация аварий и этапы развития аварий на радиационно- опасных объектах.
    Классификация производится с целью заблаговременной разработки мер, реализация которых в случае аварии должна уменьшить вероятные последствия и содействовать успешной ее ликвидации.
    Классификация возможных аварий на РОО производится по двум признакам: во-первых, по типовым нарушениям нормальной эксплуатации и, во-вторых, по характеру последствий для персонала, населения и окружающей среды.
    Аварии, связанные с нарушениями нормальной эксплуатации, подразделяются на проектные, проектные с наибольшими последствиями и запроектные.
    Анализ различного рода отклонений в эксплуатации РОО, а так же аварийных ситуаций показывает, что возможны аварии двух типов.
    Первый тип – гипотетический не вызывает загрязнения.
    Второй тип – с полным разрушением реактора (хранилища), которое может сопровождаться цепной реакцией, т.е. ядерным взрывом малой мощности или тепловыми взрывами, вызванными интенсивным паро и газообразованием.
    Радиационные аварии на РОО подразделяются на три типа:
    Локальная – нарушение в работе РОО, при котором не произошел выход радиоактивных продуктов или ионизирующего излучения за предусмотренные границы оборудования, технологических систем, зданий и сооружений в количествах, превышающих установленные для нормальной эксплуатации предприятия значения.
    Местная – нарушение в работе РОО, при котором произошел выход радиоактивных продуктов в пределах санитарно – защитной зоны и количествах, превышающих установленные нормы для данного предприятия.
    Общая – нарушение в работе РОО, при котором произошел выход радиоактивных продуктов за границу санитарно – защитной зоны и количествах, приводящих к радиоактивному загрязнению прилегающей территории и возможному облучению проживающего на ней населения выше установленных норм.
    Отечественная классификация, согласно которой в порядке возрастания серьезности последствий все аварии на РОО разделены на девять классов. Первые восемь классов охватывают аварии с широким диапазоном возможных последствий – от незначительных нарушений в работе до серьезных поломок в оборудовании. Такие аварии относятся к проектным, они рассматриваются при проектировании РОО а также в окончательных выводах по анализу безопасности эксплуатации объекта. В целом под обеспечением радиационной безопасности понимается проведение комплекса организационных и социальных мероприятий направленных на исключение или максимальное снижение опасности вредного воздействия ионизирующих излучений на организм человека и уменьшение радиоактивного загрязнения окружающей среды до безопасных уровней.
    Аварии, отнесенные к девятому классу, являются за проектными и в процессе проектирования не рассматриваются, из-за малой вероятности их возникновения. Эти аварии относятся также к гипотетическим или тяжелым. Подобные аварии возникают при повреждении или разрушении активной зоны реактора или хранилища отходов ядерного топлива и возможны при возникновении не предусмотренного в проекте аварийного исходного события.
    Для больших аварий используются дополнительные подразделения по критерию распространенности связанные с радиоактивным загрязнением:
    1. персонала и рабочих мест;
    2. производственного помещения;
    3. здания;
    4. территории;
      санитарно-защитной зоны.
    Для того что бы рассмотреть этапы развития аварии на РОО,возьмем в пример аварию на АЭС.
    Под нормальной эксплуатацией АЭС понимается все ее состояние в соответствии с принятой в проекте технологией производства энергии, включая работу на заданных уровнях мощности, процессы пуска и остановки, техническое обслуживание, ремонты, перегрузку ядерного топлива.
    Причинами проектных аварий на АЭС являются исходные события, связанные с нарушением барьеров безопасности, предусмотренные проектом каждого реактора. Именно в расчете на эти исходные события и строится система безопасности АЭС.
    Первый тип аварии – нарушение первого барьера безопасности, а проще – нарушение герметичности оболочек ТВЭЛов из-за кризиса теплообмена или механических повреждений. Кризис теплообмена – это нарушение температурного режима (перегрева) ТВЭЛов.
    Второй тип – нарушение первого и второго барьеров безопасности. При попадании радиоактивных продуктов в теплоноситель вследствие нарушения первого барьера дальнейшее их распространение останавливается вторым, который образует корпус реактора.
    Третий тип – нарушение всех трех барьеров безопасности. При нарушенных первом и втором теплоноситель с продуктами деления удерживается от выхода в окружающую среду третьим барьером – защитной оболочкой реактора. Под ней понимается совокупность всех конструкций, систем и устройств, которые должны с высокой степенью надежности обеспечить локализацию выбросов.
    В тяжелых случаях нарушения контроля и управления цепной ядерной реакцией может произойти тепловой взрыв когда в следствие быстрого неуправляемого развития реакции резко нарастает мощность и накопление энергии, приводящей к разрушению реактора со взрывом.
    Таким образом с точки зрения радиационных последствий можно выделить четыре вида аварий связанных с разрушением активной зоны реактора АЭС:
    1. потеря теплоносителя, сопровождающаяся отказом активных систем аварийного охлаждения;
    2. потеря источников энергоснабжения (нормального и аварийного);
    3. аварийные переходные процессы без остановки реактора;
      выделение радиоактивности.
    Наиболее опасные радионуклиды, зонирование территорий вокруг РОО на этапах развития аварий.
    Наиболее опасными, с точки зрения внутреннего облучения, оказываются a -излучающие радионуклиды, так как пробег a -частиц в веществе мал, и их энергия целиком поглощается вблизи места концентрации радионуклида. Степень внутреннего облучения зависит не только от вида радионуклида и энергии излучения, но также от количества радионуклидов, попавших внутрь, характера распределения их в организме, периода полураспада и скорости его выведения из организма.
    Наиболее опасным является ингаляционное поступление радионуклидов. Этому способствует огромная дыхательная поверхность альвеол, площадь которой? 100 м2 (в 50 раз больше, чем поверхность кожи). Второй по значимости путь - поступление радионуклидов с пищей и водой.
    Наименее изучен путь поступления радиоактивных веществ через кожу, которая до недавнего времени считалась для них эффективным барьером. Однако в последующем было установлено, что радионуклиды в составе жидких и газообразных соединений проникают через кожу иногда в значительных количествах. Скорость проникновения в организм человека паров оксида трития и газообразного иода через неповрежденную кожу сравнима со скоростью проникновения этих веществ через дыхательные пути, а количество плутония, проникающее в организм вследствие загрязнения кожи его водорастворимыми соединениями, не меньше, чем при поступлении в желудок. Радионуклиды, проникающие через кожные покровы, создают опасность облучения самой кожи и тех внутренних органов, куда они доставляются кровотоком.
    Радионуклиды концентрируются, как правило, избирательно в отдельных органах, например радий, фосфор, стронций, барий, плутоний концентрируются в костях; церий, прометий, америций, кюрий, лантан - в печени; иод - в щитовидной железе; уран - в легких, почках, костях. Такие радионуклиды, как тритий, углерод, натрий, кобальт, цезий, распределяются в организме равномерно. Скорость биологического выведения (при допущении, что выведение радиоактивных веществ происходит по экспоненциальному закону) характеризуется постоянной l б, а эффективная скорость - суммой постоянных
    На фоне тугоплавкости большинство радионуклидов, такие как теллур, йод, цезий обладают высокой летучестью. Вот почему аварийные выбросы реакторов всегда обогащены этими радионуклидами, из которых йод и цезий имеют наиболее важное воздействие на организм человека и животный мир. Состав аварийного выброса продуктов деления реактора существенно отличается от состава продуктов ядерного взрыва. При ядерном взрыве преобладают радионуклиды с коротким периодом полураспада. Поэтому на следе радиоактивного облака происходит быстрый спад мощности дозы излучения. При авариях на АЭС характерно радиоактивное загрязнение атмосферы и местности легколетучими радионуклидами (Йод-131, Цезий-137 и Стронций-90), а, во-вторых, Цезий-137 и Стронций-90 обладают длительными периодами полураспада. Поэтому такого резкого уменьшения мощности дозы, как это имеет место на следе ядерного взрыва, не наблюдается.
    И еще одна особенность. При ядерном взрыве и образовании следа для людей главную опасность представляет внешнее облучение (90-95% от общей дозы). При аварии на АЭС с выбросом активного материала картина иная. Значительная часть продуктов деления ядерного топлива находится в парообразном и аэрозольном состоянии. Вот почему доза внешнего облучения здесь составляет 15%, а внутреннего – 85%.
    Радионуклиды с большим периодом полураспада при попадании внутрь организма обусловливают постоянное облучение организма. Наиболее тяжелые формы повреждения вызывают долгоживущие радионуклиды (радий, торий, уран, плутоний).
    Как правило, радионуклиды, попавшие внутрь организма и сходные с элементами, которые потребляются человеком с пищей (натрий, хлор, калий и др.), не задерживаются в организме и выводятся вместе с такими же веществами. Инертные радиоактивные газы (аргон, ксенон, криптон и др.), попавшие через легкие в кровь, со временем также удаляются.
    Для лучшей защиты персонала и населения производится заблаговременное зонирование территории вокруг РОО. Устанавливаются следующие три зоны:
    Зона экстренных мер защиты – это территория, на которой доза облучения всего тела за время формирования радиоактивного следа или доза внутреннего облучения отдельных органов может превысить верхний предел, установленный для эвакуации;
    Зона предупредительных мероприятий – это территория, на которой доза облучения всего тела за время формирования радиоактивного следа или доза облучения внутренних органов может превысить верхний предел, установленный для укрытия и йодной профилактики;
    Зона ограничений – это территория, на которой доза облучения всего тела или отдельных его органов за год может превысить нижний предел для потребления пищевых продуктов. Зона вводится по решению государственных органов.
    Для защиты работающего на АЭС персонала и населения в мирное время территория вокруг АЭС тоже зонируется.
    Вокруг АЭС создается санитарная зона = 3 км., которая подразделяется на 3 зоны:
    1. Зона строгого режима с предельно допустимой дозой (ПДД) = 5 бэр/год. В ней предусматривается постоянный радиационный контроль в местах работ людей, повседневный радиационный контроль объектов и территории.
    2. Зона режима радиационной безопасности с ПДД = 0.5 бэр/год в которой проводится повседневное радиометрическое обследование людей, транспорта и путей их движения после проведения работ.
    Кроме того, устанавливается зона наблюдения = 30 км., в которой проводится контроль за радиоактивностью объектов и внешней среды с установленной периодичностью.
    Заключение.
    Из всего выше сказанного можно сделать вывод, что радиационно опасные объекты являются опасными не только в момент, или после аварии. Эти объекты явлются источниками радиоактивного заражения, в результате несовершенства конструкций, на протяжении всего своего существования. Эта радиация незначительна, но в случае аварии она возрастает во много раз.
    На всей территории нашей страны осуществляется государственный контроль за радиационной обстановкой. Все ядерные материалы подлежат государственному учёту и контролю на различных уровнях государственной власти. Государство регулирует так же безопасность при использовании атомной энергии при помощи специально уполномоченных на то федеральных органов исполнительной власти. Они вводят в действие нормы и правила в области использования атомной энергии, осуществляют надзор за их исполнением, проводят экспертизу ядерных установок, применяют меры административного воздействия и выполняют другие функции, связанные с обеспечением безопасности при использовании атомной энергии.
    При потере управления некоторыми частями ядерной установки может наступить серьёзная радиационная авария, что не просто нежелательно, а просто недопустимо.
    В организациях, где теоретически возможны подобные аварии, обязательно должен быть план мероприятий по защите работников и населения, а так же средства для ликвидации аварий. В качестве профилактики проводятся мероприятия по обеспечению правил, норм в области радиационной безопасности, информирование населения о радиационной обстановке, его обучение в области радиационной безопасности.
    Общие проблемы безопасности включают глобальный комплекс мероприятий от обоснования требований к персоналу и формирования режимов допуска к информации и работам до ограничений по мерам радиационной, электро-, пожаро-, и взрыво-безопасности. При этом важнейшим является предупреждение аварийности и несанкционированных действий, на что должны быть направлены стройная и четкая система организационно-технического обеспечения и однозначно толкуемая документация. Все это принимает особую необходимость, если РОО находится недалеко от населенного пункта или внутри.
    В настоящее время особо актуальными стали проблемы учета РОО, поэтому система отчетности требует оптимизации. Соображения безопасности не могут не учитываться на самых ранних стадиях проектирования РОО, поэтому соответствующие требования должны предъявляться к конструктивным системам и программно-аппаратным средствам обеспечения безопасной эксплуатации РОО. При условии соблюдения всех объективных параметров безопасности субъективный фактор приобретает первостепенную важность в соблюдении мер безопасности, бесперебойности функционирования систем эксплуатации, и организационно-технических мер предотвращения несанкционированных действий.
    Немаловажное значение имеет обучение мерам предупреждения и снижения аварийности и последствий аварий, для чего персонал обязан уметь работать во всеобъемлющей системе контроля, оперативно и квалифицированно действовать при локализации произошедших аварий, проводить комплекс первоочередных и последующих мероприятий по ликвидации последствий аварий.
    Список используемой литературы.
    1.Сеть Интернет.
    2.Белоусова И.М. Естественная радиоактивность. М. Медгиз, издание 2, 1999 г.
    3.Максимов М.Т. Ожагов Г.О. Радиоактивные загрязнения и их измерения. 1997г.
    4.Радиация. Дозы, эффекты, риск. М., Мир. 2003г.
    5.Трифонов Д.И. Радиоактивность вчера, сегодня, завтра.
и т.д.................

Особенности защиты населения при авариях на радиационно-опасных объектах
Радиационно-опасный объект (РОО) - объект, при повреждении, разрушении и аварии которого может произойти радиоактивное загрязнение местности, акватории, воздушного пространства и др. объектов, расположенных на них, способное оказать влияние на действия и боеспособность войск, жизнедеятельность населения и промышленное производство. Это может привести к массовому облучению ионизирующим излучением людей, животных и растений.
РОО представляют опасность ввиду возможного загрязнения окружающей среды, поражения личного состава, населения, находящихся на местности, при разрушении объектов, сопровождающихся выбросом в окружающую среду радиоактивных веществ.
РОО являются вещества, устройства или технологические процессы, имеющие в своем составе (содержащие) радионуклиды в количествах, подлежащих в соответствии с п.п. 1.7 и 1.8 «Основных санитарных правил обеспечения радиационной безопасности (ОСПОРБ-99)» обязательному учету и контролю, а также требующих специального разрешения на владение ими и их использование. В том случае, если эти объекты предназначены для осуществления цепных ядерных реакций или способны при определенных условиях к их неконтролируемому возникновению, они являются одновременно радиационно и ядерно опасными.
Согласно п. 3.1 «Основных санитарных правил обеспечения радиационной безопасности (ОСПОРБ-99)» установлено четыре категории РОО: - объекты, при аварии на которых возможно их радиационное
101
воздействие на население и могут потребоваться меры по его защите; - радиационное воздействие при аварии ограничивается территорией санитарно-защитной зоны (СЗЗ); - радиационное воздействие при аварии ограничивается территорией объекта.
К радиационно опасным объектам относятся:
а) по признаку «объекты использования атомной энергии»: ядерные установки - сооружения и комплексы с ядерными реакторами, в том числе атомные станции (АЭС). Суда и другие плавсредства, космические и летательные аппараты, транспортные и транспортабельные средства. Сооружения и комплексы с промышленными, экспериментальными и исследовательскими ядерными реакторами, критическими и подкритическими ядерными стендами. Сооружения, комплексы, полигоны, установки и устройства с ядерными зарядами для использования в мирных целях и другие содержащие ядерные материалы сооружения, комплексы, установки для производства, использования, переработки, транспортирования ядерного топлива и ядерных материалов; радиационные источники - не относящиеся к ядерным установкам комплексы, установки, аппараты, оборудование и изделия, в которых содержатся радиоактивные вещества или генерируется ионизирующее излучение; пункты хранения ядерных материалов и радиоактивных веществ, хранилища радиоактивных отходов (далее - пункты хранения) - не относящиеся к ядерным установкам и радиационным источникам стационарные объекты и сооружения, предназначенные для хранения ядерных материалов и радиоактивных веществ, хранения или захоронения радиоактивных отходов (РАО); ядерные материалы - материалы, содержащие или способные воспроизвести делящиеся (расщепляющиеся) ядерные вещества; радиоактивные вещества - не относящиеся к ядерным материалам вещества, испускающие ионизирующее излучение; радиоактивные отходы - ядерные материалы и радиоактивные вещества, дальнейшее использование которых не предусматривается;
б) по территориально-производственному признаку: объекты ядерного комплекса (ядерно-топливного цикла (ЯТЦ), атомной энергетики, ядерного оружейного комплекса);
102 базы хранения ядерного оружия; территории и водоемы, загрязненные радионуклидами в результате имевших место радиационных аварий, ядерных взрывов в мирных целях, производственной деятельности и т.п.
Предприятия ЯТЦ осуществляют добычу урана, его обогащение (по 235U), изготовление ядерного топлива, переработку отработанного ядерного топлива и РАО, хранение ядерного топлива, РАО и захоронение РАО.
Предприятия ЯТЦ по производственному признаку делятся на следующие группы: добывающие уран предприятия; предприятия по разделению изотопов урана; предприятия по изготовлению ядерного топлива; предприятия по переработке отработанного ядерного топлива; объекты захоронения РАО.
К добывающим уран предприятиям относятся объекты, осуществляющие добычу урановой руды и ее переработку механическим и гидрометаллургическим способами, и предприятия по подземному выщелачиванию урана.
Основные типы радиационных аварий на этих предприятиях - выброс (разброс) урановой руды при транспортировке (или концентрата) и разлив растворов урана при авариях трубопроводов. В случае аварий на добывающих уран предприятиях принятие экстренных мер по защите населения и ликвидации их последствий, как правило, не требуется, а загрязнения ураном не носят катастрофического характера даже при больших масштабах выбросов из-за малой радиоактивности естественного урана.
Предприятия по разделению изотопов урана (обогащению природного урана) и изготовлению ядерного топлива используют в технологических процессах как физические, так и химические методы. При этом возможны следующие типы аварий: самоподдерживающая цепная реакция деления (СЦР) при проведении работ с растворами, порошками и изделиями из компактного урана; взрывы, в результате которых происходит выброс радиоактивных материалов в окружающую среду; разливы растворов, содержащих уран;
103
- пожары с возгоранием соединений, в которых содержится уран, и выбросом их в окружающую среду.
Из всех этих аварий радиационную опасность для населения могут представлять газоаэрозольный выброс в результате СЦР, содержащий продукты деления урана, а также взрывы и пожары на различных участках технологических процессов.
Переработка отработанного ядерного топлива осуществляется на специальных перерабатывающих предприятиях (радиохимических заводах). В ходе технологических процессов переработки осуществляется разделка тепловыделяющих элементов, растворение топлива, химическое выделение урана, плутония, цезия, стронция и других радионуклидов.
Основными причинами радиационных аварий на радиохимических заводах являются термохимические взрывы, сопровождаемые выбросом содержимого технологических аппаратов (урана и продуктов его деления), в том числе и за пределы санитарнозащитной зоны (СЗЗ) предприятия.
Часть РАО радиохимических заводов и других производств направляются на объекты захоронения. Перед захоронением они, как правило, подвергаются дополнительной переработке. Низко- и среднеактивные отходы, характеризующиеся большими объемами, направляются на переработку, общей тенденцией которой является максимально возможное уменьшение их объема при помощи технологических процессов сорбции, коагуляции, выпаривания, прессовки и т.д. с последующим включением в матрицы (цемент, битум, смолы и т.д.). Хранение низко- и среднеактивных отходов осуществляется в бетонных емкостях с последующим захоронением в естественных и искусственных полостях. Высокоактивные отходы выдерживаются во временных хранилищах и по истечении определенного времени отправляются на захоронение. Классификация жидких и твердых радиоактивных отходов по удельной радиоактивности и по уровню радиоактивного загрязнения представлена в приложении 5.
Наиболее вероятной причиной радиационных аварий на объектах переработки и хранения РАО являются термобарические взрывы с выбросом содержимого технологических аппаратов, в том числе за пределы СЗЗ.
104
Сегодня в стране действует 12 предприятий ядерно-топливного цикла, в том числе 3-мя радиохимическими производствами.
Учитывая, что радиационные аварии на этой группе предприятий в отдельных случаях могут носить крупномасштабный характер, следует относить их к особо опасным производствам. Это обусловлено наличием большого количества специфических факторов, определяющих потенциальную опасность радиохимических предприятий. К ним можно отнести: неконтролируемое накопление делящихся веществ в отдельных фазах производства; образование в ходе технологических процессов взрывопожароопасных газовых смесей; большое количество самовоспламеняющихся и самовозгараемых материалов; наличие химических процессов, протекающих с высоким экзотермическим эффектом; использование оборудования с опасной геометрией и другие.
Всего в течение 40 лет на радиохимических заводах произошло более 20 серьезных аварий. Большая их часть является следствием неконтролируемых физико-химических процессов, меньшая - результатом развития самопроизвольной цепной ядерной реакции.
Наибольшую вероятность возникновения и значительные радиационные последствия имеют аварии при транспортировании ядерных материалов, прежде всего, гексафторида урана (ГФУ) и отработанного ядерного топлива (ОЯТ) водо-водяных энергетических реакторов (ВВЭР). Наиболее опасны, при этом, попадания контейнеров с этими ядерными материалами в зону пожара.
К объектам атомной энергетики относятся АЭС, на которых тепло, выделяющееся в ядерном реакторе, используется для получения водяного пара, вращающего турбогенератор для производства электрической энергии.
АЭС включает один или несколько ядерных энергетических реакторов. На российских АЭС работают следующие типы ядерных реакторов: водо-водяные энергетические реакторы электрической мощностью 440 МВт (ВВЭР-440) и 1000 МВт (ВВЭР-1000) на тепловых нейтронах;
105 реакторы большой мощности, канальные, электрической мощностью 1000 МВт (РБМК-1000), графитовые, на тепловых нейтронах; реакторы жидкометаллические на быстрых нейтронах электрической мощностью 600 МВт (БН-600); реакторы энергетические графитовые паровые на тепловых нейтронах, электрической мощностью 12 МВт (ЭГП-12).
В России действуют 29 энергоблоков на 9 атомных электростанциях.
Типы ядерных реакторов, эксплуатирующихся на АЭС в России, представлены в прил. 1, их основные физико-технические характеристики - в прил. 2.
Характеризуя состояние эксплуатации действующих российских АЭС, следует отметить, что функционирование их осуществляется, в целом, в соответствии с правилами и нормами безопасности. С учетом накопленного опыта работы станций, а также анализа причин и последствий имевших место аварий, разработаны и реализуются на станциях мероприятия по повышению их надежности и безопасности, при этом учитываются состояние и особенности каждого конкретного энергоблока.
Вместе с тем, на сегодня ни одна из действующих АЭС не имеет процедурно законченного обоснования их безопасности и анализа возможных последствий аварийных ситуаций.
Вызывает беспокойство то, что из 29 действующих энергоблоков только 7 (реакторы - ВВЭР-1000) отличаются достаточной надежностью. Отрицательной особенностью является и то, что большинство российских АЭС расположены в густонаселенной Европейской части страны, в их 30-километровых зонах проживает более 4 миллионов человек.
Положение на АЭС усугубляется тем, что на большинстве станций сегодня имеет место высокая, свыше 65%, степень износа основных производственных фондов. Слабо ведутся работы по модернизации, ремонту и профилактике оборудования. В силу социальных причин наблюдается падение производственной и технологической дисциплины.
В принципе, можно констатировать, что вероятность за- проектных аварий на российских АЭС в настоящее время, в целом,
106
значительно не уменьшилась, а по ряду энергоблоков, где не выполнен комплекс дополнительных мер безопасности, эта вероятность повысилась.
Среди техногенных источников ЧС наибольшую опасность по тяжести поражения, масштабам долговременности действия поражающих факторов представляют радиационные катастрофы.
Наглядным примером этому является авария на Чернобыльской АЭС (1986 г.), которая по совокупности своих последствий стала самой крупной катастрофой современности, затронувшей судьбы миллионов людей не только в бывшем СССР, но и за его пределами.
Достаточно сказать, что радиоактивному загрязнению с плотностью по цезию-137 более 1 Ки/км2 только в Российской Федерации подверглись территории 19 субъектов Российской Федерации, общей площадью около 60 тыс.км2, на которых проживает почти 3 млн. человек, в том числе более 600 тыс. детей. Ликвидация последствий этой катастрофы потребовала беспрецедентной в мирное время мобилизации сил и ресурсов страны.
Важнейшими уроками Чернобыльской катастрофы были: осознание возможности возникновения катастроф, протекающих по неисследованным, незапланированным, запроектным сценариям и требующих нестандартных действий по их локализации и ликвидации; недооценка опасностей радиационных аварий, их факторов и параметров воздействия на людей и окружающую среду; отсутствие системы научной поддержки принятия решений локализации и ликвидации аварий; отсутствие заранее созданной информационной базы данных по основным характеристикам радиационно-опасных объектов и окружающих их территорий; недостаточный учет психологических факторов при действиях по оповещению и эвакуации населения из мест радиационных аварий; необходимость повышения в системе защитных мероприятий роли радиационной разведки, оповещения и информирования населения об обстановке и действиях в сложившихся условиях; низкая оснащенность сил, привлекаемых к ликвидации последствий аварии, средствами индивидуальной защиты, радиационной разведки, дозиметрического контроля и специальными транспортными средствами, а также материальными ресурсами;
107
- отсутствие заблаговременно отработанных прав и мер ответственности участников спасательных операций, их гарантий и льгот.
Сегодня вероятность аварий, подобных Чернобыльской, на АЭС с реакторами РБМК, ВВЭР-440, на промышленных и ряде исследовательских реакторов составляет, по оценкам ряда экспертов, 10-3 реакторо-лет при нормативной величине 10-6.. 10-7 реакторо-лет, т.е. на 3-4 порядка выше.
Наиболее тяжелыми радиационными авариями на АЭС, сопровождаемыми выбросом урана и продуктов его деления за пределы СЗЗ и радиоактивным загрязнением окружающей среды, являются запроектные аварии, обусловленные разгерметизацией первого контура реактора с разрушением или без разрушения активной зоны.
Радиационные аварии имеют место на судах и кораблях, космических аппаратах с ядерными реакторами, на объектах с промышленными, экспериментальными и исследовательскими ядерными реакторами.
Корабельные объекты с ЯЭУ оснащаются реакторами легководного типа. Принципиальными их отличиями от реакторов АЭС являются: использование в качестве топлива более обогащенного урана, сравнительно малые размеры, высокая степень защиты.
Характерной причиной радиационных аварий на корабельных ЯЭУ является разгерметизация первого контура реактора с выбросом при определенных условиях продуктов деления урана в окружающую среду.
На существующих космических объектах с ЯЭУ используются малогабаритные ядерные реакторы с высоким обогащением природного урана, на быстрых нейтронах, с жидкометаллическим теплоносителем, электрической мощностью несколько МВт.
Особенности последствий радиационных аварий космических объектов с ЯЭУ в полете обуславливаются разрушением и сгоранием летательного аппарата при входе в плотные слои атмосферы. Выпадением его радиоактивных остатков, в том числе отдельных высокоактивных, на значительном пространстве, исчисляемом десятками тысяч километров квадратных.
Заслуживают внимания промышленные и исследовательские ядерные установки. Характерной особенностью этих установок является их размещение, как правило, непосредственно в жилых
108
производственных зонах крупных промышленных центров (Москва, Санкт-Петербург, Димитровград и др.). В частности, в г. Москве и Московской области в настоящее время эксплуатируется более 50- ти ядерных исследовательских установок различного назначения.
Следует отметить, что оборудование и технологические системы большинства исследовательских ядерных установок морально и физически изношены, нормативно-технические документы обеспечения безопасности использования этих установок либо устарели, либо отсутствуют, продолжается утечка из состава эксплуатационного персонала высококвалифицированных кадров, не имеется достаточного финансирования для необходимой реконструкции установок.
При этом, отсутствует государственная программа использования исследовательских реакторов, которая могла бы установить целесообразный объем исследований на них, а также определить перечень выводимых из эксплуатации реакторов.
На исследовательских ядерных установках исключаются крупномасштабные радиационные аварии глобального или регионального характера. Однако, они имеют серьезную опасность для персонала и населения, проживающего на прилегающей к ним территории.
Наиболее тяжелые последствия радиационных аварий на промышленных, экспериментальных и исследовательских ядерных реакторах имеют место при разрушении активных зон реакторов, сопровождаемом выбросом урана и продуктов его деления за пределы СЗЗ и загрязнением окружающей среды.
Определенные особенности и большое разнообразие имеют радиационные аварии на установках технологического, медицинского назначения и источниках тепловой и электрической энергии, в которых используются радионуклиды, что обусловлено их различием по назначению, конструкции, составу радионуклидов, типу и мощности излучения. Большинство используемых в этих установках радионуклидов являются мощными гамма - излучателями (60Со, 137Cs и другие) и опасны при разрушении защитных контейнеров, в которых они находятся, или изъятии их из контейнеров без принятия мер защиты. В меньшей части установок используются альфа- и бета - излучатели (238Pu, 210Po, 90Sr и другие), которые без надлежащей защиты также опасны для внешнего облучения.
109
Радиоактивное загрязнение окружающей среды при авариях установок технологического и медицинского назначения, источников тепловой и электрической энергии, в которых используются радионуклиды, возможно только при изъятии капсул с радионуклидами из защитных контейнеров и механическом или физическом разрушении капсул. При этом, как правило, происходит местное загрязнение окружающей среды. Возможен разнос загрязнений человеком, транспортом, ветром, водными потоками. Уровни радиации, плотности загрязнения зависят от типа радионуклида и его количества. В отдельных устройствах активность радионуклидов («топлива») может достигать 1016-1017 Бк.
Территории и водоемы загрязнены радионуклидами в результате имевших место радиационных аварий, ядерных взрывов в мирных целях. Производственная деятельность предприятий ЯТЦ представляет радиационную опасность в связи с возможным разносом радиоактивных загрязнений и облучением населения, проживающего на загрязненных территориях, как за счет внешнего, так и внутреннего облучения, обусловленного употреблением загрязненных продуктов (овощей, фруктов, мяса, рыбы, молока, ягод, грибов) и попаданием радиоактивных аэрозолей через дыхательные пути.
Значительную радиационную опасность представляют отходы ядерных технологий. Узловой проблемой отходов ядерных технологий является накопление отработанного ядерного топлива. Всего его накоплено уже более 10 тыс. т., с суммарной активностью свыше 4 млрд. Ки. Проблема хранения и переработки отработанного ядерного топлива на сегодня стала тупиковой. Объемы этого вида отходов постоянно растут, а мощности по их переработке и утилизации остаются неизменными.
В результате в хранилищах на атомных электростанциях отработанного ядерного топлива хранится в среднем в 1,5-2 раза больше, чем в активных зонах, а на Белоярской, Билибинской, Ленинградской и Курской АЭС - в 3-4 раза больше, с общей активностью отработанного топлива в 6-8 раз выше, чем в «рабочих» зонах.
Сложное положение с отработанным ядерным топливом на атомном флоте. Особенно беспокоят суда гражданского флота у причалов, служащие своеобразными хранилищами отработанного топлива.
Другой составляющей проблемы последствий ядерных
110
технологий является состояние с накоплением и хранением радиоактивных отходов. Основные источники образования радиоактивных отходов - добыча, обогащение урановой руды и производство ТВЭЛов, эксплуатация АЭС, регенерация отработанного топлива, использование радиоактивных изотопов. Данные о количестве радиоактивных отходов, накопленных в настоящее время, крайне тревожные. Общий их объем составляет около 500 млн.м3 (не считая низко активных отвальных пород на добывающих предприятиях - до 100 млн.м3), с суммарной активностью свыше 2,0 млрд. Ки. Наибольшую опасность и в этом отношении представляют предприятия ядерно-топливного цикла с радиохимическим производством. В частности, только на производственном объединении «Маяк» накоплено и хранится около 550 млн. Ки жидких и до 12 млн. Ки твердых отходов.
Чрезвычайные ситуации (ЧС) на РОО возможны по следующим причинам: диверсии в террористических целях; нарушение технологических процессов; нарушение техники безопасности и режима работы; боевые действия; природные явления и техногенные аварии и инциденты.
Эти обстоятельства потребуют: привлечения сил и средств Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий (МЧС России) для ликвидации последствий ЧС; изменение маршрутов передвижения сил и средств МЧС России, населения; необходимости проведения мероприятий по радиационной защите войск и сил МЧС России и населения.
Критерии, определяющие состояние ЧС, и классификация их масштабов установлены на федеральном уровне «Положением о классификации чрезвычайных ситуаций природного и техногенного характера».
Определение состояния и масштаба ЧС радиационного характера только по размерам причиненного ущерба здоровью и имуществу населения ограничивает возможности планирования мероприятий по эффективной защите населения в условиях функционирования РСЧС,
111
относящегося к режимам повседневной деятельности и повышенной готовности к возможным событиям, связанным с техногенным неконтролируемым облучением населения. Это существенно в случае радиационных аварий, тем более, что ущерб здоровью человека при облучении может быть обнаружен («клинически определен») в зависимости от полученной им эффективной дозы, спустя продолжительное время после факта облучения, и даже только у его потомства (стохастические эффекты излучения).
Таблица 5
Сводка масштабов и признаков ЧС в соответствии с «Положением о классификации чрезвычайных ситуаций природного и техногенного характера»


Классифика
ция
ЧС
(масштаб ЧС)

Признаки ЧС по охвату территории
(зона ЧС)

Количественные признаки ЧС

Число пострадав - ших (чел.)

Нару
шены
усло-вия
жиз
недеятель
ности
(чел.)

Материал ьный ущерб (к- во МРОТ)

Локальная ЧС

В пределах территории объекта производственного или социального назначения

не более 10

не более 100

не более 1000

Местная ЧС

В пределах населенного пункта, города, района

от 10 до 50

от 100 до 300

от 1000 до 5000

Территориальная ЧС

В пределах субъекта РФ

от 50 до 500

от 300 до 500

от 5000 до 0,5 млн.

Региональная
ЧС

В пределах 2-х субъектов РФ

от 50 до 500

от 500 до 1000

от 0,5 млн. до 5 млн.

Федеральная
ЧС

В пределах более чем 2-х субъектов РФ

более 500

более 1000

более 5 млн.

Т рансграничная ЧС

В случае выхода за пределы РФ или охвата территории РФ, если источник за ее границей

не регламентируется

112
Примечание. В соответствии с «Положением о классификации чрезвычайных ситуаций природного и техногенного характера» классификационными признаками являются: число пострадавших, либо нарушение условий жизнедеятельности определенного числа людей, либо размер материального ущерба, а также территориальный признак. При этом имеется в виду, что количественные показатели указаны «на день возникновения ЧС».
При классификации аварий на РОО существует несколько подходов. Это обусловлено тем, что подобные аварии отличаются большим разнообразием присущих им признаков, а также объектов, на которых они могут происходить. В большинстве случаев аварии, сопровождающиеся выбросами радиоактивных веществ и формированием радиационных полей, классифицируют применительно к АЭС.
В зависимости от характера и масштабов повреждений и разрушений аварии на РОО подразделяют на проектные, проектные с наибольшими последствиями (максимально проектные) и запроектные (гипотетические).
Под проектной аварией понимается авария, для которой определены в проекте исходные события аварийных процессов, характерных для того или иного объекта (типа ядерного реактора) или другого радиационно-опасного узла, конечные состояния (контролируемые состояния элементов и систем после аварии), а также предусмотрены системы безопасности, обеспечивающие ограничение последствий аварий установленными пределами.
Максимально проектные аварии характеризуются наиболее тяжелыми исходными событиями, обусловливающими возникновение аварийного процесса на данном объекте. Эти события приводят к максимально возможным в рамках установленных проектных пределов радиационным последствиям.
Под запроектной (гипотетической) аварией понимается такая авария, которая вызывается неучитываемыми для проектных аварий исходными событиями и сопровождается дополнительными по сравнению с проектными авариями отказами систем безопасности.
В радиационной аварии различают четыре фазы развития: начальную, раннюю, промежуточную и позднюю (восстановительную).
Начальная фаза аварии является периодом времени, предшествующим началу выброса (сброса) радиоактивности в
113
окружающую среду, или периодом обнаружения возможности облучения населения за пределами СЗЗ предприятия. В отдельных случаях подобная фаза может не существовать вследствие своей быстротечности.
Ранняя фаза аварии (фаза «острого» облучения) является периодом собственно выброса радиоактивных веществ в окружающую среду или периодом формирования радиационной обстановки непосредственно под влиянием выброса (сброса) в местах проживания или нахождения населения. Продолжительность этого периода может быть от нескольких минут до нескольких часов в случае разового выброса (сброса) и до нескольких суток в случае продолжительного выброса (сброса). Для удобства в прогнозах продолжительность ранней фазы аварии в случае разовых выбросов (сбросов) принимается, как правило, равной 1 суткам.
Промежуточная фаза аварии охватывает период, в течение которого нет дополнительного поступления радиоактивности из источника выброса в окружающую среду и в течение которого решения о введении или продолжении ранее принятых мер радиационной защиты принимаются на основе проведенных измерений уровней содержания радиоактивных веществ в окружающей среде и вытекающих из них оценок доз внешнего и внутреннего облучения населения. Промежуточная фаза начинается с нескольких первых часов с момента выброса (сброса) и длится до нескольких суток, недель и дольше. Для разовых выбросов (сбросов) протяженность промежуточной фазы прогнозируют, как правило, в пределах 7-10 суток.
Поздняя фаза (фаза восстановления) характеризуется периодом возврата к условиям нормальной жизнедеятельности населения и может длиться от нескольких недель до нескольких десятков лет в зависимости от мощности и радионуклидного состава выброса, характеристик и размеров загрязненного района, эффективности мер радиационной защиты.
В зависимости от границ зон распространения радиоактивных веществ и радиационных последствий потенциальные аварии на АЭС делятся на 6 типов:
- Локальная авария. Радиационные последствия аварии ограничиваются пределами объекта. При этом возможно облучение
114
персонала и загрязнение зданий и сооружений, находящихся на территории АЭС, выше уровней, установленных для нормальной эксплуатации. Местная авария. Радиационные последствия аварии ограничиваются пределами пристанционного поселка и населенных пунктов в районе расположения АЭС. При этом возможно облучение персонала и населения выше уровней, установленных для нормальной эксплуатации. Территориальная авария. Радиационные последствия аварии ограничиваются пределами субъекта Российской Федерации, на территории которого расположена АЭС, и включают, как правило, две и более административно-территориальные единицы субъекта. При этом возможно облучение персонала и населения нескольких административно-территориальных единиц субъекта Российской Федерации выше уровней, установленных для нормальной эксплуатации. Региональная авария. Радиационные последствия аварии ограничиваются пределами двух и более субъектов Российской Федерации и приводят к облучению населения и загрязнению окружающей среды выше уровней, установленных для нормальной эксплуатации. Если при региональной аварии количество людей, получивших дозу облучения выше уровней, установленных для нормальной эксплуатации, может превысить 500 человек, или количество людей, у которых могут быть нарушены условия жизнедеятельности, превысит 1000 человек, или материальный ущерб от аварии превысит 5 млн. минимальных размеров оплаты труда, то такая авария будет федеральной. Трансграничная авария. Радиационные последствия аварии выходят за территорию Российской Федерации либо данная авария произошла за рубежом и затрагивает территорию Российской Федерации.
Перечисленные радиационные последствия потенциальных аварий на ЭС определяют масштабы чрезвычайных ситуаций радиационного характера.
Международным агентством по атомной энергетике (МАГАТЭ) разработана международная шкала событий на АЭС. В соответствии
115
с этой шкалой аварии на АЭС подразделяются по характеру и масштабам последствий, а некоторые и по причинам их вызвавшим.
Градация аварий на АЭС осуществляется по 7 уровням: глобальная авария; тяжелая авария; авария с риском для окружающей среды; авария в пределах АЭС; серьезное происшествие; происшествие средней тяжести; незначительное происшествие.
Международная шкала событий на АЭС приведена в приложении 6.
Помимо рассмотренных выше классификаций, существует классификация нарушений в работе АЭС, которой придерживаются при расследовании и учете аварий и происшествий, выявлении причин и обстоятельств их возникновения, оценке с точки зрения безопасности, а также разработке мер по устранению последствий нарушений, предотвращению их возникновения и повышению безопасности.
В соответствии с этой классификацией нарушения в работе АЭС подразделяются на аварии и происшествия. Выделяют 4 категории аварий, которые характеризуются различным количеством выброшенных радиоактивных веществ в окружающую среду, начиная с выброса большей части радиоактивности из активной зоны ядерного реактора, при котором превышаются дозовые пределы для гипотетической аварии (категория АО -1), и заканчивая выбросом радиоактивных веществ в таких количествах, при которых не превышаются дозовые пределы для населения при проектных авариях (категория АО-4).
Происшествия характеризуются возникновением неисправностей и повреждений различных узлов ядерного реактора, систем оборудования и подразделяются на 10 типов. Наибольшую опасность представляет происшествие первого типа (ПО-1), при котором, помимо неисправностей и повреждений, происходит выброс в окружающую среду радиоактивных продуктов выше предельно допустимых норм без нарушения пределов безопасной эксплуатации АЭС.
Особенности радиоактивного загрязнения местности при авариях (разрушениях) на АЭС, космических аппаратах и других РОО определяются радионуклидным составом продуктов загрязнения,
116
характером и особенностями их пространственного распределения.
Последствия радиационных аварий и, прежде всего, радиоактивные загрязнения окружающей среды имеют сложную зависимость от исходных параметров РОО (типа объекта, типа и мощности ядерной или радиоизотопной установки, характера радиохимического процесса и т.д.) и метеоусловий.
Характер радиоактивного загрязнения местности в результате аварий на АЭС зависит от типа и масштабов аварии - от локальной утечки в атмосферу ограниченного количества радиоактивных газов до полного взрывного разрушения активной зоны реактора с выбросом во внешнюю среду огромного количества радиоактивных веществ, загрязняющих огромную территорию. На территории АЭС и в непосредственной зоне, прилегающей к станции, в результате такой аварии могут быть разбросаны радиоактивные фрагменты конструкций, куски тепловыделяющих элементов (ТВЭЛов), графитовых замедлителей и других радиоактивных элементов, формирующие гамма-излучение, мощность дозы которого может достигать сотни и тысячи рад в час вблизи аварийного реактора.
Радиоактивное загрязнение местности в районе аварийной АЭС до нескольких десятков километров является крайне неравномерным. Возможно образование локальных пятен, радионуклидный состав которых может сильно различаться в результате фракционирования радионуклидов при их выбросе и распространении. На больших расстояниях от места аварии радиоактивное загрязнение становится более равномерным при соответствующем уменьшении уровня загрязнения.
Продукты аварий АЭС в своем составе имеют большую долю долгоживущих радионуклидов. Степень обогащения тем выше, чем продолжительнее работал реактор перед аварией (т. е. чем больше его кампания). Соответственно, спад активности в районах аварий АЭС происходит в несколько раз медленнее.
При авариях космических объектов, имеющих на своем борту ядерные энергетические реакторы, содержащих ядерные материалы, несгоревшие фрагменты реакторов или изотопных батарей разбрасываются на большой территории и даже в масштабе целых континентов.
Наибольшую информативность в целях обнаружения остатков летательных аппаратов при этом представляют:
117 среди продуктов деления - 95Zr, 95Nb, 140La; среди продуктов нейтронной активации - 58Fe, 58Co, 60Co, 46Sc, 54Mn.
На предприятиях по разделению изотопов урана (обогащению
природного урана) и изготовлению ядерного топлива выход радионуклидов за пределы СЗЗ возможен при авариях, связанных с возникновением СЦР или взрывов и пожаров на участках технологических процессов.
Радионуклидный состав и активность выбросов за пределы СЗЗ при термохимических и термобарических взрывах на предприятиях по переработке отработавшего ядерного топлива и радиоактивных отходов перед захоронением зависит от характера технологического процесса и этапа его осуществления. Причем, радионуклиды, присутствующие в технологических средах, не участвуют в химических реакциях взрывного характера, и причиной их выбросов является разрушение технологического аппарата с высокой температурой технологической среды (для растворов около 100°С).
Выброс летучих продуктов деления ядерного топлива при авариях на корабельных ЯЭУ за пределы СЗЗ с активностью, представляющей опасность для населения и требующей осуществления мер защиты, маловероятен.
Исследовательские реакторы в своем большинстве размещаются в густонаселенных районах, несмотря на их небольшую энергетическую мощность и меньший выброс радиоактивных продуктов при авариях.
Радиоактивное загрязнение возможно и при авариях источников, используемых в промышленности, медицине, сельском хозяйстве, научных учреждениях. Характер и степень загрязнения зависят от параметров и условий использования данных источников. Как правило, такие источники являются точечными и при их авариях возникает локальное загрязнение, а ликвидация аварии сводится в большинстве случаев к поиску, локализации и удалению источников.
Радиоактивное загрязнение окружающей среды является наиболее важным экологическим последствием радиационных аварий с выбросами радионуклидов, основным фактором, оказывающим влияние на состояние здоровья и условия жизнедеятельности людей на территориях, подвергшихся радиоактивному загрязнению.
Степень опасности радиоактивно-загрязненных поверхностей
118
определяется радионуклидным составом загрязнений, плотностью загрязнений, характером загрязненных поверхностей, временем, прошедшим после загрязнения, и некоторыми другими характерными для соответствующего загрязнения причинами.
Наиболее характерные особенности имеет радиоактивное загрязнение вследствие аварий ядерных реакторов различного характера.
В соответствии с удельным весом в составе выбросов биологически наиболее значимых радионуклидов при аварии ядерных реакторов в развитии радиационной обстановки выделяют, как правило, два основных периода: «йодовой опасности», продолжительностью до 2-х месяцев, и «цезиевой опасности», который продолжается многие годы.
В «йодном периоде», кроме внешнего облучения (131J, 137Cs, 90Sr, тяжелые металлы - до 45% дозы за первый год), основные проблемы связаны с молоком и листовыми овощами - главными «поставщиками» радионуклида йода внутрь организма.
«Цезиевый период», наступающий по прошествии 10 периодов полураспада йода-131, является периодом, когда цезий определяет основную причину радиационного воздействия на население и окружающую среду.
На первом этапе радиационное воздействие на людей складывается из внешнего и внутреннего облучений, обусловленных соответственно радиоактивными облучениями от загрязненных радионуклидами объектов окружающей среды и вдыханием радионуклидов с загрязненным воздухом, на втором этапе - облучением от загрязненных радионуклидами объектов окружающей среды и введением их в организм человека с потребляемой пищей и водой, а в дальнейшем - в основном за счет употребления населением загрязненных продуктов питания. Принято считать, что 85% суммарной прогнозируемой дозы облучения на последующие 50 лет после аварии составляет доза внутреннего облучения, обусловленного потреблением продуктов питания, которые выращены на загрязненной территории, и лишь 15% падает на дозу внешнего облучения.
Радиоактивное загрязнение водоемов, как правило, представляет опасность лишь в первые месяцы после аварии.
При оценке экологической обстановки, сложившейся в результате
119
радиационной аварии в регионе или на определенной территории, в качестве «фона» принимается относительно удовлетворительное (благополучное) состояние окружающей среды.
Экологическое же неблагополучие оценивается с двух позиций: состояние природной среды и состояние среды обитания и здоровья населения.
Состояние природной среды характеризуется критериями загрязнения воздушной среды, воды, почв, деградации экосистем и, как правило, оценивается, исходя из общеэкологических и санитарногигиенических требований.
При оценке состояния среды обитания человека принимаются во внимание, в первую очередь, санитарно-гигиенические нормы. Кроме того, учитываются все нормы и требования по чистоте источников водоснабжения, рыбохозяйственных водоемов, лесных угодий и т.п. Степень ухудшения здоровья населения характеризуется по медико-демографическим критериями.
При этом под существенным ухудшением здоровья населения, прежде всего, понимается увеличение числа нарушений здоровья, которые являются необратимыми и несовместимыми с жизнью людей. Показателями ухудшения здоровья населения являются также изменение структуры причин смерти и увеличение смертности за счет онкологических заболеваний, вызванных загрязнением окружающей среды радионуклидами, отклонений физического и нервнопсихического развития, нарушений течения и исходов беременности и родов, связанных с загрязнением окружающей среды.
В приложении 3 приведены Основные пределы доз облучения населения, установленные НРБ-99 (Нормами радиационной безопасности), которые используются при оценке экологической обстановки.
Превентивные (предупреждающие) меры радиационной защиты населения при авариях РОО предпринимаются только при достаточной длительности начальной фазы аварии. К числу превентивных мер, предпринимаемых в это время, относятся укрытие населения в противорадиационных укрытиях и, по возможности, обеспечение населения радиозащитными профилактическими препаратами и средствами индивидуальной защиты. На протяжении этой фазы осуществляются организационные мероприятия по подготовке к
120
эвакуации населения. При угрозе выброса радиоактивного йода и других биологически значимых нуклидов (например, 90Sr, 137Cs и др.) прекращается выпас молочного скота и организуется перевод его на стойловое содержание.
Основными документами, устанавливающими нормы в области радиационной безопасности населения в соответствии с действующим законодательством РФ и рекомендациями международных организаций, являются: Нормы радиационной безопасности СП 2.6.1.758-99 (НРБ-99), утвержденные Главным государственным санитарным врачом Российской Федерации 02.07.99 г. Основные санитарные правила обеспечения радиационной безопасности СП 2.6.1.799-99 (ОСПОРБ-99), утвержденные Главным государственным санитарным врачом Российской Федерации 27.12. 99 г.
Среднегодовая доза облучения человека, не превышающая 20 мЗв рассматривается как допустимая для всех категорий населения, постоянно проживающего на территории, загрязненной радионуклидами - источниками бета- и гамма-излучения. При этом обязательными условиями, обеспечиваемыми администрацией территорий, являются проведение постоянного радиационного контроля обстановки, мер по снижению (ограничению) облучения населения, а также по его информированию о результатах контроля и о современных научных и статистических данных о риске проживания на данной территории.
Территории, на которых обнаружены локальные радиоактивные загрязнения, должны зонироваться на основании тех же критериев, которые применяются для зонирования территорий, ранее попадавших в область радиационной аварии и на которых в данное время протекают процессы, свойственные ее восстановительной стадии.
Обязательной мерой защиты должно быть длительное (в течение нескольких первых суток после аварии) укрытие детей, проживающих в радиусе около 5 км вокруг АЭС. При радиусе СЗЗ равном 3 км эта мера защиты потребуется для детей, проживающих на территории площадью около 50 км2.
При аварии на РБМК-1000 второго поколения меры защиты населения не являются обязательными. Вместе с тем, такие меры
121
защиты, как укрытие и йодная профилактика, могут быть проведены в начальном периоде аварии с учетом конкретной обстановки и местных условий.
Основными целями мер радиационной защиты населения, вводимых на протяжении ранней и промежуточной стадий, являются исключение или снижение доз внешнего облучения, радиоактивного загрязнения поверхности тела и одежды людей, предотвращение и снижение поступления радиоактивных веществ через органы дыхания, и, в отдельных случаях, через органы пищеварения. Меры, предназначенные в этот период для снижения внешнего облучения, будут эффективными и для снижения дозы внутреннего облучения. К таким мерам, в первую очередь, относится укрытие населения в противорадиационных укрытиях и его эвакуация.
При планировании укрытия населения, включая укрытие населения в противорадиационных укрытиях, исходят из численности подлежащего укрытию населения, имеющихся возможностей укрытия населения в специально подготовленных по программам гражданской обороны (ГО) убежищах и сооружениях, а также из противорадиационных и технических характеристик убежищ и сооружений, предполагаемой длительности нахождения населения в укрытиях и способах последующего вывода или эвакуации укрывшихся из укрытий.
При альтернативном выборе необходимости укрытия населения в укрытиях или эвакуации его через непродолжительное время после начала аварии принятие решения основывается, прежде всего, на значении предотвращенной дозы за рассматриваемый период и реальных возможностях осуществления каждой из этих мер защиты. В большинстве случаев, в условиях выброса короткоживущих нуклидов, предпочтительнее будет обеспечить быстрое укрытие и последующую хорошо организованную эвакуацию из укрытий, чем провести быструю эвакуацию ввиду затруднений, связанных с ее организацией.
К основным противорадиационным характеристикам сооружений, не относящихся к типовым убежищам, относятся коэффициенты ослабления (коэффициенты защиты) гамма-излучения конструкциями зданий и сооружений. Однако эффективность использования для укрытия противорадиационных убежищ, других сооружений, а также
122
просто нахождение в производственных и жилых зданиях оценивают также и по предотвращению радиоактивного загрязнения одежды и кожных покровов, по снижению интенсивности поступления радиоактивных веществ в организм при вдыхании. В общем плане эффективность укрытия определяется коэффициентами эффективного экранирования при нахождении в убежищах и транспорте при последующей эвакуации.
В идеальном случае укрытие людей в убежищах осуществляют как превентивную меру, предпринимаемую на начальной фазе аварии. Эта мера ослабляет радиационное воздействие проходящего облака или факела выброса на следующей, ранней фазе аварии. Сигналом к этому является извещение населения о необходимости укрытия в убежищах, при их отсутствии - укрытия во внутренних помещениях, а также извещение о необходимости использовать специальные и подручные средства защиты органов дыхания. Целесообразно заранее информировать население, что укрытие в помещениях, не являющихся убежищами, дает наибольший эффект при использовании зданий, построенных из плотных материалов, а в самом здании - при использовании цокольного этажа и подвалов. Необходимо рекомендовать находиться в помещениях, расположенных в центральной части зданий и, по возможности, не имеющих окон. При наличии окон людям следует занимать углы или другие места, защищенные от прямого дневного света через окна.
Население необходимо заранее информировать, что при объявлении тревоги нужно закрыть окна и внешние двери, перекрыть системы вентиляции и другие отверстия, затушить огонь в печах, закрыть дымовые заслонки в них. Степень воздухообмена можно еще более сократить, поместив, по возможности, слой влажных газет или ткани в щели открывающихся дверей и окон.
В общей системе мероприятий по защите людей, проживающих вблизи РОО, а также личного состава МЧС России, привлекаемого к ликвидации последствий ЧС (разрушений) РОО, важную роль играет правильный выбор и своевременное обеспечение средств индивидуальной защиты (СИЗ).
Применение мер индивидуальной защиты населения планируется для ранней и промежуточной фаз аварии как обязательное дополнение к укрытию и эвакуации населения, осуществляемое, прежде всего, в
123
период прохождения облака (факела) радиоактивного выброса и в период формирования следа радиоактивного облака. Целями этих мер является предотвращение или снижение поступления радиоактивности через органы дыхания и снижение уровней радиоактивного загрязнения поверхности тела.
К СИЗ органов дыхания относят специальные и простые (подручные средства). Специальные средства обеспечивают защиту от радиоактивных аэрозолей, газообразных и летучих радиоактивных нуклидов (например, радиойода в различных его физико-химических формах) за счет использования специальных респираторов и противогазов с селективными коробками. Ими, как правило, обеспечивается персонал аварийных команд и формирований гражданской обороны. Для населения наиболее доступной мерой является применение, как правило, предметов личного пользования в качестве простых средств защиты органов дыхания, во время перемещения к укрытиям, нахождения в укрытиях и в ходе эвакуации. Относительная эффективность этих средств защиты приведена в приложении 4.
Защитной одеждой, как средством защиты поверхности тела от радиоактивного загрязнения, обеспечивается только персонал аварийных команд и формирований гражданской обороны. Поэтому применительно к населению основным плановым мероприятием следует считать разъяснение необходимости максимальной по площади защиты поверхности тела любой одеждой.
При радиоактивном загрязнении верхней одежды предусматривается: предотвращение заноса радиоактивных веществ в убежища с загрязненной одеждой, путем создания на входе в убежище пункта дозиметрического контроля, санитарного шлюза и места складирования загрязненной одежды; контроль за загрязнением одежды в сборных эвакопунктах; замену загрязненной одежды на чистую, для чего необходимо создание запасов одежды (спецодежды).
Оперативное решение этих задач может базироваться только на результатах предварительного прогнозирования.
Обоснование выбора СИЗ производится также по результатам прогнозирования развития аварии.
Обсуждая особенности использования СИЗ в зонах
124
радиоактивного загрязнения при авариях РОО, следует отметить, что при этом необходимо защищать органы дыхания от попадания внутрь организма человека радионуклидов, которые могут находиться в загрязнённой атмосфере в виде тонкодисперсного аэрозоля, пара или газа, а кожные покровы человека - от непосредственного контакта с радионуклидами.
Опыт участия личного состава в ликвидации последствий аварии на Чернобыльской АЭС показал, что из табельных образцов фильтрующих средств защиты органов для защиты от тонкодисперсных аэрозолей и паров радиоактивного йода и йодистого метила применялись общевойсковые противогазы ПМК и респираторы РМ-2. Респираторы Р-2, как правило, могли использоваться однократно. Следует отметить, что при очистке загрязненного воздуха от радиоактивных частиц аэрозолей происходит накопление радиоактивности в противоаэрозольном фильтре коробки противогаза ПМК и патрона респиратора РМ-2 и они превращаются в источник ионизирующих излучений. Впоследствии был разработан новый респиратор типа «РЧ», коробка которого предназначена для очистки загрязнённого воздуха от радиоактивных аэрозолей и паров радиоактивного йода и йодистого метила. В комплект респиратора «РЧ» входит защитный экран из прозрачного полиметакрилата, который защищает лицо и глаза человека от радиационного ожога. Для защиты органов дыхания от радиоактивной пыли могут использоваться одноразовые респираторы ШБ-1 «Лепесток-200».
СИЗ уменьшают заражённость кожных покровов человека, но не могут полностью защитить от проникающей радиации. Возможность ослабления ионизирующего излучения (ИИ) определяется, с одной стороны, проникающей способностью ИИ, с другой - свойствами материла.
Альфа-частицы имеют очень малую величину свободного пробега и поэтому материалами СИЗ поглощаются полностью. В зонах заражения бета-частицы обладают высокой энергией (до 3 МэВ и более) и поэтому поглощаются не полностью. Гамма-излучение обладает высокой проникающей способностью и материалами СИЗ практически не ослабляются. Допустимые плотности заражения кожи человека и одежды мирного времени на несколько порядков ниже, чем для военного времени.
125
Защитная одежда, используемая в этих ситуациях, должна быть, как правило, одноразовая и изготовлена из плотной ткани или нетканого материала с малой удерживающей способностью радиоактивной пыли, с элементами герметизации по низкам брюк и рукавов.
Эвакуация населения представляет собой наиболее эффективную, но крайнюю защитную меру, которая осуществляется в случае необходимости на протяжении ранней и промежуточной фаз аварии. Эвакуация может быть эффективной мерой и после нахождения населения в укрытиях, как способ снижения дозы облучения от загрязненной окружающей среды. Так как максимальные мощности дозы гамма-излучения характерны для начального периода аварии, особенно при наличии в выброшенной смеси короткоживущих нуклидов, то срок начала эвакуации должен быть как можно более ранним.
Особенности проведения эвакуации определяются характером воздействия радиационного загрязнения, численностью и охватом вывозимого населения, временем и срочностью проведения эвакомероприятий.
Отселение планируется только при таких сценариях аварии, когда результирующая мощность сочетанной дозы облучения населения медленно спадает во времени, и когда допустим период времени на подготовку и осуществление отселения в течение поздней фазы аварии. Во всех других ситуациях разрабатываются планы экстренной эвакуации, которая перейдет в отселение при невозможности возврата населения, выявленной конкретными обследованиями зоны радиоактивного загрязнения.
Основными задачами медицинского обеспечения населения на ранней и промежуточной фазах аварии являются оказание первой медицинской помощи и выявление лиц, нуждающихся в противолучевой терапии.
Объем и характер необходимой медицинской помощи зависит от тяжести аварии, уровня полученных доз, количества облученных людей. Последний фактор имеет особое значение, так как при большом количестве облученных оказание эффективной медицинской помощи требует принятия дополнительных мер.
Первая помощь населению оказывается персоналом медицинской службы аварийно-спасательных формирований и привлекаемых
126
территориальных медицинских служб в районе размещения объекта. Специальная подготовка персонала медицинских учреждений, которые могут быть привлечены к аварийным действиям, планируется и осуществляется заблаговременно.
В качестве защитных противорадиационных мер уже на ранней и промежуточной фазах аварии осуществляется санитарная обработка населения. Санитарная обработка населения включает: радиационный контроль поверхности тела и одежды; помывку под горячим душем с применением бытовых моющих и стандартных дезактивирующих средств; замену загрязненной одежды и обуви на чистые.
Применение радиозащитных профилактических препаратов
предназначено для: снижения или блокировки поступления или последующего отложения в организме радиоактивных веществ; ускорения выведения из организма поступивших в него радионуклидов; ослабления физиологических и биохимических последствий радиационных эффектов в организме.
Наиболее приемлемым с практической точки зрения и подлежащим планированию в качестве превентивной и экстренной мер радиационной защиты населения является применение препаратов стабильного йода при потенциальном или реальном выбросе в атмосферу радиойода из реакторных производств.
Эффективность препаратов стабильного йода и рекомендуемые дозы приема приведены в приложении 5.
Планирование мер по ограничению поступления радиоактивных веществ через органы пищеварения на протяжении ранней и промежуточной фаз аварии проводится при наличии достоверных прогнозных данных об аварийных и допустимых уровнях радиоактивного загрязнения каждого из основных видов продуктов и питьевой воды, особенно по суммарной радиоактивности.
Наиболее допустимой мерой в ходе ранней и промежуточной фаз аварии является введение ограничений на потребление отдельных категорий пищевых продуктов и воды из конкретных источников водоснабжения. Осуществление всего комплекса мер в полном объеме наиболее реально на поздней фазе аварии.
127
Основные нормативные акты и документы по вопросам обеспечения радиационной безопасности: Федеральный закон «О радиационной безопасности населения» от 05.12.1995 г. (с изменениями от 22.08.2004 г.) Гигиенические нормативы ГН 2.6.1.19-02 «Санитарно-защитные зоны и зоны наблюдения радиационных объектов. Условия эксплуатации и обоснования границ» СП 2.6.1.758-99 «Ионизирующее излучение, радиационная безопасность. Нормы радиационной безопасности (НРБ-99)» СП 2.6.1.799-99 «Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ-99)» «Концепция радиационной, медицинской, социальной защиты и реабилитации населения Российской Федерации, подвергшегося аварийному облучению» (РИКРЗ, 1996 г.) «Обоснование основных мероприятий защиты населения при ликвидации чрезвычайных ситуаций радиационного характера». Методические рекомендации. - М.: ФГУ ВНИИ ГОЧС (ФЦ), 2004;
«Санитарные правила обращения с радиоактивными отходами» (Минздрав России, 2002 г.) Справочник спасателя. Книга 7. «Спасательные работы по ликвидации последствий радиоактивных загрязнений». - М.: ВНИИ ГОЧС, 1995 «Справочник по радиационной безопасности». - 4-е издание, пер. и доп. - М.: Энергоатомиздат, 1991 и др.

Ионизирующее излучение – любое излучение, взаимодействие которого с окружающей средой приводит к образованию электрических ионов разных знаков Радиационно опасный объект - это объект, на котором хранят, перерабатывают или транспортируют радиоактивные вещества, при аварии на котором может произойти облучение ионизирующим излучением людей или радиоактивное загрязнение окружающей среды.




К радиационно опасным объектам относятся: предприятия ядерного топливного цикла (предприятия урановой и радиохимической промышленности, места переработки и захоронения радиоактивных отходов); атомные станции (атомные электрические станции (АЭС), атомные теплоэлектроцентрали (АТЭЦ), атомные станции теплоснабжения (АТС); объекты с ядерными энергетическими установками (корабельными, космическими и войсковыми атомными электростанциями); ядерные боеприпасы и склады для их хранения.



Международная шкала событий на АЭС для оценки серьезности происшедшего, быстрого оповещения и выбор адекватных мер безопасности Кате- гория СобытиеПроисшествие Внешние последствия и меры безопасности Примеры Авария 7 Глобальна я авария Разрушение реактора и выброс в окружающую среду значительной доли радиоактивных продуктов Возможность острых лучевых поражений и последующее влияние на здоровье населения на значительных территориях более чем одной страны Чернобыль, СССР, Тяжелая авария Значительное разрушение активной зоны с выбросом радиоактивных продуктов Возможность влияния на здоровье населения. Необходимость частичной эвакуации Виндскейл, Велико- британия, Авария с риском для окружающе й среды Разрушение части активной зоны с выбросом радиоактивных продуктов Возможность влияния на здоровье населения. В отдельных случаях частичное проведение противоаварийных мер (йодная профилактика) Три-Майл- Айленд, США, Авария в пределах АЭС Частичное разрушение активной зоны с выбросом радиоактивных продуктов в пределах помещений АЭС Облучение населения дозами не выше 1 бэр. Меры по защите не требуется. Возможность острых лучевых поражений персонала Сант-Лау- рент, Франция, 1980


Кате- гория СобытиеПроисшествие Внешние последствия и меры безопасности Примеры Происшествие 3 Серьезное происшестви е Нарушение нормальной работы оборудования, приведшее к загрязнению АЭС и небольшому выбросу радиоактивных веществ в окружающую среду Облучение населения дозами не более нормы. Меры по защите не требуются. Возможно переоблучение персонала дозами до 5 бэр Ванделлос, Испания, Происшеств и е средней тяжести Отказы оборудования, не приведшие к нарушениям безопасности АЭС -- 1 Незначитель ное происшестви е Функциональные отклонения, которые не представляют какого- либо риска, но указывают на недостатки по безопасности -- 0 Не имеет значения для безопасност и Отклонение режимов без превышения пределов --






Домашнее задание Найти и выписать в тетрадь рекомендации по правилам поведения специалистов МЧС: 1) При проживании в непосредственной близости от радиационно опасных объектов. 2) При получении сигнала оповещения о радиационной аварии. 3) При подготовке к возможной эвакуации. 4) Правила поведения при проживании на радиационно загрязненной местности.




Уточнить наличие в районе вашего проживания радиационно опасных объектов и получить возможно более подробную и достоверную информацию о них; выяснить в ближайшем территориальном управлении ГО ЧС способы и средства оповещения населения при аварии на радиационно опасном объекте; изучить инструкцию о порядке действий населения в случае возникновения радиационной аварии; создать и иметь определенные запасы необходимых герме­тизирующих материалов, йодных препаратов, продовольствия и воды.




Если вы находитесь на улице, немедленно защитите органы дыхания платком, шарфом и укройтесь в ближайшем здании, лучше в собственной квартире. Войдя в помещение, в коридоре следует снять с себя верхнюю одежду и обувь, поместить их в пластиковый пакет или пленку. Если вы находитесь в своем доме (квартире), немедленно закройте окна, двери, вентиляционные отверстия, включит радиоприемник или телевизор и будьте готовы к приему информации о дальнейших действиях. Обязательно загерметизируйте помещение и укройте продукты питания в полиэтиленовые мешки, пакеты или пленку. При получении указаний через СМИ проведите йодную про­филактику, принимая в течение 7 дней по одной таблетке (0,125 г) йодистого калия, а при отсутствии - йодистый раствор: три-пять капель 5%-ного раствора йода на стакан воды, для детей до 2 лет 1/4 дозы. При приготовлении и приеме пищи все продукты, выдерживающие воздействие воды, промывайте струей воды. Помещение оставляйте лишь в крайней необходимости и на короткое время. При выходе из помещения защитите орга­ны дыхания, наденьте плащ, или накидку или табельные средства защиты кожи. После возвращения переоденьтесь.




Подготовка к возможной эвакуации заключается в сборе самых необходимых вещей. Это документы, деньги, личные вещи, продукты, средства индивидуальной защиты. Необходимо сложить в чемодан или рюкзак одежду и обувь, однодневный запас продуктов, нижнее белье и другие необходимые вещи. Оберните чемодан (рюкзак) полиэтиленовой пленкой. Покидая при эвакуации квартиру, отключите все электро- и газовые приборы, вынесите быстро портящиеся продукты, а на дверь прикрепите объявление «В квартире __ никого нет». При посадке в транспорт или при формировании пешей колонны, зарегистрируйтесь у председателя эвакокомиссии. Прибыв в безопасный район, примите душ и смените белье и обувь на незараженные.


Рекомендации по правилам поведения специалистов МЧС: 4) Правила поведения при проживании на радиационно загрязненной местности. При проживании на местности, степень радиационного загрязнения которой превышает фоновые нормы, но не выше опасных пределов установленных доз, необходимо придерживаться специального режима поведения, соблюдение которого в определенной степени может снизить риск дополнительного облучения.


Уборка помещения должна проводиться влажным способом с тщательным стиранием пыли с мебели и подоконников. Обувь, в которой ходили по улице, ополаскивать водой (особенно подошву) и оставлять ее за порогом квартиры (дома). Желательно оставлять вне квартиры (дома) и верхнюю одежду, в которой ходили по улице. При ведении приусадебного хозяйства для снижения радиоактивного загрязнения выращиваемых продуктов в почву целесообразно вносить известь, калийные удобрения и торф. Во время уборки урожая плоды, овощи и корнеплоды не складируют на землю. Выращенные сельхозпродукты подвергаются радиационному контролю. Не рекомендуется употреблять в пищу рыбу и раков из местных водоемов. Заготовка дикорастущих ягод, грибов, лекарственных трав может проводиться по разрешению местных властей. На открытой местности не раздевайтесь, не садитесь на землю, не купайтесь в открытых водоемах. Воду употребляйте только из проверенных источников, а продукты питания - приобретенные в магазинах. Тщательно мойте руки и полощите рот 0,5%-ным раствором питьевой соды.


Территориальные органы системы ГО по ЮАО г.Москвы Управление по ЮАО ГУ МЧС России по г. Москве Телефон – 8 (495) Адрес – Чертановская улица, дом 40 Агентство Гражданской защиты по ЮАО г.Москвы Телефон – 8 (495) Адрес – Каширское шоссе, дом 28, корпус 2

На территории Тульской области радиационно-опасных объектов нет, но по соседству имеется две атомные электростанции, одна в Ленинградской области (Ленинградская АЭС, г. Сосновый Бор) и вторая в Тверской области (Калининская АЭС, г. Удомля). Возможные аварии на этих АЭС могут привести к радиационному загрязнению больших территорий области.

К радиационно-опасному объекту (РОО) относят объект, на котором хранят, перерабатывают, используют или транспортируют радиоактивные вещества, при аварии на котором или его разрушении может произойти облучение ионизирующим излучением или радиоактивное загрязнение людей, сельскохозяйственных животных и растений, объектов экономики, а также окружающей среды.

Особое место среди РОО занимают атомные электростанции (АЭС), атомные теплоэлектростанции (АТЭЦ), атомные станции теплоснабжения (АСТ) и атомные станции промышленного теплоснабжения (АСПТ).

Основным и наиболее опасным элементом атомных станций является ядерный реактор.

Следует обратить внимание на характерную особенность радиоактивного загрязнения местности при авариях на АЭС, которая существенно отличается от радиоактивного заражения местности при ядерных взрывах. При наземном ядерном взрыве в его облако вовлекаются тысячи тонн грунта. Радиоактивные частицы смешиваются с минеральной пылью, оплавляются и оседают на местности. Воздух загрязняется незначительно. Поэтому главную опасность для людей, оказавшихся на следе радиоактивного облака, представляет внешнее облучение (90-95% общей дозы облучения). Доза внутреннего облучения незначительна (5-10%). Она обусловливается попаданием внутрь организма радиоактивных веществ через органы дыхания и с продуктами питания.

При авариях на АЭС наблюдается совершенно иная картина радиоактивного загрязнения местности. Значительная часть продуктов деления ядерного топлива находится в парообразном или аэрозольном состоянии. Воздействие радиоактивного загрязнения окружающей среды на людей в первые часы и сутки после аварии определяется внутренним облучением в результате вдыхания радионуклидов из облака и внешним облучением от радиоактивного облака и радиоактивных выпадений на местности, а также поверхностным загрязнением в результате осаждения радионуклидов из облака выброса. В последующем в течение многих лет вредное воздействие и накопление дозы облучения у людей будет обусловлено вовлечением в биологическую цепочку выпавших радионуклидов и употреблением загрязненных продуктов питания и воды.

На территории, подвергшейся радиоактивному загрязнению, после стабилизации обстановки в районе аварии в период ликвидации ее долговременных последствий устанавливаются зоны:


Зона отчуждения . В этой зоне запрещается постоянное проживание населения, ограничивается хозяйственная деятельность и природопользование.

Зона отселения . Это территория за пределами зоны отчуждения, на которой плотность загрязнения почв цезием-137 от 15 до 40 Ки/км², или стронцием-90 свыше 3 Ки/км², или плутонием-239,240 - свыше 0,1 Ки/км². На территориях зоны отселения, где плотность загрязнения почв цезием-137 составляет свыше 40 Ки/км², а также на территориях той зоны, где среднегодовая эффективная эквивалентная доза облучения населения от радиоактивных выпадений может превышать 5 мЗв (0,5 бэр), население подлежит обязательному отселению.

Зона проживания с правом на отселение . Это территория за пределами зоны отчуждения и зоны отселения с плотностью загрязнения почв цезием-137 от 5 до 15 Ки/км². При среднегодовой эффективной эквивалентной дозе облучения свыше 1 мЗв (0,1 бэр) население имеет право на отселение.

Зона проживания с льготным социально-экономическим статусом. Это территория за пределами зоны отчуждения, зоны отселения и зоны проживания с правом на отселение с плотностью радиоактивного загрязнения почвы цезием-137 от 1 до 5 Ки/км². В этой зоне среднегодовая эффективная эквивалентная доза облучения населения не должна превышать 1 мЗв (0,1 бэр).

Радиационное воздействие на человека заключается в ионизации тканей его тела и возникновении лучевой болезни. Степень поражения зависит от дозы ионизирующего излучения, времени, в течение которого эта доза получена, площади облучения тела, общего состояния организма. Прежде всего поражаются кроветворные органы, в результате чего наступает кислородный голод тканей, резко снижается иммунная защищенность организма, ухудшается свертываемость крови.

Лучевая болезнь первой степени возникает при однократной дозе облучения 100-200 Р (0,026-0,052 Кл/кг). Скрытый период болезни может длиться две-три недели, после чего появляется недомогание, слабость головокружение, тошнота. В крови уменьшается количество лейкоцитов. Через несколько дней эти явления проходят.

В большинстве случаев специального лечения не требуется.

Лучевая болезнь второй степени возникает при дозе облучения 200-400 Р (0,052-0,104 Кл/кг). Скрытый период продолжается около недели. Затем наблюдается общая слабость, головные боли, повышение температуры, расстройство функций нервной системы, рвота. Количество лейкоцитов снижается наполовину.

При активном лечении выздоровление наступает через полтора-два месяца. Возможны смертельные исходы - до 20% пораженных.

Лучевая болезнь третьей степени наступает при дозах облучения 400-600 Р (0,104-0,156 Кл/кг). Скрытый период длится несколько часов. Отмечается общее тяжелое состояние, сильные головные боли, озноб, повышение температуры до 40 0 С, потеря сознания (иногда - резкое возбуждение). Болезнь требует длительного лечения (6-8 месяцев). Без лечения до 70% пораженных погибают.

Лучевая болезнь четвертой степени возникает при однократной дозе облучения свыше 600 Р (0,156 Кл/кг). Болезнь сопровождается затемнением сознания, лихорадкой, резким нарушением водно-солевого обмена и заканчивается смертельным исходом через 5-10 суток.

Внутреннее облучение людей и животных обусловливается радиоактивным распадом изотопов, попавших в организм с воздухом, водой или пищей.

Значительная часть изотопов (до 90%) выводится из организма в течение нескольких дней, а остальные всасываются в кровь и разносятся по органам и тканям.

Некоторые изотопы распределяются в организме почти равномерно (цезий), а другие концентрируются в определенных тканях. Так, в костных тканях отлагаются источники альфа излучений (радий, уран, плутоний); бета излучений (стронций, иттрий) и гаммаизлучений (цирконий). Эти элементы очень слабо выводятся из организма.

Изотопы йода преимущественно откладываются в щитовидной железе; изотопы лантана, церия и прометия - в печени и почках и т.п.

При организации радиационной защиты производственного персонала, формирований ГО и населения основные усилия сосредоточиваются на исключении или уменьшении воздействия ИИ на низ, что достигается укрытием в защитных сооружениях, уменьшением времени пребывания в зонах радиоактивного загрязнения и эвакуацией в безопасные районы. Эти способы защиты - составная часть комплекса мероприятий, проводимых в интересах обеспечения защиты людей в зонах радиоактивного загрязнения и эвакуацией в безопасные районы.

Эти способы защиты - составная часть комплекса мероприятий, проводимых в интересах обеспечения защиты людей в зонах радиоактивного загрязнения, который включает:

· выявление и оценку радиационной обстановки;

· оповещение населения о возникшей опасности;

· ввод в действие режимов радиационной защиты;

· проведение радиационной профилактики;

· организацию дозиметрического контроля;

· дезактивацию участков дорог, сооружений, технологического оборудования;

· эвакуацию производственного персонала и населения;

· санитарную обработку;

· ограничение доступа в загрязненные районы;

· защиту органов дыхания и кожи;

· простейшую обработку продуктов питания;

· перевод сельскохозяйственных животных на незагрязненные пастбища;

· введение посменной работы на объектах с высокими мощностями доз излучения.

Для снижения последствий воздействия ионизирующих излучений на организм человека применяются противорадиационные препараты. Это лекарственные средства, повышающие устойчивость организма к воздействию ИИ или снижающие тяжесть клинического течения лучевой болезни. Кроме того, радиопротекторы ослабляют ранние симптомы поражения радиацией - тошноту и рвоту. Противорадиационным эффектом обладает группа химических веществ, которые имеют в своем составе сульфгидрильные группы (SH). К числу этих веществ относятся цистеин, цистамин, цистофос и другие. Для профилактики лучевой болезни гражданская оборона располагает препаратом цистамином. Он изготавливается в виде таблеток, которые есть в аптечке индивидуальной АИ-2. Этот препарат ослабляет эффект радиоактивного облучения в 1,3-1,5 раза. Однако применение его после облучения защитного действия не оказывает.

Особое место в противорадиационной профилактике человека при действиях на местности, загрязненной радиоактивными продуктами выброса ЯЭР при их авариях, занимает йодная профилактика. Это обусловливается тем, что, в отличие от ядерного взрыва, в облаке радиоактивных продуктов содержится значительное количество радиоактивного йода-131 (период полураспада - 8 дней). Попадая в организм человека через незащищенные органы дыхания или с пищей, он сорбируется щитовидной железой и поражает ее.

Наиболее эффективным методом защиты является прием внутрь лекарственных препаратов стабильного йода (йодная профилактика) йодистого калия в таблетках (иногда в порошках).

Максимальный защитный эффект достигается при заблаговременном или одновременном с поступлением радиоактивного йода приеме стабильного аналога.

Защитный эффект препарата резко снижается в случае его приема спустя 2 часа после поступления в организм радиоактивного йода. Однако даже через 6 часов после разового поступления йода-131 прием препарата стабильного йода может снизить дозу облучения щитовидной железы примерно в 2 раза.

Лекция № 16

Аварии на радиационно-опасных объектах.

План:

1. Введение.

2. Основные направления деятельности по вопросам гражданской защиты.

3. Заключение.

1. Введение.

Проблемы безопасности при эксплуатации радиационно-опасных Объектов (РОО) в последнее время встают все острее, в связи, с чем возникает необходимость качественных изменений в подготовке соответствующих специалистов по Гражданской Защите. Здесь на первое место выдвигается профессиональное мышление, сформированное твердыми знаниями и глубоким пониманием всех процессов. В связи с этим необходимы более широкие и максимально подробные программы по атомной и ядерной физике, постоянно обновляемые новым теоретическим и фактическим материалом, цифрами, достижениями.

В этой работе мы попытаемся систематизировать и обобщить практическую и теоретическую информацию о радиационной обстановке в г. Москве, а также дать общие рекомендации по учету и профилактике ЧС на радиационно-опасных объектах столицы Российской Федерации.

2.Основные направления деятельности по вопросам гражданской защиты.

2.1 Общие сведения

Ядерные энергетические установки и другие объекты экономики, при авариях и разрушениях которых могут произойти массовые радиационные поражения людей, животных и растений, называют радиационно-опасными объектами (РОО).

Выброс радиоактивных веществ за пределы ядерно-энергетического реактора, в результате чего может создаться повышенная радиационная опасность, представляющая собой угрозу для жизни и здоровья людей, называется радиационной аварией.

К радиационно-опасным объектам, при авариях на которых может быть загрязнение окружающей среды, относятся: атомные электростанции, атомные тепловые электростанции, суда с атомными реакторами, исследовательские реакторы, лаборатории и клиники, использующие в своей работе радиоактивные вещества.

Радиационная авария - это авария на радиационно-опасном объекте, приводящая к выходу или выбросу радиоактивных веществ и (или) ионизирующих излучений за предусмотренные проектом для нормальной эксплуатации данного объекта границы в количествах, превышающих установленные пределы безопасности его эксплуатации.

При прогнозе радиационной обстановки учитывается масштаб аварии, тип реактора, характер его разрушения и характер выхода радиоактивных веществ из активной зоны, а также метеоусловия в момент выброса РВ.

В зависимости от границ распространения радиоактивных веществ и радиационных последствий выделяют:

· локальные аварии (радиационные последствия ограничиваются зданием,

· сооружением с возможным облучением персонала)

· местные аварии (радиационные последствия ограничиваются территорией

· объекта)

· общие аварии (радиационные последствия распространяются за границу

· территории объекта).

В первые часы и сутки после аварии действие на людей загрязнения окружающей среды определяется внешним облучением от радиоактивного облака (продукты деления ядерного топлива, смешанные с воздухом), радиоактивных выпадений на местности (продукты деления, выпадающие из радиоактивного облака), внутренним облучением вследствие вдыхания радиоактивных веществ из облака, а также за счет загрязнения поверхности тела человека этими веществами. В дальнейшем, в течение многих лет, накопление дозы облучения будет происходить за счет употребления загрязненных продуктов питания и воды.

Важной особенностью аварийного выброса радиоактивных веществ является то, что они представляют собой мелкодисперсные частицы, обладающие свойством плотного сцепления с поверхностями предметов, особенно металлических, а также способностью сорбироваться одеждой и кожными покровами человека, проникать в протоки потовых и сальных желез. Это снижает эффективность дезактивации (удаление радиоактивных веществ) и санитарной обработки (мероприятия по ликвидации загрязнения поверхности тела человека).

Размер зон загрязнения местности находится в зависимости от категории устойчивости атмосферы и выхода активности - выброса РВ из активной зоны реактора в зависимости от масштаба аварии.

По категории устойчивости атмосфера подразделяется на сильно неустойчивую - конверсия (А), нейтральная-изотермия (Д), очень устойчивая - инверсия (Г). В дневное время преобладает неустойчивая, к вечеру нейтральная устойчивость атмосферы. В ночное время и ранние утренние часы преобладает инверсия - очень устойчивое состояние атмосферы.

При одноразовом выбросе РВ из аварийного реактора и устойчивом ветре движение радиоактивного облака происходит в одном направлении. В этом случае след радиоактивного облака имеет вид эллипса.

Доза облучения людей на ранней фазе протекания аварии формируется за счет гамма- и бета-излучения PВ, содержащихся в облаке, а также вследствие ингаляционного поступления в организм радиоактивных продуктов, содержащихся в облаке. Данная фаза продолжается с момента начала аварии до прекращения выброса продуктов ядерного деления (ПЯД) в атмосферу и окончания формирования радиоактивного следа на местности.

На средней фазе источником внешнего облучения являются РВ, выпавшие из облака и находящиеся на почве, зданиях и т.п. Внутрь организма они поступают в основном с загрязненными продуктами питания и водой. Средняя фаза длится от момента завершения формирования радиоактивного следа до принятия всех мер по защите населения. Продолжительность этой фазы может быть от нескольких дней до года после возникновения аварии. Поздняя фаза длится до прекращения выполнения защитных мер и отмены всех ограничений деятельности населения на загрязненной территории. В этой фазе осуществляется обычный санитарно-дозиметрический контроль радиационной обстановки, а источники внешнего и внутреннего облучения те же, что и на средней фазе.

В целях исключения массовых радиационных потерь и переобучения населения, рабочих и служащих сверх установленных доз, их действия в условиях радиоактивного заражения строго регламентируются и подчиняются режиму радиационной защиты.

Режимы радиационной защиты - это порядок действия людей, применения средств и способов защиты в зонах радиоактивного заражения, предусматривающий максимальное уменьшение возможных доз облучения. Для обеспечения радиационной безопасности при нормальной эксплуатации объектов необходимо руководствоваться следующими положениями:

1. Не превышение допустимых пределов индивидуальных доз облучения человека от всех источников ионизирующего излучения (принцип нормирования).

2. Запрещение всех видов деятельности по использованию источников ионизирующего излучения, при которых полученная для человека и общества польза не превышает риск возможного вреда, причиненного дополнительным к естественному фону облучения (принцип обоснования).

3. Поддержание на возможно низком и достижимом уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц при использовании любого источника ионизирующего излучения (принцип оптимизации).

Основные дозовые пределы (НРБ-96)

Основным нормативным документом, регламентирующем уровни облучения профессиональных работников и населения является "Нормы радиационной безопасности (НРБ-96)".

Нормы радиационной безопасности устанавливают следующие категории облучаемых лиц:

Персонал - лица, работающие с техногенными источниками излучения (группа А) и лица, находящиеся по условиям работы в сфере их воздействия (группа Б);

Все население, включая лиц из персонала, вне сферы и условий их профессиональной деятельности.

Основные дозовые пределы (см. таблицу 1).

Допустимые уровни монофакторного воздействия (для одного радионуклида, одного вида внешнего излучения, одного пути поступления), являющиеся производными от основных дозовых пределов: предел годового поступления радионуклида в организм (ПГП), допустимые среднегодовые объемные активности (ДОА) и т.п.

Контрольные дозы и уровни, которые устанавливаются администрацией учреждения по согласованию с органами Госсанэпиднадзора в зависимости от достигнутого уровня радиационной безопасности, при условии, что радиационное воздействие будет ниже допустимого.

Таблица 1

Дозы облучения и все остальные допустимые производные уровни для персонала группы Б не должны превышать 1/4 значения для персонала группы А.

При расчете доз облучения персонала и населения учитывается как внешнее, так и внутреннее облучение. Годовая эффективная доза облучения равна сумме эффективной дозы внешнего облучения, накопленной за календарный год и ожидаемой эффективной дозы внутреннего облучения, обусловленной поступлением радионуклидов в организм за тот же период. Интервал времени для определения величины ожидаемой эффективной дозы устанавливается равным 50 годам для персонала и 70 годам для населения. Соблюдение предела годовой дозы предотвращает возникновение детерминированных эффектов, а вероятность стохастических эффектов сохраняется при этом на приемлемом уровне.

Примечание: Дозовые пределы, приведены в таблице 1 применяются для вновь строящихся, проектируемых и реконструированных предприятий. Для действующих предприятий эти пределы вводятся после реконструкции или с 1 января 2000 года. До этого действующие объекты руководствуются основными дозовыми пределами, приведенными в таблице 1а и положениями изложенными ниже.

Группы критических органов (в порядке убывания радиационной чувствительности):

1 группа - все тело, гонады и красный костный мозг;

2 группа - мышцы, щитовидная железа, печень, почки, легкие, хрусталики глаз и другие органы, не входящие в 1 и 2 группы.

3 группа - кожа, костная ткань, кисти, предплечье, лодыжки и стопы.

Установлены следующие дозовые пределы:

Предельно допустимая доза (ПДД) - наибольшее значение индивидуальной дозы за год, которая при равномерном воздействии в течении 50 лет не вызовет в состоянии здоровья персонала (категория А) неблагоприятных изменений, обнаруживаемых современными методами.

Предел дозы (ПД) - предельная эквивалентная доза за год для ограниченной части населения (категория Б). ПД устанавливается ниже ПДД для предотвращения необоснованного облучения людей. Ожидаемая эквивалентная доза для населения интегрируется за 70-летний период.

Таблица 1а

Основные дозовые пределы облучения персонала и населения не включают в себя дозы от природных и медицинских источников излучения, а так же дозу вследствие аварий. На эти виды облучения устанавливаются специальные ограничения. Для учащихся в возрасте 21 года, проходящих обучение с использованием ионизирующего излучения, годовые накопленные дозы не должны превышать значений, установленных для населения.

Планируемое повышенное облучение при ликвидации аварии разрешается только в тех случаях, когда нет возможности избежать такого облучения в связи со спасением жизни людей, предотвращением дальнейшего развития аварии и облучения большого количества людей. Планируемое повышенное облучение допускается только для мужчин старше 30 лет при их добровольном письменном согласии, после информирования о возможных дозах облучения и риске для здоровья.

Облучение в дозе до 100 мЗв в год допускается с разрешения территориальных органов госсанэпиднадзора, а до 200 мЗв в год – с разрешения Госкомсанэпиднадзора России. Лица, подвергшиеся облучению в дозе, превышающей 100 мЗв, в дальнейшем не должны подвергаться облучению в дозе более 20 мЗв/год.

Однократное облучение в дозе свыше 200 мЗв рассматривается как потенциально опасное. Лица, подвергшиеся такому облучению, должны выводится из зоны облучения, и направляться на медицинское обследование. Дальнейшая работа с источниками облучения этим лицам может быть разрешена только медицинской комиссией.

Все лица, привлекаемые для проведения аварийных и спасательных работ, приравниваются к персоналу. Они должны быть обучены для работы в зоне радиационной аварии и пройти медосмотр. Повышенное облучение не допускается для работников, ранее уже получивших дозу 200 мЗв в год, а так же для лиц, имеющие медицинские противопоказания.

НРБ-96 разработаны с учетом Международных основных норм безопасности для защиты от ионизирующих излучений и безопасности источников излучений (1994 г.) и отражают современные состояние и подходы в части обеспечения санитарно-эпидемиологического благополучия и радиационной безопасности населения. Новые нормы существенно отличаются от НРБ-76/87. Поэтому требуется их тщательно изучить, в особенности специалистам практикам. А государственную и частную нормативно-распорядительную документацию предприятий (объектов) следует привести в полное соответствие с ними.

Чрезвычайная ситуация – это обстановка на определенной территории, сложившаяся в результате аварии, катастрофы, опасного природного явления, стихийного или иного бедствия, которые могут повлечь или повлекли за собой человеческие жертвы, ущерб здоровью людей или окружающей природной среде, значительные материальные потери и нарушения условий жизнедеятельности людей.

Чрезвычайные ситуации по характеру возникновения классифицируются следующим образом:

1. ЧС Техногенного характера: транспортные аварии; аварии на производственных объектах, аварии с выбросом химических веществ; аварии с выбросом радиоактивных веществ; аварии на взрывоопасных и пожароопасных объектах; аварии с выбросом биологически опасных веществ; народно-хозяйственные катастрофы; аварии на системах жизнеобеспечения населения;

2. ЧС Природного характера: геологические опасные явления; гидрометеорологические, гелиогеофизические стихийные бедствия; природные пожары; особо опасные эпидемии, эпизоотии, эпифитотии;

3. ЧС Экологического характера: ЧС, связанные с изменением состояния суши; ЧС, связанные с изменением свойств атмосферы; ЧС, связанные с изменением состояния гидросферы; ЧС, связанные с изменением состояния биосферы.

При развитии гипотетической аварии на радиационно-опасном объекте, в районе может сложиться радиационная обстановка, значительно превышающая радиационный фон. Население района может оказаться в зоне опасного радиоактивного заражения. Размеры зоны зависят от метеорологической обстановки в районе.

Основные направления деятельности МГ СЧС по вопросам гражданской защиты, по вопросам гражданской защиты, предупреждения и ликвидации чрезвычайных ситуаций.

Главной задачей в области ГЗ, предупреждения и ликвидации чрезвычайных ситуаций считать обеспечение готовности органов управления и сил МГСЧС к всестороннему обеспечению мероприятий гражданской защиты, подготовку к защите населения и территорий столицы от чрезвычайных ситуаций.

Основными направлениями деятельности МГСЧС являются:

1. Создание и поддержание в готовности систем управления, сил и средств, чрезвычайных резервов финансовых и материальных ресурсов.

2. Организация наблюдения и контроля за состоянием окружающей среды и потенциально опасных объектов, прогнозирование чрезвычайных ситуаций.

3. Разработка и осуществление мер, направленных на защиту населения, повышение устойчивости функционирования отраслей экономики и городского хозяйства в чрезвычайных ситуациях.

4. Совершенствование и обеспечение функционирования городской системы подготовки органов управления, специалистов МГСЧС, обучение населения действиям в чрезвычайных ситуациях.

5. Оповещение населения о возникновении чрезвычайной ситуации и порядке действий в сложившейся обстановке.

6. Проведение работ по ликвидации чрезвычайных ситуаций, первоочередному жизнеобеспечению населения, в первую очередь пострадавшего.

Большое значение при защите населения отводится своевременному оповещению о чрезвычайной ситуации. Для того чтобы своевременно предупредить население о чрезвычайных ситуациях, необходимо твердо знать сигналы оповещения ГЗ и уметь правильно действовать по ним.

Основным способом оповещения людей в чрезвычайных ситуациях считается подача речевой информации с использованием государственных сетей радио- и телевещания. Перед подачей речевой информации включаются сирены, производственные гудки и другие сигнальные средства, что означает подачу предупредительного сигнала "ВНИМАНИЕ, ВСЕМ!", по которому население обязано включить радио- и телеприемники для прослушивания экстренного сообщения.

В чрезвычайных ситуациях мирного времени подаются следующие сигналы:

- "Воздушная тревога";

- "Отбой воздушной тревоги";

- "Радиационная опасность";

- "Химическая тревога".

Остановимся подробнее на сигнале "РАДИАЦИОННАЯ ОПАСНОСТЬ": При выявлении начала радиоактивного заражения данного населенного пункта или при угрозе радиоактивного заражения в течение ближайшего часа подается данный сигнал.

Сигнал доводится до населения в течение 2-3 минут с помощью всех местных технических средств связи и оповещения, по радио- и телевизионной сети передачей текста: "Внимание! Граждане! Радиационная опасность!". Излагаются рекомендации о мерах защиты и режимах поведения. Сигнал дублируется звуковыми и световыми средствами. По сигналу необходимо: надеть средства защиты органов дыхания (противогаз, респиратор, ПТМ, ВМП), взять

подготовленный запас продуктов питания, воды, медикаментов, надеть приспособленную одежду и перчатки и следовать в ЗС. Если обстоятельства заставляют укрываться дома или на рабочем месте, следует быстро закончить работу по герметизации помещения. По указаниям органов ГЗ принять радиозащитное средство.

Основными мероприятиями по предупреждению и снижению действия поражающих факторов при радиационной аварии являются:

Оповещение населения об аварии и информирование его о порядке действий в создавшихся условиях;

Укрытие;

Использование средств индивидуальной защиты;

Предотвращение потребления загрязненных продуктов питания и воды;

Эвакуация населения;

Ограничение доступа на загрязненную территорию.

Меры защиты:

Предохранить органы дыхания средствами защиты - противогазом, респиратором, а при их отсутствии - ватно-марлевой повязкой, шарфом, полотенцем, смоченными водой;

Закрыть окна и двери, отключить вентиляцию, включить радио, радиоточку, телевизор и ждать дальнейших указаний;

Укрыть продукты питания в полиэтиленовых мешках. Сделать запас воды в емкостях с плотно прилегающими крышками. Продукты и воду поместить в холодильник, шкафы, кладовки;

Не употреблять в пищу овощи, фрукты, воду, заготовленные после аварии;

Строго соблюдать правила личной гигиены;

Приготовиться к возможной эвакуации. Собрать документы, деньги, продукты, лекарства, средства индивидуальной защиты;

Укрыться при поступлении команды в ближайшем защитном сооружении.

При авариях на радиационно-опасных объектах в облаке радиоактивных продуктов содержится значительное количество радиоактивного йода-131, который сорбируется щитовидной железой человека и вызывает ее поражение.

Наиболее эффективным методом защиты от действия радиоактивного йода-131 является йодная профилактика. С этой целью осуществляется прием внутрь лекарственных препаратов стабильного йода (йодный калий в таблетках или порошках).

Доза принимаемого йодистого калия различна для взрослых и детей: взрослые и дети старше 5 лет - 0,25 г, дети от 2 до 5 лет - 0,125 г, дети до 2 лет - 0,04 г. Однако нужно помнить, что йодистый калий следует принимать только по рекомендации Главного управления по делам ГЗЧС в случае аварии на радиационно-опасном объекте. Данная информация сообщается после сигнала "Внимание всем!".

3. Заключение:

Аварии на радиационно-опасных объектах могут привести к заражению значительной части территории города и повлечь за собой человеческие жертвы.

Общие проблемы безопасности включают глобальный комплекс мероприятий от обоснования требований к персоналу и формирования режимов допуска к информации и работам до ограничений по мерам радиационной, электро-, пожаро- , и взрыво-безопасности. При этом важнейшим является предупреждение аварийности и несанкционированных действий, на что должны быть направлены стройная и четкая система организационно-технического обеспечения, и однозначно толкуемая документация.

В настоящее время особо актуальными стали проблемы учета РОО, поэтому система отчетности требует оптимизации. Соображения безопасности не могут не учитываться на самых ранних стадиях проектирования РОО, поэтому соответствующие требования должны предъявляться к конструктивным системам и программно-аппаратным средствам обеспечения безопасной эксплуатации РОО.

При условии соблюдения всех объективных параметров безопасности субъективный фактор приобретает первостепенную важность в соблюдении мер безопасности, бесперебойности функционирования систем эксплуатации, и организационно-технических мер предотвращения несанкционированных действий. Немаловажное значение имеет обучение мерам предупреждения и снижения аварийности и последствий аварий, для чего персонал обязан уметь работать во всеобъемлющей системе контроля, оперативно и квалифицированно действовать при локализации произошедших аварий, проводить комплекс первоочередных и последующих мероприятий по ликвидации последствий аварий. Нельзя обойти вопросы экологических проблем существования всех компонентов РОО. Кроме непосредственно радиоактивных материалов необходимо учитывать наличие активных (в том числе ядовитых), особо чистых веществ, цветных, тяжелых и драгоценных металлов.

Контрольные вопросы :

1. Какие последствия могут возникнуть после аварий на радиационно-опасных объектах

2. Какие последствия возникли после аварии в Чернобыльской АЭС?

3. Как воздействуют радиоактивные вещества на организм человека?

4. В каких ситуациях человек получает лучевую болезнь?